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Abstract. We investigated _27 azulene delivatives for their 

relative cytotoxicity against three human normal cells and three 

human oral tumor cell lines. 2-Acetylaminoazulene f4], diethyl 

2-chloroazulene-1, 3-dica,horylate f9J a,rd methyl 7-isopl'opyl-2-

methoryazulene-l-carboxylate [24J showed highe,' tumor-

speclfic cytotoxicity than azulene flJ and guaiazulene f2J. Four 

1- and 3-halogenated compounds showed lower tumor 
speclficity. The tumol'-speclfic cytotoxic activity seems not to be 

related to the position offun,ctional groups. All compounds 

showed no anti-HIV activity. Methyl 7-isop,'opyl-2-
methoryazulene-1-carboxylate f24J induced apoptotic cell death 

(characterized by internucleosomal DNA fi'agmentation and 

caspase 3 activation) in HL-60 cells. ESR spectroscopy showed 

that methyl 7-isopivpyl-2-methoxyazulen,e-1-ca/'boxylate f24J 

did not produce radical and less efficiently scavenged 02-

(gene,'ated by HX-XOD reaction) and NO (generated fl'oln 

NOC-7). These data suggest that a radical-mediated oxidation 

mechanism may not be involved in the apoptosis induction by 

methyl 7-isopropyl-2-lnethoryazulene-l-ca!boxylate f24J. 

Azulene [1] (structure shown in Figure I ) is an isomer to 

naphthalene, has a dipole moment and a resonance energy 

intermediate between that of benzene and naphthalene, but 

Correspondence to: Hidetsugu Wakabayashi, Faculty of Science, 

Josai University, Sakado, Saitama,350-0295, Japan. Tel: (+81)049-

271-7959, Fax: (+81)049-271-7985, e-mail: hwaka@josai.ac.jp 

Key Words; Azulenes, cytotoxic activity, apoptosis, caspase. DNA 

fragmentation. 

is considerably more reactive (1-4). Azulene derivatives have 

shown several biological activities, including antibacterial 

activity (5), anti-ulcer activity (6), relaxant activity (7), 

inhibition of thromboxane A.-induced vasoconstriction and 

thrombosis (8), acute toxicity and local anesthetic activity (9). 

The accumulation of guaiazulene [2] at the mucous 
membrane suggested its application for chemotherapy of 

mucous membrane diseases (10, 11). However, the effects of 

azulene derivatives on cellular function have not been 

investigated in detail. We investigated here whether a total of 

27 azulene derivatives display tumor-specific cytotoxic a.ctivity, 

using three normal human cells [gingival fibroblast (HGF), 

pulp cell (HPC), periodontal ligament fibroblast (HPLF)] and 

three human oral tumor cell lines [submandibular gland 

carcinoma (HSG) and oral squamous cell carcinoma (HSC2, 

HSC-3)] and, if so, whether they induce apoptosis-associatecl 

characteristics (such as DNA fragmentation a~nd caspase 

activation) in hurnan tumor cells. We also investigated 

whether a radical-mediated mechanism is involved in th,e 

azulene-induced cyiotoxicity, using ESR spectroscopy. 

Materials and Methods 

Methods. The following chemicals and reagents were obtained from 

the indicated companies: Azulene [1], guaiazulene [2] (Tokyo 

Kasei Kogyo Co., Ltd., Tokyo, Japan); Dulbeccos's modified F.agle 

medium (DMEM), RPMI 1640 (Gibco BRL, Grand Island, NY, 
USA); fetal bovine serum (FBS)(JRH, Bioscience, Lenexa, T:*(S, 

USA); dimethyl sulfoxide (DMSO), diethylenetriarninepel,7taacet~ie 

acid (DETAPAC) (Wako Pure Chem, Ind, Ltd, Osaka, Japan~; 3 
(4,5-dimethylthiazol-2-yl)-2,2-diphenyltetrazolim~~ bra~.~lide (i'*/f'~TT'), 

hypoxanthine (HX), xanthi~~.e oxid:.~se (XOD), S'~~;id~.','~'+' :'*"-
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Figure I . Structure of azulene derivatives. 
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dideoxythymidine (AZT), dideoxycyiidine (ddC) (Sigma Chem Co., 

St. Louis. MO, USA); 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), 

superoxide dismutase (SOD) from bovine erythrocytes, 1-hydroxyl-

2-0x0-3-N-3-methyl-3-aminopropyl)-3-methyl-l-triazene (NOC-7) 

and 2- (4-carboxyphenyl) -4,4,5 ,5 -tetramethylimidazoline- I -oxyl-3-

oxide (carboxy-PTIO) (Dojin, Kumamoto, Japan). 

