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ABSTRACT. In this article, we discuss weak and strong convergence to fixed 

points of nonexpansive mappings in a Hilbert space or a Banach space. 
We first deal with strong convergence of approximants to fixed points of 

nonself-mappings in a Banach space. Next, we establish nonlinear ergodic 

theorems for families of nonexpansive mappings in a Hilbert space or a 

Banach space. Further, by the methods in the nonlinear ergodic theory, 

we discuss weak and strong convergence of Ishikawa iterates. Finally, we 

extend the strong convergence theorem obtained by Wittmann in a Hilbert 

space to that in a Banach space. 

1. INTRODUCTION 

Let C be a nonempty closed convex subset of a real Banach space E and let T be 

a nonexpansive mappings of C into itself such that the set F(T) of fixed points of T is 

nonempty. In 1967, Browder [3] proved the following celebrated strong convergence 

theorem for nonexpansive mappings in the framework of a Hilbert space: Let x be 

an element of C and for ea,ch t with O < t < 1, Iet xt be an element of C satisfying 

xt = tTxt + (1 - t)x. 

Then {xt} converges strongly to the element of F(T) which is nearest to x in F(T) 

as t - 1. This result was extended to Banach spaces by Reich [10] and Takahashi 
and Ueda [28]. Marino and Trombetta [12], and Xu and Yin [3l] also considered 

to extend Browder's theorem to the case when T is of C into E. On the other 
hand, Baillon [l] establised the first nonlinear ergodic theorem for nonexpansive 

mappings In 1975: Let C be a closed convex subset of a Hilbert space and let T be 
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a nonexpanslve mapping of C into itself. If F(T) is nonempty, then for each x ~ C, 

the Ces~ro means 
1"I~~1 

S~(x) n ~~~ Tkx 

converges weakly to some y e F(T). In this case, putting y = Px for each x ~ C, 

P is a nonexpansive retraction of C onto F(T) such that PT" = T"P = P for all 
n = O, 1,2, . . . and Px e ~~{T"x : n = O, 1,2, . . . } for each x ~ C, where ~~A is the 

closure of the convex hull of A. By the methods in the ergodic theory, Tan and Xu 

[29] discussed the following iteration scheme which was introduced by Ishikawa [7]: 

xl ~ C and 

x~+1 = anT[p~Tx~ + (1 - p~)x~] + (1 - a~)x~, n 1,2, 3, 

where {an} and {pn} are real sequences in [O, I]. Recently, in the framework of 

a Hilbert space, Wittmann [30] studied the convergence of the iterated sequence 

which is defined by yo = x and ' 
y*+1 =~ anx + (1 - a~)Ty~, n = O, l, 2, 

where {a~} is a real sequence in [O, I]. 

In this article, we first extend Xu and Yin's results to Banach spaces by using 

the inwardness condition and sunny nonexpansive retractions; see Section 3. In 

Section 4, we give a nonlinear ergodic theorem for nonlinear semigroups without 

convexity in a Hilbert space. This has many applications. Further we deal with a 

nonlinear ergodic theorem for nonlinear semigroups in a Banach space. Finally, we 

extend Wittmann's result [30] to Banach spaces. This result answers af~rmatively 

a problem posed by Reich [17]; see Section 6. 

2. PRELIMINARIES 

Let E be a Banach space and let C be a nonempty closed convex subset of E. 
Then a mapping T of C into E is said to be nonexpansive if lITX - Tyll ~ l]x - yl] 

for every x,y ~ C. Let T be a mapping of C into E. Then we denote by F(T) the 
set of fixed points of T and by R(T) the range of T. Iet D be a subset of C and let 

P be a mapping of C into D. Then P is said to be suT~T~y if 

p(px + t(x - Px)) = Px 

whenever Px + t(x - Px) e C for x e C and t ~ O. A mapping P of C into C is 
said to be a retraction if P2 = P. If a mapping P of C into C is a retraction, then 

Pz = z for every z e R(P). 

