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ABSTRACT. In this article, we discuss weak and strong convergence to fixed
points of nonexpansive mappings in a Hilbert space or a Banach space.
We first deal with strong convergence of approximants to fixed points of
nonself-mappings in a Banach space. Next, we establish nonlinear ergodic
theorems for families of nonexpansive mappings in a Hilbert space or a
Banach space. Further, by the methods in the nonlinear ergodic theory,
we discuss weak and strong convergence of Ishikawa iterates. Finally, we
extend the strong convergence theorem obtained by Wittmann in a Hilbert
space to that in a Banach space.

1. INTRODUCTION

Let C be anonempty closed convex subset of a real Banach space F and let T be
a nonexpansive mappings of C into itself such that the set F(T") of fixed points of T'is
nonempty. In 1967, Browder [3] proved the following celebrated strong convergence
theorem for nonexpansive mappings in the framework of a Hilbert space: Let z be
an element of C and for each t with 0 < ¢ < 1, let z; be an element of C satisfying

Ty = tT:Et + (1 — t):l:.

Then {z,} converges strongly to the element of F(T') which is nearest to z in F(T)
as t — 1. This result was extended to Banach spaces by Reich [10] and Takahashi
and Ueda [28]. Marino and Trombetta [12], and Xu and Yin [31] also considered
to extend Browder’s theorem to the case when T is of C into E. On the other
hand, Baillon [1] establised the first nonlinear ergodic theorem for nonexpansive
mappings in 1975: Let C be a closed convex subset of a Hilbert space and let T be



.a nonexpansive mapping of C into itself. If F/(T') is nonempty, then for each z € C,
the Cesaro means

n—1
Sa(z) = % Z T z
k=0

converges weakly to some y € F(T"). In this case, putting y = Pz for each z € C,
P is a nonexpansive retraction of C onto F(T) such that PT™ = TP = P for all
n=20,1,2,... and Pz € co{T"z : n = 0,1,2,...} for each z € C, where ToA4 is the
closure of the convex hull of A. By the methods in the ergodic theory, Tan and Xu
[29] discussed the following iteration scheme which was introduced by Ishikawa [7]:
z; € C and

Toy1 = @nT[BnTz, + (1 = Ba)za] + (1 — an)zn, n=1,2,3,...,

where {a,} and {8,} are real sequences in [0,1]. Recently, in the framework of
a Hilbert space, Wittmann [30] studied the convergence of the iterated sequence
which is defined by yo = z and '

Yng1 = @n + (1 —an)Ty,, n=0,1,2,...,

where {a,} is a real sequence in [0, 1].

In this article, we first extend Xu and Yin’s results to Banach spaces by using
the inwardness condition and sunny nonexpansive retractions; see Section 3. In
Section 4, we give a nonlinear ergodic theorem for nonlinear semigroups without
convexity in a Hilbert space. This has many applications. Further we deal with a
nonlinear ergodic theorem for nonlinear semigroups in a Banach space. Finally, we
extend Wittmann’s result [30] to Banach spaces. This result answers affirmatively
a problem posed by Reich [17]; see Section 6.

2. PRELIMINARIES

Let £ be a Banach space and let C be a nonempty closed convex subset of E.
Then a mapping T of C into E is said to be nonezpansive if ||Tz — Ty|| < ||z — yl]
for every z,y € C. Let T' be a mapping of C into E. Then we denote by F(T) the
set of fixed points of T and by R(T') the range of T'. let D be a subset of C and let
P be a mapping of C into D. Then P is said to be sunny if

P(Pz +t(z — Pz)) = Pz

whenever Pz + t(z — Pz) € C for z € C and t > 0. A mapping P of C into C is
said to be a retraction if P* = P. If a mapping P of C into C is a retraction, then
Pz = z for every z € R(P).

Let E be a Banach space. Then, for every ¢ with 0 < ¢ < 2, the modulus §(¢) of
convezity of F is defined by

s(e) = int {1 - 222 ol < 1,0l < 1o~ ull 2 .