Synthesis of azulene derivatives. Azulene derivatives were 
synthesized, according to the published reports: Azulene [1] (12-

14), guaiazulene [2] (12-14), 2-aminoazulene [3] (15-17), 2-

acetylaminoazulene [4] (15-17), 2-methoxyazulene [5] (18, 19), 2-

chloroazulene [6] (20), diethyl 2-aminoazulene-1,3-dicarboxylate 

[7] (15, 17, 19, 21), 2-amin0-1,3-dicyanoazulene [8] (15, 17, 19, 

21), diethyl 2-chloroazulene-1,3-dicarboxylate [9] (20), diethyl 

azulene-1,3-dicarboxylate [10] (17), 1,3-difluoroazulene [1l] (22), 

1,3-dichloroazulene [12] (23, 24), 1,3-dibromoazulene [13] (25), 

1,3,5-tribromoazulene [14] (24, 26), 1-methylazulene [15j (27-30), 

methyl azulene-1-carboxylate [16] (28, 29), methyl 3-
methylazulene-1-carboxylate [17] (28, 29), methyl 2-

methylazulene-1-carboxylate [18] (28, 29), dimethyl 2-amin0-5-

isopropylazulene-1,3-dicarboxylate [19] (15, 17, 19, 21), dimethyl 

5-isopropyl-2-hydroxyazulene-1,3-dicarboxylate [20] (15, 17, 19, 

21), methyl 3-ethyl-7-isopropylazulene-1-carboxylate [2l] (28, 29), 

methyl 3-cyan0-2-hydroxy-7-isopropylazulene-l-carboxylate [22] 

(15, 17, 19, 21), 5-isopropyl-2-methoxyazulene [23] (18, 19), methyl 

7-isopropyl-2-methoxyazulene-l-carboxylate [24] (18, 19), methyl 

2H-cyclohepta[b]furan-2-0ne-3-carboxylate [25] (31), ethyl 8-

hydroxy-2H-cyclohepta[b]furan-2-0ne-3-carboxylate [26] (32) and 

ethyl 8-acetoxycycloheptaLb]furan-2-0ne-3-carboxylate [27] (32). 

Cell culture. Three human oral tumor cell lines (HSG, HSC-2, HSC-3) 

and three human normal cells LHGF (5-8 population doubling level 

(PDL)), HPC (5-8PDL), HPLF (5-8PDL)] were cultured in DMEM 
supplemented with 10% heat-inactivated FBS. Human promyelocyiic 

leukemic HL-60 cells were cultured in RPMI 1640 supplemented with 

10% FBS. Normal cells were prepared from periodontal tissues, 

according to the guideline of Meikai University Ethics Committee, 

after obtaining informed consent from the patients. 
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Table I . Cytotoxic activity of azu!enes. 

Cytotoxic activity (CC50: mM) 

Molecular 

Compd. Weight 

Normal human ceils Human tumor cell lines 

HGF HPC HPLF HSG HSC-2 HSC-3 TS 
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13 
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20 
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25 

