Search of New Cytotoxic Crude Materials Against Human Oral Squamous Cell Carcinoma Using 1H NMR-based Metabolomics

RYUICHIRO SUZUKI1, SHINPEI MATSUNO1, HIROSHI SAKAGAMI2, YOSHIHITO OKADA3 and YOSHIAKI SHIRATAKI1

1Faculty of Pharmaceutical Sciences, Josai University, Saitama, Japan;
2Division of Pharmacology, Meikai University School of Dentistry, Saitama, Japan;
3Meiji Pharmaceutical University, Kiyose, Tokyo, Japan

Reprinted from
ANTICANCER RESEARCH 34: 4117-4120 (2014)
Abstract. Background: The 5-year survival rate of the oral cancer patients has remained at approximately the 50% level during the past 30 years, possibly due to the poor tumor-selectivity of conventional anticancer drugs. This prompted us to search new plant extracts that have higher cytotoxicity against cancer cells than normal cells. Materials and Methods: Two human oral squamous cell carcinoma cell lines (HSC-2 and HSC-4) and two normal oral cells (gingival and periodontal ligament fibroblasts; HGF and HPLF) were incubated for 48 h with various concentrations of crude plant extract and the viable cell number was determined by the (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. The 50% cytotoxic concentration (CC50) was determined from the dose-response curve. Tumor-specificity (TS) was determined by the following equation: TS=mean CC50 (normal cells)/mean CC50 (cancer cell lines). Metabolic profiling techniques based on 1H nuclear magnetic resonance (NMR) were applied to gain the chemical structural insight for cytotoxicity induction. Results: Among 24 plant extracts, Camptotheca acuminate leaf, a well-known source for camptothecin, showed the highest TS value (88.3), followed by Vitis s.p.p. (>3.5), Sasa veitchii (>2.3) and Phellodendron amurense (>2.1), whereas other plant extracts showed much lower TS value (<2). These cytotoxic extracts made cluster on principal component analysis (PCA) score plot. Conclusion: The TS value determined by the present method seems to reflect the anti-tumor potential of each plant extract, while a part of the cytotoxic compounds present in these extracts may have common chemical structures.

Correspondence to: Professor Yoshiaki Shirataki, Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai Sakado, Saitama 350-0295, Japan. Tel: +81 492717053, Fax: +81 492717984, e-mail: shiratak@josai.ac.jp

Key Words: Crude drugs, cytotoxicity, 1H NMR metabolomics.

Oral and oropharyngeal squamous cell carcinoma represents a large, worldwide health burden with approximately 350,000 cases diagnosed annually (1). Most oral cancers are diagnosed at an advanced stage accompanied by metastasis to the lymph nodes located under the jaw and in the neck. Possibly due to the late diagnosis of this disease or the poor-tumor selectivity of conventional anti-tumor agents, the 5-year survival rate of patients has remained at the level of approximately 50% during the past 30 years. For squamous cell carcinoma and most other types of oral cancer, surgery and radiation remain as the sole therapy (2). Moreover, surgery for oral cancers can be disfiguring and psychologically-traumatic. Therefore, the development of new treatment strategies and the early diagnosis of oral cancer are of great importance (3). We have been searching for new candidate materials derived from natural sources to treat oral cancer. Actually, we herein investigated the effects of crude plant extracts on the growth of oral normal (human gingival fibroblast, HGF; periodontal ligament fibroblast, HPLF) and tumor cells (oral squamous cell carcinoma HSC-2 and HSC-4).