Let E be a Banach space. Then, for every c with O ~ c ~ 2, the modulus 6(e) of 

convexity of E is defined by 

6(e) = inf fl - Ilx + yll : Ilxll ~ l,ilyli ~ 1,llx - yll ~ c ' }
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ABanachspa．ceEissa．idtobeαnぴorm勿conηεzifδ（ε）＞0foreveryε＞q．Eis
　　　　　　　　　　　　　　　　　　　　　　　　　　　　z＋ひ
a1so　said．to　be8か｛c〃y　coηηεzif　　　　　〈1forエ，ひ∈E　with－lz■1≦1，lMl≦1and．
　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　2

z≠y．Auniform1yconvexBa．nachspaceisstrict1yconvex－Ac1osed．convexsubset
O　of　a　Banach　space　E　is　sオd　to　have　noヅmα18かuc～rε玉ffor　each　closed　convex

bounded　subset　K　of　O　which　contains　at1east　two　points，there　exists　an　e1ement

of五一wヱ1三ch　is　not　a　dianletra1point　of∬．It玉s　we11known　that　a　cユosed　convex

subset　of　a　uniform1y　convex　Banach　space　has　norma1structure　and　a　compact

convex　subset　of　a　Banach　spa．ce1las　norma1structure．We　a1so　know　the　fo1！owing

theorem　which　w砥proved　by　Kirk［9］．

Theorem2．1（［91）．Zεf　E6eαrψεz｛Ue3αη㏄ん8ρ㏄εαn〃ε士06εαnonε岬勿

6㎝η棚C103εdC㎝ηe・舳65e之0∫E沽CHα3，n0・mα13f川伽・e．工εげ6εαn㎝e・一

ρ㎝・伽mαがng・∫01・t・伽ψτんεηF（T）1・・㎝・m的．

　　Let万beaBanachspaceand1etE巾beitsduaI，thatis，thespaceofa11continuous
1inear　functiona1s　z｝on　E．　For　every　z　∈　五：andゴ　∈　E土，＜　z，ゴ　〉　means　the

va1ue　ofゴat　z．With　each　z∈E，we　associate　the　set

　　　　　　　　　　　　　　　　ブ（・）＝｛ゴ∈E巾：〈・，ゴ〉＝ll・l12＝llゴl12｝一

Using　the　Hahn－Banach　theo干em，it　is　immedia．te1y　c1ear　thatブ（z）≠φfor　any

z∈E．Then　the　mu1tiva1ued　operator∫：E→E｝is’c証！ed　the九αZ吻．mα〃加g　of
五．Let1フ’：｛z∈E：llzl1＝1｝be　the　unit　sphere　of　E．Then　the　norm　of五is　said

t・b・㈹舳・棚ε・㎝1洲ε（・ndEi…idt・b・・m・・1ん）if

　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　ll工十勿11－llzl1
　　　　　　　　　　　　　　　　　　　　　　　　　　　－1im

　　　　　　　　　　　　　　　　　　　　　　　　　　　　‘一〇　　　　　士

exists　for　a11z　andひinσ．It　is　sa．i　d　to　b　e！＝一r6cんε士d｛∬erenれα61εif　for　each　z　inひ，

this1imit　is　attained　uniform1y　forひinσ．It　is　aユso　said　to　be　un伽rmZひG∂士εαuz

d｛∬erεnれα61e　if　for　ea．chひ∈ひ，this1imit　is　attained　uniform1y　for　z　inσ。It　is　a1so

・・idt・b・・m伽吻丹6・んε1蜥εブ㎝1舳ε（・・dEi…idt・b・㎝伽mいm・・1ん）
if　the　bmit　is　attオned　uniform1y　for　z，ひinσ一It　is　weI1known　that　if　E　is　smooth，