26 
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128.17 

198.31 

143.19 

20 1 . 23 

158.20 

162.62 

287.32 

193.21 

307.76 

272.3 O 

164.16 

197.06 

285.97 

3 64.86 

142.20 

1 86.2O 

200.24 

200.24 

301.34 

3 02.3 3 

256.35 

269.30 

200. 14 

258.32 

204.19 

234.21 

276.25 

2.38 

O.40 

> 2.79 

> I .99 

1 .82 

2.39 

O.98 

> 2.07 

1.22 

1 .41 

O.91 

1.78 

0.27 

O.42 

O._55 

O . 76 

O.41 

O.39 

O.95 

O.95 

O.35 

O.96 

O.48 

O.18 

> I .96 

1 .30 

1 .04 

2.-52 

O.19 

>2.79 

> I .99 

1.61 

>2.46 

O.81 

> 2.02 

> I .3 

> I .47 

1.01 

1.77 

O.26 

0.3 2 

O.59 

O.43 

O.36 

O.38 

O . 85 

O.65 

O.30 

l.12 

0.40 

O.43 

1.80 

l .35 

0.96 

2.29 

0.19 

>2.79 

> 1.99 

1.71 

1.86 

O.92 

>2.07 

> i .3 

1 .43 

O.90 

1 .85 

O.30 

O.43 

O.54 

O.45 

O.40 

O.38 

O.9_~~ 

0.78 

O.30 

O.84 

O.43 

O.17 

> I .96 

1 .2_5 

O.98 

2.50 

O.11 

>2.79 

O.34 

1 .28 

> 2.46 

> I .39 

O.24 

O.18 

1.17 

O.79 

> 2.03 

O.31 

O.41 

O.60 

O . 25 

O.22 

O.22 

1.07 

O.87 

O.16 

O.89 

O.22 

0.1 1 

O.83 

1.29 

1 .O1 

1.33 

O.16 

>2.79 

O.34 

O.61 

O.42 

O.64 

1.47 

O . 24 

1.30 

0.62 

1.06 

O.19 

O.17 

O.58 

O.45 

O.25 

0.14 

O.28 

O.43 

O.18 

O.84 

O.46 

O.11 

1.42 

1 .20 

O.83 

2.33 

0,12 

> 2.79 

O.98 

O.92 

O.65 

1,17 

1.00 

O.25 

> I .47 

O.58 

1 .40 

O.15 

O.30 

O.51 

0,35 

O*49 

O.35 

O,80 

0,38 

O.29 

O.78 

0.23 

O.11 

1.68 

1.26 

O.96 

1 .2 

2.0 

>< 1.0 

>3.6 
l .8 

>< 1.9 
< O.8 

> 2.3 

>5.7 

><1.1 
1.4 

<1.2 

1.3 

1 .3 

1.0 

1 .6 

1 .2 

1.6 

1.3 

1.4 

1.5 

l.2 

1 .4 

2.4 

> I .5 

1.0 

1.1 

Assay for c'ytotoxic activity. Ce]Is (other than HL-60 cells) ¥vere 

inoculated at 12 x 103 cells/well in 96-micro¥vell (Becton Dickinson 

Labware, NJ, USA), unless otherwise stated. After 24 hours, the 

medium was removed by suction with an aspirator and replaced 

with 0.1 mL of fresh medium containing various concentrations of 

test compounds. Ceils were incubated for another 24 hours and 

the relative viable cell number was then determined by MTT 

method. In brief, cells were replaced with fresh culture medium 

containing O.2 mg/mL MTT and incubated for another 4 hours. 

The cells were lysed with O.1 mL of DMSO and the absorbance at 

540 nm of the celi lysate was determined, using a microplate 

reader (Biochromatic Labsystem, Helsinki, Finland) (33). The 

A540 of control cells were usually in the range of O.40 to O.90. The 

500/(; cytotoxic concentration (CC50) ¥vas determined from the 

dose-response curve. Tumor specificity (TS) was determined by 

the following equation. 

[CC50 (HGF)] + [CC50 (HPC)] + [CC_)-(~~ (HPLF)] 

TS = 
[CC_,..o (HSG)] + [CC50 (HSC-2)] + [CC50 (HSC-3)] 

The viability of HL-60 cells was determined by trypan blue 

exclusion. HL-60 cells were inoculated at 5 x 104/0.1 mL in 96-

microwell and various concentrations of test compounds were 

added. After incubation for 24 hours, the viable cell nmnber was 

determined as described previously. The cell density of control cells 

at cell harvest was in the range of 8-9 x 105/mi. 

Assay .for DNA fl'ag,nentation. Cells were lysed ¥vith 50 uL of 

lysate buffer L50 mM Tris-HCI (pH 7.8), 10 mM EDTA, O.5010 
(w/v) sodium N-lauroyl-sarcosinate solution]. The solution was 

incubated ¥vith O.4 mg/mL RNase A and 0.8 mg/mL proteinase K 

for 1-2 hours at 50'C. After incubation, the lysate was mixed 

with 50 uL of Nal solution L7.6 M NaJ, 20 mM EDTA-2Na, 40 

mM Tris-HCl, pH 8.0]. The lysate was mixed with 250 uL of 

ethanol and centrifuged for 20 minutes at 20,000 xg. The 
precipitate ¥vas washed with I mL of 700/0 ethanol and dissolved 

in TE buffer (10 mM Tris-HCl, I mM EDTA, pH 7.5). A sample 
(10-20 uL) ¥vas applied to 2clo agarose *"el electrophoresis in TBE 

buffer (89 mM Tris-HC], 89 mM boric acid, 2 mM EDTA, pH 
8.0). DNA molecular marker (Takara) and DNA from apoptotic 
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HL-60 cells induced by UV were used for calibration (34). The 

DNA fragmentation pattern was examined in photographs taken 

under UV illumination. 