Metabolic profiling techniques were used to find possible correlations between the structural factors of a compound and its biological activity (4, 5). Loading plot analysis provides a useful strategy for the identification of biological compounds. Nuclear magnetic resonance (NMR) is a powerful method for such analysis because it allows the simultaneous detection of diverse groups of primary and secondary metabolites (6). In addition, NMR can give much more structural information about metabolites than other analytical techniques such as mass spectrometry (MS). We have already reported the utilities of a metabolic profiling method for evaluation of biological activities and growth area of crude drugs (7, 8). In this study, we used 1H NMR-based metabolic analysis to evaluate cytotoxicity of crude plant extracts against oral squamous cell carcinoma and to acquire chemical structural information of active compounds included in cytotoxic materials.
Materials and Methods

Materials. The following chemicals and reagents were obtained from the indicated companies: Dulbecco’s modified Eagle medium (DMEM) (Gibco BRL, Grand Island, NY, USA); fetal bovine serum (FBS) (JRH Bioscience, Lenexa, KS, USA); 5-fluorouracil (5-FU) (Kyowa, Tokyo, Japan); dimethyl sulfoxide (DMSO) (Wako Pure Chem. Inc., Osaka, Japan); DMSO-d$_6$ (Cambridge Isotope Laboratories, Inc., MA, USA).

Plant materials. Crude plant extracts used in this study are listed in Table I. These extracts have been already prepared and employed for various screenings in our laboratory. All extracts were stored at –30°C before using. The original plants were mainly collected in various places in Japan. The specimens were proved and identified by Dr. Y. Shirataki and voucher specimens were also deposited in the Department of Pharmacognosy and Natural Medicines of Josai University.

NMR spectroscopy. 1H NMR spectra were recorded at room temperature on a 400 MHz Agilent-400MR-vnmrs 400 spectrometer (Agilent Technologies, CA, USA). Each spectrum consisted of 65,536 complex data points and a spectral width of 6,410.3Hz, obtained by 16 scans with a repetition time of 5.0 sec and a relaxation delay of 1.50 sec per scan. The detection pulse flip angle was set at 45°.

NMR data reduction procedures and pattern recognition analysis. Each NMR spectrum was regimented into 375 regions, 0.04 part per million (ppm) wide, over the range –1.50 to 13.5 ppm. Each segment of the spectral regions (bucket) was integrated. Any integrated regions from 2.45 to 2.55 ppm that contained solvent signals were eliminated from the data table and then the total data were reduced to 372 regions. The remaining integral values of each spectrum were normalized over 100 total summed integrals to compensate for any differences in concentration between crude drug extracts. Spectral processing was performed using ALICE 2 for Metabolome version 5.0 software (JEOL Ltd., Akishima, Tokyo, Japan).

Preparation of crude drug extracts. Twenty-four kinds of crude plant extracts were prepared by extracting with MeOH under reflux.