then　the　d－ua．hty　mapping∫is　sing1e－v訂ued．And　a1so　we　known　that　if　E　h㏄a

Fr6chet　di伍erentiab1e　norm，thenブis　norm　to　norm　continuous．

　　　　　　　　　　　　　　3．GENERALlzATI0Ns0F　BR0wDER’s　THE0REM

　　　　The　fo1！owing　interesting　convergence　theorem　of　appro丸mated　sequences　for

nonexpansivemappings　wasestab1ished　byBrowd－er［3］．

Theorem3－1（［31）．Zε工06eαnonε岬勿cl05ed　conηεz3ω8eτo∫α洲6eれ8ραce

∬㎝仙げ5εα・㎝εη㎝・伽mαがηg・∫01η1・批・εゲ・㏄いんαげ（T）1”㎝εm的。

工e～6・㎝ε1・mεηlo∫0㎝“ε伽ε，∫・ザεα・い∈（0，1），αmα〃切η・∫01伽

伽εゲ～

　　　　　　　　　　　　　　　　　　　恥：tT・十（1一）・伽α〃・∈0．

Tん・・伽…搬・α・吻・・ε1εm・ηf・t・∫0・㏄いんαげ｛：・。．ル伽・｛・t｝

・㎝・岬・・鮒㎝gい・伽εZεm㎝1・∫F（T）洲・ん1”εα㏄・ll・パ・F（T）α・t→！．



This theorem wa,s extended to Ba,na,ch spa,ces by Iteich [16] a,nd Ta,kaha,shi a,nd 

Ueda [28]. On the other hand, for a given u e C and t ~ (0,1), Marino and 
Trombetta [12] considered contractlons St and Ut Of C into itself by 

Stx = tPTX + (1 - t)u 

and 
Utx = P(tTx + (1 - t)u) 

for all x e C, where P is the metric projection of C onto F(T), and tried to extend 

Browder's theorem to nonself-mappings. Recently, Xu and Yin [3l] obtained the 
following interesting results. Before stating them, we give difinitions. Let C be a 

nonempty convex subset of a Banach space E. Then for x ~ C, we define the inward 

set lc(x) as follows: ' 
lc(x) = {y ~ E : y = x + a(z - x) for some z ~ C and a ~ O}. 

A mapping T : C -H. E is said to be inward if Tx ~ lc(x) for all x ~ C. T is also 

said to be weakly inward if for each x ~ C, Tx belongs to the closure of lc(x). The 

following are Xu and Yin's results. 

Theorem 3.2 ([3l]). Let C be a nonempty closed convex subset of a Hilbert space 

H and let T : C -> H be a nonexpansive nonself-mapping satisfying the weak 
inwardness condition. Fix u ~ C and for each t ~ (0,1), Iet xt be an element ofC 

satisfying 

xt = tPTxt + (1 t)u 

where P is the metric projection ofH onto C. Then F(T) ~ ip if and only if {xt} 
remains bounded as t -> l. IT7 this case, {xt} converges strongly as t -> I to a fixed 

point of T. 

Theorem 3.3 ([3l]). Let C be a nonempty closed convex subset of a Hilbert space 

H a77d let T : C - H be a n077ex'pansive nonself-mapping satisfying the weak 
inwardness conclition. Fix u ~ C and for each t ~ (O, 1), Iet xt be an element of C 

satisfying 

xt = P(tTxt + (1 - t)u), 

where P is the metric projection of H onto C. Then F(T) ~ ~ if and only if {xt} 
remains bouncled as t -~ 1. In this case, {xt} converges stroT7gly as t -> I to a fixed 

point ofT. 

The following theorem is crucial in the proofs of Theorems 3.5 and 3.6. 

Theorem 3.4 ([25]). Let E be a reflexive Banach space with a uniformly Gateaux 

differentiable norm. Let C be a nonempty closed convex stlbset of E which has 

normal structure, and let T : C -~ E be a nonexpansive nonself-mapping. Suppose 
that for some u e C and each t e (O, l), the contractioT~ Tt defiT~ed by 

Ttx = tTX + (1 - t)u for all x ~ C 
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has a (unzrlue) fixed poznt x e C. . Then T has a fixed point if and ordy if {xt} 

l In th~s case, {xt} converges strongly as t - I to a fixed remains bounded as t ' . ~ point of T. 

Using Theorem 3.4, we obtain the following two theorems which extend Xu and 
Yin's results [3l] to Ba,nach spaces. 

Theorem 3.5 ([25]). Let E be a reflexive Banach space with a u'niformly Gdteaux 

differentiable norm. Let C be a nonempty closed convex subset of E which has 
no'r'mal st7'uctuT'e, and let T : C - E be a noT~expansive nonself-mapping satisfying 

the weak inwardness condition. Suppose that C is a sunny nonexpansive retract of 

E and for some u ~ C and each t e (O, 1), xt e C is a (unique) fixed point of the 

contraction St defined by 

Stx = tPTX + (1 - t)u for all x ~ C, 

where P is a stlnT~y nonexpa,nsive retraction ofE onto C. Then T ha,s a fixed point 

if and only if {xt} remains bounded as t -> 1. In this case, {xt} converges stroT7gly 

as t - I to a fixed point of T. 