Table II. Anti-HIV activity of azulene. 

Compd. CC50 (mM) EC50 (mM) SI 

Assay for caspase activation. Cells were washed with PBS and 

lysed in lysis solution (MBL, Nagoya, Japan). After standing for 

10 minutes on ice and centrifugation for 5 minutes at 10,000 xg, 

the supernatant was collected. The lysate (50 uL, equivalent to 

200 ug protein) was mixed with 50 uL 2x reaction buffer (MBL) 

containing substrates for caspase 3 (DEVD-pNA (p-
nitroanilide)) , caspase 8 (IETD-pNA) or caspase 9 (LEHD-
pNA ). After incubation for 2 hours at 37'C, the absorbance at 

405 nm of the liberated chromophore pNA was measured by 
plate reader. 

Assay for radical intensity. The radical intensity of the test sample 

was determined at 25 'C in 0.1 M Tris-HCI buffer (pH 7.4), 0.1 M 

NaHC03/Na2C03 buffer (pH 9, 10) or in 0.1 M KOH (pH 12.5), 

using ESR spectroscopy (JEOL JES REIX, X-band, 100 kHZ 
modulation frequency). Instrument settings: center field, 336.0:t:5.0 

mT; microwave power, 8 mW; modulation amplitude, 0.1 mT; gain, 

630; time constant, 0.03 seconds; scanning time, 2 minutes. The 

radical intensity was defined as the ratio of peak height of these 

radicals to that of MnO (35). 

To determine 02-, produced by HX-XOD reaction (total 
volume: 200 uL) [2 mM HX in 0.1 M phosphate buffer (pH 7.4) 

(PB) 50 uL, 0.5 mM DETAPAC 20 uL, 8% DMPO 30 uL, sample 
(in DMSO) 40 uL, H20 or SOD 30 uL, XOD (0.5 U/mL in PB) 30 

uL], the gain, time constant and scanning time were changed to 

500, 0.1 seconds and I minute, respectively. The radical intensity 

was determined I minute after mixing. The 02- scavenging activity 

was expressed as SOD unit/mg sample, by calibration with the 

standard curve of SOD (35). The concentration required to reduce 

the radical intensity of DMP0-00H by 50% (IC50) was 
determined from the dose-response curve. 

For the determination of NO radical, the sample was added 

to the reaction mixture of 20 uM carboxy-PTIO and 50 uM 
NOC-7 in 0.06 M phosphate buffer, pH 7.4. The gain and 
scanning time were changed to 250 and 2 minutes, respectively. 

The NO radical intensity was defined as the ratio of peak height 

of the Ist peak of carboxy-PTI, which was produced by the 

reaction of NO (derived from NOC-7) and carboxy-PTIO to that 

of MnO (35). 

Assay for anti-human immunodeficiency virus (HIV) activity. MT-4 

cells were infected with HIV-ImB at a multiplicity of infection 

(m,o.i.) of 0.01. HIV- or mock- infected (control) MT-4 cells (1.5 x 

105/mL, 200 uL/well) were placed into 96-well microtiter plates and 

incubated in the presence of various concentrations of test samples. 

After incubation for 5 days at 37'C in a 5% C02 incubator, cell 

viability was quantified by a colorimetric assay (at 540 nm and 690 

nm), monitoring the ability of viable cells to reduce MTT to a blue 

formazan product. The CC50 and 50% effective concentration 
(EC50) were determined from the dose-response curve with mock-

infected or HIV-infected cells, respectively (36). All data represent 

the mean values of triplicate measurements. The anti-HIV activity 

was evaluated by selectivity index (SI), which was calculated by the 

following equation: 

SI=CC50/EC50 
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O,39 
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0,18 
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0.5 

O,71 

0,35 

O,091 

O.30 

1,3 

O,18 

0,14 

0,11 

0,067 

0,08 

O,056 

0,092 

0,092 

0.066 

0,30 

0,80 

O.45 

0,0657 

4,859 

> 1.56 

> 0.20 

> 0.14 

> 0.99 

> 1.26 

> 1.23 

> 0.70 

= O.21 

> 0.65 

> 0.73 

> 1.22 

> 1.01 

> 0.14 

> 0.55 

> 1.41 

> 0.21 

> O.20 

> 0.20 

> 0.13 

> 0.13 

> 0.16 

> 0.15 

> 0.20 

> 0.15 

> 0.98 

> O.85 

> 0.72 

0.000012 

0.00243 

<1 
<1 
=5 
<1 
<1 
<1 
<1 
<1 
<1 
<1 
<1 
<1 
<1 
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<1 
<1 
<1 
<1 
<1 
<1 
<1 
<1 
<1 
<1 
<1 
<1 
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Results 

Structure and activity relationship. We first investigated 27 

azulene derivatives for their relative cytotoxicity against three 

human normal cells (HGF, HPC, HPLF) and three human 
oral tumor cell lines (HSG. HSC-2, HSC-3) (Table I). 