<table>
<thead>
<tr>
<th>No.</th>
<th>Scientific name</th>
<th>Part</th>
<th>HGF Mean±S.D.</th>
<th>HPLF Mean±S.D.</th>
<th>n=4</th>
<th>HSC-2 Mean±S.D.</th>
<th>TS</th>
<th>Mean±S.D.</th>
<th>n=4</th>
<th>HSC-4 Mean±S.D.</th>
<th>TS</th>
<th>Mean±S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Odontioda Marie Noel ‘Velano’</td>
<td>Leaf</td>
<td>289</td>
<td>305</td>
<td>297±16</td>
<td>278</td>
<td>322</td>
<td>300±45</td>
<td>1.0</td>
<td><1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Odontioda Marie Noel ‘Velano’</td>
<td>Bulb</td>
<td>265</td>
<td>302</td>
<td>283±24</td>
<td>313</td>
<td>297</td>
<td>305±42</td>
<td>0.9</td>
<td><1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Odontioda Marie Noel ‘Velano’</td>
<td>Root</td>
<td>125</td>
<td>157</td>
<td>141±20</td>
<td>105</td>
<td>84</td>
<td>95±13</td>
<td>1.5</td>
<td><1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Odontoglossum Harvengtense ‘Tutu’</td>
<td>Leaf</td>
<td>271</td>
<td>302</td>
<td>286±19</td>
<td>277</td>
<td>272</td>
<td>274±19</td>
<td>1.0</td>
<td><1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Odontoglossum Harvengtense ‘Tutu’</td>
<td>Bulb</td>
<td>521</td>
<td>485</td>
<td>503±43</td>
<td>>500</td>
<td>400</td>
<td>>450</td>
<td><1.1</td>
<td><1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Odontoglossum Harvengtense ‘Tutu’</td>
<td>Root</td>
<td>157</td>
<td>207</td>
<td>182±47</td>
<td>141</td>
<td>128</td>
<td>135±17</td>
<td>1.3</td>
<td><1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Pandanus amaryllifolius</td>
<td>Leaf</td>
<td>335</td>
<td>357</td>
<td>346±157</td>
<td>258</td>
<td>246</td>
<td>252±35</td>
<td>1.4</td>
<td><1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Daucus carota</td>
<td>Root</td>
<td>370</td>
<td>>500</td>
<td>>435</td>
<td>128</td>
<td>118</td>
<td>123±9</td>
<td>>3.5</td>
<td><1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Vitis spp</td>
<td>Root</td>
<td>283</td>
<td>335</td>
<td>309±30</td>
<td>4.3</td>
<td>2</td>
<td>3.5±1.6</td>
<td>88.3</td>
<td><1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Camptotheca acuminata</td>
<td>Root</td>
<td>23</td>
<td>209</td>
<td>116±113</td>
<td>290</td>
<td>226</td>
<td>258±48</td>
<td>0.4</td>
<td><1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Rhinacanthus nasutus</td>
<td>Root</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>1.8</td>
<td><1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Phellodendron amurense</td>
<td>Root</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>1.8</td>
<td><1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Sophora flavesensis</td>
<td>Root</td>
<td>148</td>
<td>183</td>
<td>165±23</td>
<td>>116</td>
<td>>116</td>
<td>>116</td>
<td>>1.5</td>
<td><1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Sophora flavesensis</td>
<td>Root</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>1.5</td>
<td><1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Sophora flavesensis</td>
<td>Root</td>
<td>58</td>
<td>74</td>
<td>66±17</td>
<td>83</td>
<td>52</td>
<td>67±27</td>
<td>1.0</td>
<td><1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Myrica rubra</td>
<td>Twig</td>
<td><3.9</td>
<td>7</td>
<td><5</td>
<td>23</td>
<td>14</td>
<td>18±5</td>
<td><0.3</td>
<td><1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Myrica rubra</td>
<td>Leaf</td>
<td><3.9</td>
<td>24</td>
<td><14</td>
<td>111</td>
<td>89</td>
<td>100±59</td>
<td><0.1</td>
<td><1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Myrica rubra</td>
<td>Leaf</td>
<td>>500</td>
<td>>500</td>
<td>>458</td>
<td>198</td>
<td>197</td>
<td>197±12</td>
<td>>2.3</td>
<td><1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Nandina domestica</td>
<td>Leaf</td>
<td>103</td>
<td>88</td>
<td>95±13</td>
<td>97</td>
<td>108</td>
<td>102±20</td>
<td>0.9</td>
<td><1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Eupeola polyandra</td>
<td>Leaf</td>
<td>415</td>
<td>>500</td>
<td>>458</td>
<td>198</td>
<td>197</td>
<td>197±12</td>
<td>>2.3</td>
<td><1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Theochara cacao</td>
<td>Fruit</td>
<td>452</td>
<td>>500</td>
<td>>476</td>
<td>>500</td>
<td>414</td>
<td>>457</td>
<td>>1.0</td>
<td><1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Phellodendron amurense</td>
<td>Bark</td>
<td>>443</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>1.0</td>
<td><1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Actinidia polygama</td>
<td>Root</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>1.0</td>
<td><1.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Concentrations used: 0, 3.9, 7.8, 15.6, 31.25, 62.5, 125, 250, 500 μg/ml of each sample.
for 3 h to give the methanolic extracts. These extracts were completely dried in vacuo and residues were dissolved in DMSO-d_6 at 10 mg/ml in concentration for 1H NMR measurement and dissolved in DMSO for cytotoxic evaluation.