Theorem 3.6 ([25]). Let E be a reflexive Banach space with a uniformly Gateaux 

differentiable norm. Let C be a nonempty closed convex subset of E which has 
normal st'ructure, ancl let T : C -> E be a nonexpansive nonself-mappiT7g satisfying 

the weak inwardness condition. Su,ppose that C is a sunny nonexpansive retract of 

E and for some u c C and each t e (O, l), yt e C is a (unique) fixed point of the 

contraction Ut defined by 

Utx = P(tTx + (1 - t)u) for all x ~ C, 

where P is a sunny nOTtexpaT7sive retT'action ofE onto C. TheT~ T has a fixed point 

if ancl only if {yt} rema,ins bounded as t - 1. In this case, {yt} coT7veTges strongly 

as t -> I to a fixed point of T. 

4 NONLINER ERGODIC THEOREMS 

The first nonlinear ergodic theorem for nonexpansive mappings was established 

in 1975 by Baillon [1]. 

Theorem 4.1 ([1]). Let C be a closed convex subset of a Hilbert space H and let 

T be a no'nexpa.'nsive mapping of C i'nto itse[f. If F(T) is no'ne'mpty; theT~ for each 

x e C; the Cesdro means 

S~(x) I "~~l 
n kL__oTkx 

converges weakly to some y ~ F(T). 
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We first extend this theorem to a nonlinear semigroup of nonexpansive mappings 

in a Hilbert space. Let S be a semitopological semigroup, i.e., a semlgroup with 

Hausdorff topology such that for each s e S, the mappings t h~ ts and t H> st of S 

into itself are continuous. Let B(S) be the Banach space of all bounded real valued 

functions on S with supremum norm and let X be a subspace of B(S) containing 
constants. Then, an element ,1 of X' (the dual space of X) is called a meaT7 on X 

if ll~tll = /1(1) = 1. For each s ~ S and f ~ B(S), we define elements ~,f and r,f of 

B(S) given by 
(~,f)(t) = f(st) and (T,f) f(ts) 

for all t ~ S. Let C(S) be the Bana~-h space of all bounded continuous real val-

ued functions on S and let RUC(S) be the space of all bounded right uniformly 

continuous functions on S, i.e., all f ~ C(S) such that the mapping s H> r,f is 

continuous. Then RUC(S) is a closed subalgebra of C(S) containing constants and 
invariant under ~, and T., s e S; see [5, 13] for more details. Let '{kca : a e A} be a 

net of means on RUC(S). Then {/L* C A} is said to be asymptotically iT~variant if 

for each f e RCfC(S) and s c S, 

ll*(f) - /~*(~,f) - andpt (f) kL (T f) - O 

Let us give an example of asymptotically invariant nets. Let S = {O, 1,2, . . . }. Then 

for f = (xo, xl, . . . ) e B(S) and n ~ N, the real valued function kt~ defined by 

l"~~~l 

~~(f) n ~~~ xk 

is a mean. Further since for f = (xo,xl, . . . ) ~ B(S) and m C N 

l/L~(f) - /1,,(T~,f)! = I "~~1 ' I "~r'~l 

n ~~ xk - n ~~ xk+~ 

l
 _ - ' 21711lfll -> O, <

 
n 

a,s n - c~, {/!'~} is a,n asymptotically invaria,nt net of mea,ns. 

Let S be a semitopological semigroup and let C be a nonempty subset of a Banach 

space E. Then a fa,mily S = {T. : s e S} of mappings of C into itself is called a 

Lipschitzian semigroup on C if it satisfies the following: 

(i) T,tx = T.Ttx for all s,t ~ S and x ~ C; 

(ii) for each x ~ C, the mapping s F~ T,x is contlnuous; 

(iii) for each s ~ S, T, is a Lipschitzian mapping of C into itself, i.e., there is 

k* ~ O such that 

IT,x - T,yll ~ k,llx - yll 

for all x,y ~ C. 