A Banach space E is said to be uniformly convez if §(¢) > 0 for every ¢ > 0. E is
+y

also said to be strictily convezif

< lforz,y € Ewith|lz]| <1,|lyl]| <1and

z # y. A uniformly convex Banach space is strictly convex. A closed convex subset
C of a Banach space E is said to have normal structure if for each closed convex
bounded subset & of C which contains at least two points, there exists an element
of K which is not a diametral point of K. It is well known that a closed convex
subset of a uniformly convex Banach space has normal structure and a compact
convex subset of a Banach space has normal structure. We also know the following
theorem which was proved by Kirk [9].

Theorem 2.1 ([9]). Let E be a reflezive Banach space and let C be a nonempty
bounded closed convez subset of E which has normal structure. Let T be a nonez-
pansive mapping of C into itself. Then F(T) is nonempty.

Let E be a Banach space and let £~ be its dual, that is, the space of all continuous
linear functionals z* on F. For every z € F and z* € E*, < z,z* > means the
value of 2™ at z. With each z € F, we associate the set

J(@) = {o" € B i< 2,27 >= o] = [lo"|%).

Using the Hahn-Banach theorem, it is immediately clear that J(z) # ¢ for any
z € E. Then the multivalued operator J : £ — E~ is called the duality mapping of
E. LetU ={z € E:||z|| = 1} be the unit sphere of E. Then the norm of E is said
to be Gdteauz differentiable (and E is said to be smooth) if

1 e+t = o)
tl—r-r(l) t

exists for all z and y in U. It is said to be Fréchet differentiable if for each z in U,
this limit is attained uniformly for y in U. It is also said to be uniformly Gdteauz
differentiable if for each y € U, this limit is attained uniformly for z in U. It is also
said to be uniformly Fréchet differentiable (and E is said to be uniformly smooth)
if the limit is attained uniformly for z,y in U. It is well known that if £ is smooth,
then the duality mapping J is single-valued. And also we known that if F has a
Fréchet differentiable norm, then J is norm to norm continuous.

3. GENERALIZATIONS OF BROWDER’S THEOREM

The following interesting convergence theorem of approximated sequences for
nonexpansive mappings was established by Browder [3].

Theorem 3.1 ([3]). Let C be a nonempty closed convez subset of a Hilbert space
H and let T be a nonerpansive mapping of C into itself such that F(T') is nonempty.
Let u be an element of C and define, for each t € (0,1), a mapping T, of C into
itself by

Tiz =tTz+ (1—-t)u forall z€C.
Then there exists a unique element z, of C' such that T,z, = z,. Further {z.}
converges strongly to the element of F(T) which is nearest to u in F(T) ast — 1.



This theorem was extended to Banach spaces by Reich [16] and Takahashi and
Ueda [28]. On the other hand, for a given v € C and t € (0,1), Marino and
Trombetta [12] considered contractions S, and U, of C into itself by

Siz =tPTz+ (1 - t)u

and
Uiz = P(tTz + (1 — t)u)

for all z € C, where P is the metric projection of C onto F(T'), and tried to extend
Browder’s theorem to nonself-mappings. Recently, Xu and Yin [31] obtained the
following interesting results. Before stating them, we give difinitions. Let C be a
nonempty convex subset of a Banach space E. Then for z € C, we define the inward
set Ic(z) as follows: ’

Ic(z)={ye€E:y=a+a(z—2z) forsome z€ C and a > 0}.

A mapping T : C — E is said to be inward if Tz € Ic(z) for all z € C. T is also
said to be weakly inward if for each z € C, Tz belongs to the closure of I¢(z). The
following are Xu and Yin’s results.

Theorem 3.2 ([31]). Let C be a nonempty closed convez subset of a Hilbert space
H and let T : C — H be a nonezpansive nonself-mapping satisfying the weak
inwardness condition. Fiz u € C and for each t € (0,1), let z, be an element of C
satisfying

z, =tPTz, + (1 - t)u,

where P is the metric projection of H onto C. Then F(T) # ¢ if and only if {z,}
remains bounded as t — 1. In this case, {z.} converges strongly ast — 1 to a fized
point of T.