Cell culture. Human oral squamous cell carcinoma cell lines (HSC-2, HSC-4) were purchased from Riken Cell Bank, Tsukuba, Japan. Normal human oral cells, gingival fibroblast (HGF) and periodontal ligament fibroblast (HPLF), were prepared from periodontal tissues, according to the guideline of the Intramural Ethic Committee (No. A0808), after obtaining the informed consent from a 12-year-old patient at the Meikai University Hospital (9). Since normal oral cells have a limited lifespan of 43-47 population doubling levels (PDL) (9), the cells at 8-15 PDL were used in this study. All the cells were cultured in DMEM medium supplemented with 10% heat-inactivated FBS, 100 U/ml penicillin G and 100 μg/ml streptomycin sulfate. The normal cells were detached by 0.25% trypsin-0.025% EDTA-2Na in phosphate-buffered saline (PBS) without Mg$^{2+}$ and Ca$^{2+}$ (PBS(-)) and subcultured at a 1:4 split ratio once a week with a medium change in between the subcultures.

Assay for cytotoxic activity. The cells (3×103 cells/well, 0.1 ml/well) were seeded in 96-microwell plates (Becton Dickinson and Company, Franklin Lakes, NJ, USA) and incubated for 48 h to allow cell attachment. Near-confluent cells were treated for 48 h with different concentrations of the test compounds in a fresh medium. The relative viable cell number of adherent cells was then determined by the (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method (10). In brief, control and sample-treated cells were incubated for 4 h with 0.2 mg/ml of MTT in the culture medium. After removing the medium, the reaction product, formazan, was extracted with DMSO and the absorbance (the relative viable cell number) was measured at 540 nm by a microplate reader (Multiskan Bichromatic Labsystems, Helsinki, Finland). The 50% cytotoxic concentration (CC$_{50}$) was determined from the dose–response curve. The tumor specificity index (TS) was calculated by the following equation: $TS = \frac{mean \ CC_{50} (normal \ cells)}{mean \ CC_{50} (all \ tumor \ cell \ lines)}$.

Results

Cytotoxicity. Several kinds of crude plant extracts showed higher cytotoxicity against human oral squamous cell carcinoma compared with human oral normal cells, yielding the tumor-specificity value of 1.0-88.3 (Table I). The extract of #10 (Camptotheca acuminata) showed the highest tumor-specificity, followed by #9 > #21 > #3 > #6 > #16.

1H NMR metabolomics. To give the chemical structural feature of the active components, the crude plant extracts
were subjected to NMR-based metabolomics. The 1H NMR spectra were subjected to principal component analysis (PCA) (Figure 1). All 372 variables in the bucketed regions (see Materials and Methods section) were equally accounted for in the data sets. The PCA score plot of principal component (PC) 1 (the greatest variance in the data) and PC2 (the second greatest variance in the data, orthogonal with PC1) showed that the crude plant extracts showing high TS value were gathered on PCA score plot (Figure 1, circled dots indicated the sample showing high TS value). The scores of PC1 and PC2 were 46.4, 31.8%, respectively.

Discussion

The present study demonstrated that some methanolic plant extracts showed tumor-specific cytotoxicity (TS=1.0-88.3) (Table I). Among these extracts, the extract of #10 (Camptotheca acuminata) showed the highest tumor specificity (TS=88.3). C. acuminata belongs to Nyssaceae and distributed in the center of South China. It is well-known that C. acuminata includes camptothecin, which has been the lead compound for irinotecan. Irinotecan shows tumor-specific cytotoxicity based on the inhibition of topoisomerase and is used for the clinical treatment of lung and cervical cancer. The present study demonstrated that the extract of C. acuminata indicated the highest TS value, in agreement with our recent report that camptothecin and SN-38, active metabolite of irinotecan, showed the TS value of 2561 and 808, respectively (11). This indicates that the TS value determined by the present method seems to reflect the anti-tumor potential of each plant extract, and may be a useful index for searching the present method seems to reflect the anti-tumor potential of each plant extract, and may be a useful index for searching the active compounds and to elucidate those structures included in cytotoxic crude extracts.

cytotoxicity against tumor cells. Loading plot analysis and direct comparison of 1H NMR spectra indicated that aromatic signals on 1H NMR spectrum were detected commonly in cytotoxic extracts. Based on these results, we are planning to isolate and purify the active compounds and to elucidate those structures included in cytotoxic crude extracts.