A Lipschizian semigroup S = {T. : s ~ S} on C is said to be nonexpansive if k. = 1 

for every s e S. For a Lipschizlan semigroup S = {T, : s ~ S} on C, we denote by 

F(S) the set of common fixed polnts of T,,s e S. If C' is a nonempty subset of a 
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Hilbert space H and S = {T. : s ~ S} Is a nonexpansive semigroup on C such that 

{T,x : s e S} is bounded for some x ~ C, then we know that for each u ~ C and 
v ~ H, the functions f(t) = IITtu - vll2 and g(t) =< Ttu,v > are in RUC(S). Let 

pt be a mean on RUC(S). Then since for each x ~ C and y e H, the real valued 
function t -< Ttx,y > is in RUC(S), we can define the value /It < ~tx,y > of 

pL at this function. By linearity of /1 and of the inner product, this is linear in y; 

moreover, since 

l/1 < Ttx y > I < Ii,~ll supl < Ttx,y > I ~ (supllTtxll) ･ Ilyll, 

it is continuous in y. So, by the Riesz theorem, there exists an xo e H such that 

p;t < Ttx,y >=< xo,y > 

for every y ~ H. We write such an xo by Tpx; see [21, 23] for more details. 

Now ¥ve can state a nonlinear ergodic theorem for noncommutative semigroups 

of nonexpanslve mapplngs in a Hilbert space. 

Theorem 4.2 ([24]). Let C be a T1;onempty subset of a. Hilbert spa,ce H and let 

S be a semitopologica,1 semigrottp such that RUC(S) has an invariant mean. Let 

S = {Tt : t ~ S} be a T2;onexpansive semigroup on C such that {Ttx : t ~ S} is 

n
 

bounded aTrd ~~{T,tx : t ~ S} C C for some x ~ C. Then, F(S) ~ ip. Further, 

*es 
for an asymptotically invariant net {kt* : a ~ A} of means on RUC(S), the net 
{Tp_x : a ~ A} converges weakly to an element xo ~ F(S). 

Using Theorem 4.2, we can prove the following theorem. 

Theorem 4.3. Let C be a closed convex subset of a Hilbert space H aTrd let T be a 

nonexpansive ma,pping of C into itself. IfF(T) is nonempty, then for each x ~ C, 

= S (x) - (1 - ~ - T) TkTkx, 
k=0 

as T T 1, converges weakly to an element y C F(T). 

Let S = [0,00) and let S = {S(t) : t ~ [O, oo)} be a nonexpansive semigroup on 

C. Then using Theorem 4.2, we a,Iso have the following nonlinear ergodic theorem. 

Theorem 4.4. Let C be a closed convex subset of a Hilbert space H and let S = 
{S(t) : t e [0,00)} be_ a T70T~expaT~sive semigroup on C. IfF(S) is T~0T)empty, then 

for each x ~ C, 
A
 l

 = f S(t)xclt, 
S (x) ~ 

as A -> oo, converges weakly to an element y e F(S). 

In this section, ¥ve fina,lly state a nonlinear ergodic theorem for nonexpansive 

semigroups'in a Banach space. Before stating it, ¥ve give a definition. A net {pta} 

of continuous 1lnear functionals on RUC(S) is called strongly regular if it satisfies 

the following condltions: 
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(i) sup ll~*ll < +00; 

" 
(ii) li~n~*(1) = l; 

(iii) Ii~1 II,1* - ":~*l :; O for every s e S. 

Theorem 4.5 ([6]). Let S be a commutative semitopolcgical semigroup and let E 

be a unifromly convex Banach space with a Fr~chet differentiable norm. Let C be 
a nonempty closed convex subset of E and let S = {Tt : t e S} be a nanexpansive 

semigroup on C such that F(S) is nonempty. Then there exists a unique nonex-
pansive retraction P of C onto F(S) such that PTt = TtP = P for every t e S and 
px ~ ~7~{Ttx : t ~ S} for every x ~ C. Further, if {11*} is a strongly regular net of 

continuous linear functionals o'n RUC(S), then for each x e C, Tp*Ttx converges 

weakly to Px uniformly in t ~ S. 

We do not know whether Theorem 4.5 would hold in the case when S is noncom-

mutative. 

5. ISHIKAWA ITERATES 

Let C be a nonempty closed convex subset bf a real Banach space E and let T 
be a nonexpa,nsive ma,pping of C into itself. Then we consider the following iteration 

scheme: xl ~ C and 

x~+1 = ct~T[p~Tx~ + (1 - p~)x~] + (1 - a^)x~, n = 1,2, . . . , (1) 

where {ar~} and {p~} are real sequences in [0,1]. Such an iteration scheme was 

introduced by Ishikawa [7]; see also Mann [1l] in the cas~ of ~~ = O. For each 
integer n ~ N and a~, ~~ ~ [O, I], define a mapping T~ of C into itself as follows: 

Tnx = anT[p~Tx + (1 - pn)x] + (1 - an)x. 

Then, T~ : C -~ C is also nonexpansive; see [29]. Further we have the following: If 

O < an ~ I and O ~ p~ < l, then F(T~) = F(T). In fact, if z e F(T), it is obvious 

that z c F(T~). Conversely, if z e F(Tn)' we have z :~ a~T[~nTz + (1 - pn)z] + 

(1 - ar$)z a,nd hence z = T[pnTz + (1 - pn)z]. Suppose Tz ~ z Then puttmg 
u :: p~Tz + (1 - ~~)z, we have 

lITZ - zll [iT Tuli < I:z u{l 

This is a contradiction. Therefore z ~ F(T). It also follows that the iterates {xn} 

defined by (1) can be written as 

(2) x,1+ I ' Tl x I . _~ln ~ l,,1~~1 .. 

bv (2) we obtaln the followlng lemma by uslng [4] and [8]; see also [lO, Motivated . ' 
27] . 

8
 



Lemma 5.1. Let C be a nonempty closed convex subset of a uniformly convex Ba-
nach space E with a Fr6chet differentiable norm and let {Tl'T2,T3, ' ' ' } be a se-

quence of nonexpansive mappiTtgs ofC into C such that n"oo=1 F(T~) is nonempty. 
oo Let x ~ C and S = T T~_1"'TI for alln > 1. Then the set n ~~{S~x m > 

n} n U consists of at most one point, where U = n"o0=1 F(T~). 

To discuss the weak convergence of iterates {x~}, we also need the following 
lemma which is proved by uslng I¥'irk's fixed point theorem [9] and Shu's result [19]. 

Lemma 5.2. Let C be a nonempty closed convex subset of a uniformly convex Ba-

nach space E and let T : C -~ C be a nonexpansive mapping. Suppose xl ~ C, 
and {xn} is given by x~+1 = a~T[p~Tx~ + (1 - pn)x~] + (1 - a~)x~ for all n ~ 1, 

where {ar~} and {~~} are chosen so that an e [a,b] and pn e [O,b] or an ~ [a, I] 

and pn ~ [a,b] for some a,b with O < a ~ b < l. Then F(T) is nonempty if and 
only if {x~} is bounded and {x~ - Tx~} conveT~es strongly to zero as n -> oo. 

Now we can state the follo¥ving weak convergence theorem. Before stating it, 
we give a definition. A Banach space E is said to satlsfy Opial's condition [14] if 

x~ ~ x and x ~ y imply 

liminf lix~ - xli < Iiminf llx~ - yll, 

"~= "~= 
where ~ denotes the weak convergence. 

Theorem 5.3 ([26]). Let E be a uniformly convex Banach space E which satisfies 

Opial's condition or whose norm is Fr~chet differentiable, and let C be a nonempty 

closed convex subset of E, and let T : C -> C be a nonexpansive mappiT7g with a 

fixed point. Suppose xl e C, and {xn} is given by x~+1 = anT[pnTxn +(1-p~)xn]+ 
(1 - a~)x~ for all n ~, l, wh,ere {a~} a,nd {~r]} are chosen so that an ~ [a,b] and 

~n ~ [O,b] or a~ ~ [a,1] and ~n e [a,b] for some a,b with O < a < b < l. Then 
{x~} converges weakly to a fixed point ofT. 

In this section, we finally prove a strong convergence theorem which is connected 

with Rhoades [18]. 

Theorem 5 4 ([26]) Let E be a strictly convex Banach space and let C be a 
r~onempty closed coT~vex subset ofE. Suppose T : C -> C is a nonexpansive mapping 

such that T(C) is contained in a compact subset of C. Suppose xl ~ C, arrd {x~} 

is given by xn+1 = a~T[p~Tx~ + (1 - pn)xn] + (1 - o:~)x~ for all n ~ l, where {an} 

and {p~} are chosen so that an ~ [a,b] and pn ~ [O,b] or a~ ~ [a, I] and p~ ~ [a,b] 

for some a, b with O < a ~ b < l. Then {xn} converges strongly to a fixed point of 

a
J
 



6. A GENERALIZATION OF WITTMANN'S THEOREM 

Let C be a closed convex subset of a Banach space E and let T be a nonex-

pansive mapping from C into C. We deal with the iterative process: xo = x e C 
an d 

x~+1 = a~+1x + (1 - a~+1)Tx~, n = O, 1,2, . . . , (3) 

where O ~ a~ ~ I and a~ -> O. Concerning this process, Reich [17] posed the 
following problem: 

Problem Let E be a Banach space. Is there a sequence {a~} such that tL;hen-
ever a weakly compact convex subset C of E possessed the fixed point property for 

nonexpansive mappings, then the sequence {x~} defined by (3) cor~verges to a fixed 

point of T fo'r all x in C and all nonexpansive T : C -~ C~ 

Though R.eich [17] showed an affirmative answer in the case when E is uniformly 

smooth and a~ = n~" with O < a < 1, the problem has been generally open. 
Recently, Wittmann [30] solved the problem in the case when E is a Hilbert space. 

Theorem 6.1 ([30]). Let C be a closed convex subset of a Hilbert space and let T 

be a nonexpansive mappirzg from C into itself such that F(T) is nonempty. Let x 
be an element of C and let {a~} be a real sequence which satisfies 

~-co ~ ~; Ia~+1 O < a < I lim a~ = O = oo and - a*1 < oo. , a~ 
~=1 ~=1 Then the sequence {x~} defined by xo = x and 

x~+1 = a~+1x + (1 - a~+1)Tx~, n = 0,1,2, 

converges stroT~gly to the element of F(T) wh3ch ~s nearest to x in F(T). 

We extended Wittmann's result to Banach spaces. The di~iculty of the proof 
depends on that the duality mapping is not weakly continuous. In a Hilbert space, 

the duality mapping is the identity mapping and hence it is weakly continuous. 

Theorem 6.2 ([20]). Let E be a Banach space whose norm is uT7iformly Gdteaux 
differentiable and let C be a closed convex subset of E. Let T be a nonexpansive 

mapping from C into C such that F(T) is noT~empty. Let {c~~} be a sequence which 
satisfi es 

~ ~ Ia~+1 O < c~ < l, Iim a~ = O = oo aT~d - a!~1 < oo. , ct~ ~ - oo 

~=1 ~=1 Let x ~ C and let {x~} be the sequence defined by x x and 

x~+1 = a~+1x + (1 - ~)(~+1)Tx~, n = 0,1,2 

Assume that {zt} converges strongly to z e F(T) as t ~ O, where for t e (O, 1), zt 

is a unique ele'ment ofC which satisfies zt = tx + (1 - t)Tzt' Then {x~} cortverges 

strongly to z. 
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To prove Theorem 6.2, we need the following two propositions. Before stat-
ing them, we give a definition. Let u be a mean on ~OO, i.e., a continuous lineal 

functional on ~OO satisfying IlpLll = I = kt(1). Then kt is called a Banach limit if 

ptn(a~) ::: pn(a~+1) for all (ao,al,a2, ' ' ' ) ~ ~oo where pL (a ) means the value of pt 

at (ao, al' a2, ' ' ' ) e ~oo. 

Proposition 6.3. Let a be a real number and let (ao,al, . . . ) e ~OO. Then ~~(a~) ~ 

a for all Banach limits pt if and only iffor each c > o, there exists a positive integer 

po such that 

a + a~+1 + + a~+p-1 < a + c for all p ~ po aTrd n e N. 
p
 

Proposition 6.4. Let a be a real number and let (ao,al,...) ~ ~oo sttch that 
ft~(a~) < a for all Banach limits /1 and r!imoo(an+1 ~ an) ~ O. Then lim a~ < a. 
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