Theorem 3.3 ([31]). Let C be a nonempty closed convez subset of a Hilbert space
H and let T : C — H be a nonezpansive nonself-mapping satisfying the weak
inwardness condition. Fiz u € C and for each t € (0,1), let z, be an element of C
satisfying

z, = P(tTz, + (1 - t)u),

where P is the metric projection of H onto C. Then F(T') # ¢ if and only if {z,}
remains bounded as t.— 1. In this case, {z,} converges strongly ast — 1 to a fized
point of T'.

The following theorem is crucial in the proofs of Theorems 3.5 and 3.6.

Theorem 3.4 ([25]). Let E be a reflezive Banach space with a uniformly Gateauz
differentiable norm. Let C be a nonempty closed convez subset of E which has
normal structure, and let T : C — E be a nonezpansive nonself-mapping. Suppose
that for some u € C and each t € (0,1), the contraction T, defined by

Tix=tTz+(1—t)u forall z€C



has a (unique) fized point z, € C. Then T has a fized point if and only if {z,}
remains bounded as t — 1. In this case, {z,} converges strongly as t — 1 to a fized
point of T'.

Using Theorem 3.4, we obtain the following two theorems which extend Xu and
Yin’s results [31] to Banach spaces.

Theorem 3.5 ([25]). Let £ be a reflezive Banach space with a uniformly Gateauz
differentiable norm. Let C be a nonemply closed conver subset of E which has
normal structure, and let T : C' — E be a nonezrpansive nonself-mapping satisfying
the weak inwardness condition. Suppose that C is a sunny nonezpansive retract of
E and for some u € C and each t € (0,1), z, € C is a (unique) fized point of the
contraction S, defined by '

Siz=tPTz+ (1 -t)u forall z€C,

where P is a sunny nonezpansive retraction of E onto C. Then T has a fized point
if and only if {z.} remains bounded as t — 1. In this case, {z,} converges stirongly
ast — 1 to a fized point of T'.

Theorem 3.6 ([25]). Let E be a reflezive Banach space with a uniformly Gateauz
differentiable norm. Let C be a nonempty closed convez subset of E which has
normal structure, and let T : C — FE be a nonezpansive nonself-mapping satisfying
the weak inwardness condition. Suppose that C is a sunny nonezpansive retract of
E and for some v € C and eacht € (0,1), y. € C is a (unique) fized point of the
contraction U, defined by

Uz =PiTz+(1-t)u) foral z€C,

where P is a sunny nonezpansive retraction of E onto C. Then T has a fized point
if and only if {y.} remains bounded as t — 1. In this case, {y.} converges strongly
ast — 1 to a fized point of T'.

4. NONLINER VERGODIC THEOREMS

The first nonlinear ergodic theorem for nonexpansive mappings was established
in 1975 by Baillon [1].

Theorem 4.1 ([1]). Let C be a closed convez subset of a Hilbert space H and let

T be a nonezpansive mapping of C into itself. If F(T') is nonempty, then for each
z € C, the Cesaro means

n—1
Sa(2) = -71; ST
k=0

converges weakly to some y € F(T).



We first extend this theorem to a nonlinear semigroup of nonexpansive mappings
in a Hilbert space. Let S be a semitopological semigroup, i.e., a semigroup with
Hausdorff topology such that for each s € §, the mappings t = ts and ¢ = st of §
into itself are continuous. Let B(S) be the Banach space of all bounded real valued
functions on S with supremum norm and let X be a subspace of B(S) containing
constants. Then, an element px of X* (the dual space of X) is called a mean on X
if |||l = (1) = 1. For each s € S and f € B(S), we define elements ¢, f and 7, f of
B(S) given by

(L)) = f(st) and (r,f) = f(ts)

for all t € S. Let C(S) be the Banach space of all bounded continuous real val-
ued functions on S and let RUC(S) be the space of all bounded right uniformly
continuous functions on 5, i.e., all f € C(S) such that the mapping s — r,f is
continuous. Then RUC(S) is a closed subalgebra of C(S) containing constants and
invariant under £, and r,, s € S; see [5, 13] for more details. Let {u: a € A} be a
net of means on RUC(S). Then {p, € A} is said to be asymptotically invariant if
for each f € RUC(S) and s € S5,

Na(f) - /‘LO(Esf) - alld/J.a(f) - :ua(rsf) — 0.