References

Received April 29, 2014
Revised June 13, 2014
Accepted June 16, 2014
Instructions to Authors 2014

General Policy. ANTICANCER RESEARCH (AR) will accept original high quality works and reviews on all aspects of experimental and clinical cancer research. The Editorial Policy suggests that priority will be given to papers advancing the understanding of cancer causation, and to papers applying the results of basic research to cancer diagnosis, prognosis, and therapy. AR will also accept the following for publication: (a) Abstracts and Proceedings of scientific meetings on cancer, following consideration and approval by the Editorial Board; (b) Announcements of meetings related to cancer research; (c) Short reviews (of approximately 120 words) and announcements of newly received books and journals related to cancer, and (d) Announcements of awards and prizes.

The principal aim of AR is to provide prompt publication (print and online) for original works of high quality, generally within 1-2 months from final acceptance. Manuscripts will be accepted on the understanding that they report original unpublished works on the cancer problem that are not under consideration for publication by another journal, and that they will not be published again in the same form. All authors should sign a submission letter confirming the approval of their article contents. All material submitted to AR will be subject to review, when appropriate, by two members of the Editorial Board and by one suitable outside referee. The Editors reserve the right to improve manuscripts on grammar and style.

The Editors and Publishers of AR accept no responsibility for the contents and opinions expressed by the contributors. Authors should warrant due diligence in the creation and issuance of their work.

NIH Open Access Policy. The journal acknowledges that authors of NIH funded research retain the right to provide a copy of the final manuscript to the NIH four months after publication in ANTICANCER RESEARCH, for public archiving in PubMed Central.

Copyright. Once a manuscript has been published in ANTICANCER RESEARCH, which is a copyrighted publication, the legal ownership of all published parts of the paper has been transferred from the Author(s) to the journal. Material published in the journal may not be reproduced or published elsewhere without the written consent of the Managing Editor or Publisher.

Format. Two types of papers may be submitted: (i) Full papers containing completed original work, and (ii) review articles concerning fields of recognisable progress. Papers should contain all essential data in order to make the presentation clear. Reasonable economy should be exercised with respect to the number of tables and illustrations used. Papers should be written in clear, concise English. Spelling should follow that given in the “Shorter Oxford English Dictionary”.

Manuscripts. Submitted manuscripts should not exceed fourteen (14) pages (approximately 250 words per double - spaced typed page), including abstract, text, tables, figures, and references (corresponding to 4 printed pages). Papers exceeding four printed pages will be subject to excess page charges. All manuscripts should be divided into the following sections:

- First page including the title of the presented work [not exceeding fifteen (15) words], full names and full postal addresses of all Authors, name of the Author to whom proofs are to be sent, key words, an abbreviated running title, an indication “review”, “clinical”, “epidemiological”, or “experimental” study, and the date of submission. (Note: The order of the Authors is not necessarily indicative of their contribution to the work. Authors may note their individual contribution(s) in the appropriate section(s) of the presented work); (b) Abstract not exceeding 150 words, organized according to the following headings: Background/Aim - Materials and Methods/Patients and Methods - Results - Conclusion; (c) Introduction; (d) Materials and Methods/Patients and Methods; (e) Results; (f) Discussion; (g) Acknowledgements; (h) References. All pages must be numbered consecutively. Footnotes should be avoided. Review articles may follow a different style according to the subject matter and the Author's opinion. Review articles should not exceed 35 pages (approximately 250 words per double-spaced typed page) including all tables, figures, and references.