Azulene [1] showed the lowest cytotoxicity against both 

human tumor cells [CC50 (HSG)=2.50 mM; CC50 (HSC-
2)=1.33 mM; CC50 (HSC-3)=2.33 mM] and normal human 

cells [CC50 (HGF)=2.38 mM; CC50 (HPC)=2.52 mM; CC50 

(HPLF)=2.29 mM], yielding very weak tumor specificity 
(TS = I .2) . 

Guaiazulene [2] showed higher cytotoxicity against 

tumor cells [CC50 (HSG)=0.11 mM; CC50 (HSC-2)=0.16 

mM; CC50 (HSC-3)=0.12 mM] and slightly lower 
cytotoxicity against normal cells [CC50 (HGF)=0.40 mM; 

CC50 (HPC)=0.19 mM; CC50 (HPLF)=0.19 mM], 
yielding a moderate magnitude of tumor specificity 
(TS = 2. O) . 2-Acetylaminoazulene [4] , diethyl 2-

chloroazulene-1,3-dicarboxylate [9] and methyl 7-
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}t'ithout (c(,ntrrJlj or with 155 !SM ntethy! 7-isopropy!-2-metho,:yazu!ene-1-carb(,xyiate f24] or I /tg!mL actinomyci~ D rpositiv~ control, 

isopropyl-2-methoxyazulene-1-carboxylate [24] showed 

comparable cytotoxic activity against tumor cells, but 

showed much lower cytotoxicity against normal cel]s, 

yielding the highest tumor-specific cytotoxlcity (TS= 

>3 6, >5 7 and 2 4, respectively) 

1,3-Dibromoazulene [13], 1-methylazulene [15], methyl 3-

methylazulene-1-carboxylate [17] , methyl 2-methylazulene-

1-carboxy]ate [18], methyl 3-ethyl-7-isopropylazulene-1-

carboxylate [2l] and 5-isopropyl-2-methoxyazu]ene [23] 

were highly cytotoxic to both tumor and normal cells, 

yielding little or no tumor specificity (TS=1 3, IJD, 1 2, 1 6, 

1 5 and 1 4, respectlvely) 

1- and 3-Halogenated compounds, such as 1,3-
difluoroazulene [1l], 1,3-dichloroazulene [12], 1,3-
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f24J (1 tnglml') at inc'easlngpH 

dibromoazulene 113] and 1,3,5-tribromoazulene 114j 
showed lower tumor specificity (TS=1.4, <1~.2, 1.3 and 1.3, 

resp ectively) . 

The tumor-specific cytotoxic activity seems not to be 

r,elated to the position of functional groups, based on the 

following evidence: Although the aminoazulenes ~2-

acetylaminoazulene [4] and 2-amin0-1,3-dicyanoazulene 

[8]) had relatively higher tumor specificity (TS= >3.6 and 

>2.3, respectively), the parent compound (2-aminoazulene 

[3i) and its diester derivatives (diethyl 2-aminoazulene-1,3-

dicarboxylate L7], dimethyl 2-amin0-5-isopropylazulene-1,3-

dicarboxylate [191) showed much less tumor specificity 

(TS= ><1..O, <0.8 and 1.3, respectively). Two 2-
methoxyazulene derivatives (5isopropyl-2-methoxyazulene 

123L methyl 7-isopropyl-2-methoxv.azulene-l-carboxylate 

t24]) showed considerably different tumor specificity to 

each other (TS=1.4 and 2.4, resp6ctively). Two 2-
chloroazulene derivatives, 2chloroazulene [6] and diethyl 

2-chloro azulene- I , 3 - dicarb oxyl ate [ 9 1 , also showed 

considerably different tumor specificity to each other 

(TS= > < 1.9 and >5.7, respectively). 

Most of the compounds, except for compound L3] (SI=5), 

showed no anti-HIV activity (SI<1), whereas two positive 

controls, such as AZT and ddC, showed potent anti-HIV 
activity (SI=5617 and 2002, respectively) (Table II). 

Apoptosis induction. Since methyl 7-isopropyl-2-
methoxyazulene-l-carboxylate [24j showed higher cytotoxicity 

( CC50 = 1_ 4 1 uM) against HL-60 cel Is than 2-
acetylaminoazulene L4] (CC50=720 uM) and diethyl 2-

chloroazulene-1,3dicarboxylate L9] (CC50=395 uM) (data 

not shown), we investigated whether methyl 7-isopropyl-2= 

methoxyazulene-1-carboxylate [241 induced internucleosomal 

DNA fragmentation, a biochemical halhnark, in HL-60 cells. 

Figure 2 shows that this is the case. The optimal concentration 

was 0.155 mM. Methyl 7-isopropyl-2-methoxyazulene-l-

carboxylate [24] activated caspase 3 to a comparable extent 

as that attained by actinolrrycin D, without affecting caspase 8 

and 9 activity (Figure 3). The apoptosis-inducing activity of 2-

acetylaminoazulene [41 and diethyl 2-chloroazulene-1,3-

dicarboxylate [9] will be reported elsewhere. 

Radical gene/'ation. 2-Acetylaminoazulene L4j produced 

radical under alkaline condition (pH 9.0-12.5), whereas diethyl 

2-chloroazulene-1,3-dicarboxylate t9] and methyl 7-isopropyl-

2-methoxyazulene-1-carboxylate L241 did not (Figure 4). 

2-Acetylaminoazulene [41 efficiently scavenged 02-

(generated by HX-XOD reaction) (IC50=0.014 mM) 
(Figure 5). On the other hand> the 02- scavenging activity 

of methyl 7-isopropyl-2methoxyazulene-l-carboxylate L241 

was very weak (IC50= 1.61 mM). Diethyl '_-chloroazulene-

1,3-dicarboxylate L91 did not show 02~ scavenging activity 

(IC50>2.6 mM) (Figure 5). 

2-Acetylaminoazulene L4j efficiently scavenged NO 
radical (generated from NOC-7) (IC50=0.13 mM), whereas 

diethyl 2-chloroazulene-1,3-dicarboxylate 19i and methyl 7-

isopropyl-2-methoxyazulene-l-carboxylate 124] were inactive 

(IC50= >4.65 and >3.90 mM, respectively) (Figure 6). 

Discussion 

We found that, among 27 azulene derivatives, 2-
acetylaminoazulene L4] , diethyl 2chloroazulene-1,3-

dicarboxylate [9] and methyl 7-isopropyl-2-methoxyazulene-

1-carboxylate t24] showed higher tumorspecific cytotoxic 

activity, as compared with azulene Llj and guaiazulene [2j. 
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The present study demonstrated, for the first time, that 

methyl 7-isopropyl-2-methoxyazulene-l-carboxylate 124] 

induced apoptotic cell death characterized by caspase 3 

activation and DNA fragmentation. At present, the 
mechanism by which methyl 7-isopropyl-2-methoxyazulene-

1-carboxylate [24] activated caspase 3 is unclear, since this 

compound did not significantly activate caspase 8 
(mitochondria-independent extrinsic pathway) and caspase 

9 (mitochondria-dependent intrinsic pathway) (37). We 

found, by observation under light microscope (data not 

shown), that a very low percentage of the cells treated with 

this compound produced apoptotic bodies, possibly inducing 

necrotic cell populations. 

Our ESR study demonstrated that 2-acetylaminoazulene 

L4] produced radical and scavenged O_~- and NO more 
efficiently than diethyl 2-chloroazulene-1,3-dicarboxylate [9] 

and methyl 7-isopropyl-2-methoxyazulene-1-carboxylate 

[24], which did not produce radical and poorly scavenged 

these radical species. This suggests that the two different 

activities, that is radical production and scavenging, are 

present in the same molecule. The present study suggests 

that methyl 7-isopropyl-2-methoxyazulene-l-carboxylate 

[24] may induce apoptotic cell death by a mechanism in 

which radical is not involved, whereas 2-acetylaminoazulene 

[4] may induce cell death by a radical-mediated oxidation 

mechanism. In a parallel study with 27 tropolone 
derivatives, we found that 5-aminotropolone, which 
produced a higher amount of radical and more efficiently 

scavenged 02- and NO than azulenes, induced apoptosis at 

a much lower concentration (38). Further studies are 

underway to elucidate the mechanism by which azulenes 

induce apoptosis in tumor cell lines. 
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