Let us give an example of asymptotically invariant nets. Let S = {0,1,2,...}. Then
for f = (zo,2;1,-..) € B(S) and n € N, the real valued function p, defined by

1 n—1
/un(f) = —sz
n k=0
is a mean. Further since for f = (zg,21,...) € B(S)and m € N
1 n—1 1 n—1
=D T— = Tipm
n k=0 n k=0

1
=-2m||fll =0,
n

() = (e )|

IN

as m — 00, {itn} is an asymptotically invariant net of means.

Let S be a semitopological semigroup and let C be a nonempty subset of a Banach
space E. Then a family § = {7, : s € S5} of mappings of C into itself is called a
Lipschitzian semigroup on C if it satisfies the following:

(i) Tz =T, Tz forall s, € § and z € C;
(ii) for each = € C, the mapping s +— T,z is continuous;

(iii) for each s € §, T, is a Lipschitzian mapping of C into itself, i.e., there is
k, > 0 such that

1Tz — Toyll < koflz — 9]
forallz,y € C.
A Lipschizian semigroup § = {7, : s € S} on C is said to be nonezpansive if k, =1

for every s € S. For a Lipschizian semigroup § = {7, : s € S} on C, we denote by
F(S) the set of common fixed points of 7,5 € §. If C' is a nonempty subset of a



Hilbert space H and S = {T, : s € S} is a nonexpansive semigroup on C such that
{T,z : s € S} is bounded for some z € C, then we know that for each » € C and
v € H, the functions f(t) = ||Tiu — v||? and g¢(t) =< Tyu,v > are in RUC(S). Let
i be a mean on RUC(S). Then since for each z € C and y € H, the real valued
function t —< Tyz,y > is in RUC(S), we can define the value u, < T.z,y > of
p at this function. By linearity of 1 and of the inner product, this is linear in y;
moreover, since

e < Tyzyy > | <l -sgpl < T,y > | < (SgPIITeIH) Nyl

it is continuous in y. So, by the Riesz theorem, there exists an =g € H such that
w < Tyz,y >=< 20,y >

for every y € H. We write such an z, by T, z; see [21, 23] for more details.
Now we can state a nonlinear ergodic theorem for noncommutative semigroups
of nonexpansive mappings in a Hilbert space.

Theorem 4.2 ([24]). Let C be a nonempty subset of a Hilbert space H and let
S be a semitopological semigroup such that RUC(S) has an invariant mean. Let
S ={T, : t € S} be a nonezpansive semigroup on C such that {T;z : t € S} s
bounded and ﬂ to{Tyz:t€ S} CC for somez € C. Then, F(S) # ¢. Further,

s€S
for an asymptotically invariant net {iu, : @ € A} of means on RUC(S), the net
{T,,z: a € A} converges weakly to an element zq € F(S).

Using Theorem 4.2, we can prove the following theorem.

Theorem 4.3. Let C be a closed convex subset of a Hilbert space H and let T be a
nonezpansive mapping of C into itself. If F(T) is nonempty, then for each z € C,

Se(z)=(1-r) Z—:TkaJ:,

as r -1, converges weakly to an element y € F(T).

Let § = [0,00) and let S = {S(t) : t € [0,00)} be a nonexpansive semigroup on
C. Then using Theorem 4.2, we also have the following nonlinear ergodic theorem.

Theorem 4.4. Let C be a closed convez subset of a Hilbert space H and let S =
{5(t) : t € [0,00)} be a nonezpansive semigroup on C. If F(S) is nonempty, then
for each z € C,

1 A
Sy(z) = —/ S(t)edt,
A Jo
as A — o0, converges weakly to an element y € F(S).

In this section, we finally state a nonlinear ergodic theorem for nonexpansive
semigroups in a Banach space. Before stating it, we give a definition. A net {uq}
of continuous linear functionals on RUC(S) is called strongly regular if it satisfies
the following conditions:



(i) sup ||pall < +o0;
(if) limpo(1) = 1;
(iii) lim [jpa — Tilo|| = 0 for every s € 5.

Theorem 4.5 ([6]). Let S be a commutative semitopological semigroup and let E
be a unifromly conver Banach space with a Fréchet differentiable norm. Let C be
a nonempty closed convezr subset of E and let S = {T; : t € S} be a nonezpansive
semigroup on C such that F(S) is nonempty. Then there exists a unique nonez-
pansive retraction P of C onto F(S) such that PT, = TP = P for everyt € S and
Pz eeo{T,x:t € S} for every z € C. Further, if {ua} is a strongly regular net of
continuous linear functionals on RUC(S), then for each z € C, T, Tiz converges
weakly to Pz uniformly int € §.

We do not know whether Theorem 4.5 would hold in the case when .S is noncom-
mutative.

5. ISHIKAWA ITERATES

Let C be a nonempty closed convex subset of a real Banach space F and let T’
be a nonexpansive mapping of C into itself. Then we consider the following iteration
scheme: z; € C and :

(1) Tpnpr = anTBnTz, + (1 = Bo)zn] + (1 — an)z,, n=1,2,...,

where {a,} and {f8,} are real sequences in [0,1]. Such an iteration scheme was
introduced by Ishikawa [7]; see also Mann [11] in the case of 8, = 0. For each
integer n € N and a,, 8, € [0,1], define a mapping T, of C into itself as follows:

Thz = a,T[B. Tz + (1 - Ba)z]+ (1 — an)z.

Then, T, : C — C is also nonexpansive; see [29]. Further we have the following: If
0<a, <land 0< B, <1,then F(T,) = F(T). In fact, if z € F(T), it is obvious
that z € F(T,). Conversely, if z € F(T,), we have z = o, T[Tz + (1 — Ba)z] +
(1 — @n)z and hence z = T[B,Tz + (1 — Bn)z]. Suppose Tz # 2. Then putting
u=0F,Tz+ (1- )z, we have

ITz = 2|l = [Tz = Tl < |}z = .

This is a contradiction. Therefore z € F(T'). It also follows that the iterates {z,}
defined by (1) can be written as

(2) Tny1 — IlTn—J et Tla:l'

Motivated by (2), we obtain the following lemma by using [4] and [8]; see also [10,
27).



Lemma 5.1. Let C be a nonempty closed convez subset of a uniformly convezr Ba-
nach space E with a Fréchet differentiable norm and let {T,T>,T5,...} be a se-
quence of nonezpansive mappings of C into C such that Mo, F(T,) is nonempty.
Letz € C and S, = TyTo_y--- Ty for all n > 1. Then, the set o, T0{Smz : m >
n} O U consists of at most one point, where U = (nz, F(T,).

To discuss the weak convergence of iterates {z,}, we also need the following
lemma which is proved by using Kirk’s fixed point theorem [9] and Shu’s result [19].

Lemma 5.2. Let C be a nonempty closed convez subset of a uniformly convez Ba-
nach space E and let T : C — C be a nonezpansive mapping. Suppose z, € C,
and {z,} is given by 2,41 = @, T[Tz, + (1 = Bn)za] + (1 — @n)z, for alln > 1,
where {a,} and {B,} are chosen so that a, € [a,b] and B, € [0,b] or a, € [a,1]
and B, € [a,b] for some a,b with 0 < a < b < 1. Then F(T) is nonempty if and
only if {z,} is bounded and {z, — T'z,} converges strongly to zero as n — oo.

Now we can state the following weak convergence theorem. Before stating it,
we give a definition. A Banach space E is said to satisfy Opial’s condition [14] if
z, — z and z # y imply

liminf||z, — z|| < liminf ||z, — y]|,

where — denotes the weak convergence.

Theorem 5.3 ([26]). Let E be a uniformly convex Banach space E which satisfies
Opial’s condition or whose norm is Fréchet differentiable, and let C be a nonempty
closed convez subset of E, and let T : C — C be a nonezpansive mapping with a
fized point. Suppose z, € C, and {z,} 1s given by oq1 = anT[BnTzn+(1—Bn)za]+
(1 — an)z, for all n > 1, where {a,} and {8} are chosen so that a, € [a,b] and
Bn € [0,b] or an € [a,1] and B, € [a,b] for some a,b with 0 < a < b < 1. Then
{z.} converges weakly to a fized point of T.

In this section, we finally prove a strong convergence theorem which is connected
with Rhoades [18].

Theorem 5.4 ([26]). Let E be a strictly conver Banach space and let C be a
nonempty closed convez subset of E. SupposeT : C — C is a nonezpansive mapping
such that T(C) is contained in a compact subset of C. Suppose z, € C, and {z,}
is given by o4y = 0 T[BaT 2, + (1 = Bn)za] + (1 — an)z, for alln > 1, where {a,}
and {fB.} are chosen so that a, € [a,b] and B, € [0,b] or a, € [a,1] and B, € [a,d)]

for some a,b with 0 < a < b < 1. Then {z,} converges strongly to a fized point of
T. ‘



6. A GENERALIZATION OF WITTMANN’S THEOREM

Let C be a closed convex subset of a Banach space F and let T be a nonex-
pansive mapping from C into C. We deal with the iterative process: zo =2 € C
and

(3) Ty = 0np1Z + (1~ anp)T2,, n=0,1,2,...,

where 0 < a, < 1 and @, — 0. Concerning this process, Reich [17] posed the
following problem:
Problem Let E be a Banach space. Is there a sequence {a,} such that when-
ever a weakly compact conver subset C of E possessed the fized point property for
nonezpansive mappings, then the sequence {z,} defined by (3) converges to a fized
point of T for all z in C and all nonezpansive T : C — C?

Though Reich {17] showed an affirmative answer in the case when E is uniformly
smooth and a, = n~® with 0 < @ < 1, the problem has been generally open.
Recently, Wittmann [30] solved the problem in the case when F is a Hilbert space.

Theorem 6.1 ({30]). Let C be a closed convez subset of a Hilbert space and let T
be a nonezpansive mapping from C into itself such that F(T) is nonempty. Let
be an element of C and let {a,} be a real sequence which satisfies

o . o0
0<a, <1, ’}Lr&an:O, Zan:oo and X:I|a,,+1—an|<oo,
n=1 n=

Then the sequence {z,} defined by zo = z and
Tngl = Q1 + (]- - an—{—l)Txnv n = 0).1727 s
converges strongly to the element of F(T) which is nearest to z in F(T).

We extended Wittmann’s result to Banach spaces. The difficulty of the proof
depends on that the duality mapping is not weakly continuous. In a Hilbert space,
the duality mapping is the identity mapping and hence it is weakly continuous.

Theorem 6.2 ([20]). Let E be a Banach space whose norm is uniformly Gdteauz
differentiable and let C be a closed convezr subset of E. Let T be a nonezpansive
mapping from C into C such that F(T) is nonempty. Let {a,} be a sequence which
satisfies

x> (o]
0<a, <1, lima, =0, Zan:oo and Z]an+1—anl<oo.
n—oo
n=1

n=1

Let z € C and let {z,} be the sequence defined by o = z and
Tnyy :an+1$+(l—an+l)TIn, n = 0,172,... .

Assume that {z,} converges strongly to z € F(T) as t | 0, ‘where fort € (0,1), 2
is a unique element of C' which satisfies z, = tz + (1 — t)Tz,. Then {z,} converges
strongly to z.

10



To prove Theorem 6.2, we need the following two propositions. Before stat-
ing them, we give a definition. Let p be a mean on £, i.e., a continuous linear
functional on £* satisfying ||u|| = 1 = p(1). Then u is called a Banach limit if

Un(@n) = pn(@nyr) for all (ag,a;,aq,...) € £2°, where u,(a,) means the value of p
at (ag, ay,aq,...) € £,

Proposition 6.3. Let a be a real number and let (ag,ay,...) € £°. Then p,(a,) <

a for all Banach limits u if and only if for each € > 0, there ezists a positive integer
po such that

an + Qn 41 + e + an+p—-1

<a+e¢ forall p>pyandn & N.

p
Proposition 6.4. Let a be a real number and let (ag,a:,...) € £ such that
pn(an) < a for all Banach limits p and lim (any1 — an) < 0. Then lim an < a.

n— 00
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