Figures. All figures (whether photographs or graphs) should be clear, high contrast, at the size they are to appear in the journal: 8.00 cm (3.15 in.) wide for a single column; 17.00 cm (6.70 in.) for a double column; maximum height: 20.00 cm (7.87 in.). Graphs must be submitted as photographs made from drawings and must not require any artwork, typesetting, or size modifications. Symbols, numbering and lettering should be clearly legible. The number and top of each figure must be indicated. Colour plates are charged.

Tables. Tables should be typed double-spaced on a separate page, numbered with Roman numerals and should include a short title.

Clinical Trials. Authors of manuscripts describing clinical trials should provide the appropriate clinical trial number in the correct format in the text.

For International Standard Randomised Controlled Trials (ISRCTN) Registry (a not-for-profit organization whose registry is administered by Current Controlled Trials Ltd.) the unique number must be provided in this format: ISRCTNXXXXXXXX (where XXXXXXXX represents the unique number, always prefixed by “ISRCTN”). Please note that there is no space between the prefix “ISRCTN” and the number. Example: ISRCTN47956475.

For Clinicaltrials.gov registered trials, the unique number must be provided in this format: NCTXXXXXXXX (where XXXXXXXX represents the unique number, always prefixed by ‘NCT’). Please note that there is no space between the prefix ‘NCT’ and the number. Example: NCT00001789.

Ethical Policies and Standards. ANTICANCER RESEARCH agrees with and follows the "Uniform Requirements for Manuscripts Submitted to Biomedical Journals" established by the International Committee of Medical Journal Editors in 1978 and updated in October 2001 (www.icmje.org). Microarray data analysis should comply with the "Minimum Information About Microarray Experiments (MIAME) standard". Specific guidelines are provided at the "Microarray Gene Expression Data Society" (MGED) website. Presentation of genome sequences should follow the guidelines of the NHGRI Policy on Release of Human Genomic Sequence Data. Research involving human beings must adhere to the principles of the Declaration of Helsinki and Title 45, U.S. Code of Federal Regulations, Part 46, Protection of Human Subjects, effective December 13, 2001. Research involving animals must adhere to the Guiding Principles in the Care and Use of Animals approved by the Council of the American Physiological Society. The use of animals in biomedical research should be under the careful supervision of a person adequately trained in this field and the animals must be treated humanely at all times. Research involving the use of human foetuses, foetal tissue, embryos and embryonic cells should adhere to the U.S. Public Law 103-41, effective December 13, 2001.

Submission of Manuscripts. Please follow the Instructions to Authors regarding the format of your manuscript and references. There are 3 ways to submit your article (NOTE: Please use only one of the 3 options. Do not send your article twice.):
1. To submit your article online please visit: IIAR-Submissions (http://www.iiar-anticancer.org/submissions/login.php)
2. You can send your article via e-mail to journals@iiar-anticancer.org. Please remember to always indicate the name of the journal you wish to submit your paper. The text should be sent as a Word document (*.doc) attachment. Tables, figures and cover letter can also be sent as e-mail attachments.
3. You can send the manuscript of your article via regular mail in a USB stick, DVD, CD or floppy disk (including text, tables and figures) together with three hard copies to the following address:
 John G. Delinasios
 International Institute of Anticancer Research (IIAR)
 Editorial Office of ANTICANCER RESEARCH,
 IN VIVO, CANCER GENOMICS and PROTEOMICS.
 1st km Kapandritiou-Kalamou Road
 P.O. Box 22, GR-19014 Kapandriti, Attiki
 GREECE

Submitted articles will not be returned to Authors upon rejection.

Galley Proofs. Unless otherwise indicated, galley proofs will be sent to the first-named Author of the submission. Corrections of galley proofs should be limited to typographical errors. Reprints, PDF files, and/or Open Access may be ordered after the acceptance of the paper. Requests should be addressed to the Editorial Office.

Copyright© 2014 - International Institute of Anticancer Research (J.G. Delinasios). All rights reserved (including those of translation into other languages). No part of this journal may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher.