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Abstract
We consider the one parameter family of real quadratic rational
maps f.(z) = ;1_: + ¢ (where ¢ is a real parameter) as the family of

endomorphisms on the circle R which is the compactification of the
real line R at the point at infinity. This family consists of a part
of the boundary of “unimodal” region in the parameter space of real
quadratic rational maps. We show the monotonicity of the topological
entropy for this family. Our basic tool is the kneading theory and
we reduce our claim to the monotonicity of kneading sequences for
this family. We also use some techniques from the theory of complex
dynamics; Thurston’s theorem on the rigidity of post critically finite
rational maps is essential in our argument.

1 Introduction

We can consider a rational function with real coefficient as a map from
the circle R the compactification of the real line R by adding the point at
infinity, to itself. In this paper, we treat the family of real quadratic rational
maps

‘ 1
fC(:E) = ) + &
T

where ¢ is a real parameter. Especially, we consider the parameter depen-
dence of the topological entropy A(f.) of the map f.. Our main result is

Theorem 1.1 The topological entropy h( f.) is monotonely decreasing with
respect to the parameter ¢ € R. In other words ¢y < ¢y means that h(cy) <
h,(y(fg).
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We should remark that the similar property holds for the family of real
quadratic polynomials ¢.(z) = 2? + ¢ (¢ € R) ([M-T],[dM-vS]). These two
families are some special classes in the set of real quadratic rational maps. In
fact Milnor shows that the parameter space of real quadratic rational maps,
i.e. the set of PGLy(R)-conjugacy classes of these maps can be naturally
identified with the two dimensional real affine plane R? ([M]). In this space
the family {¢.} consists of maps which has a fixed critical point. On the other
hand, the family {f.} consists of maps one of whose critical value is also a
critical point. Therefore a map of these families has some restrictions on
the critical orbit of it. Moreover these families are precisely the boundary of
the unimodal region in the parameter space consisting of maps which can be
considered as unimodal maps ([F-N]). It seems interesting to check whether
the monotonicity of the topological entropy also holds on this unimodal
region.

The idea on the main theorem 1.1 is as follows; by using the kneading
theory, we reduce our claim to the monotonicity of the kneading sequence
k(f.) of the map f,. We show this by three steps. In the first step, we
check that in the both side of the parameter line, the kneading sequence is
constant and attains the maximum and the minimum. The second step is
so called “intermediate value theorem” which tells us the condition for a se-
quence to be realized as a kneading sequence on the given closed interval on
the parameter line, The remain to show is the rigidity property for the post
critically finite maps which means that if f., and f., satisfy that f2(0) =0
and f7(0) = 0 for some n € N and their kneading sequences coincide, then
¢1 = ¢3. We show this by using techniques from the theory of complex dy-
namics. We show that considering f., and f;, as rational maps on Riemann
sphere C, they are equivalent in the sense of Thurston. Then Theorem
of Thurston ([D-H]) shows that f., and f., are PSL;(C)-conjugate, hence
¢1 = c¢o. This is the third step and after that we can easily prove our claim.

In Section 2, we show that a map of our family can also be considered
as a map on a interval. Reviewing the definition of the topological entropy
in Section 3, in Section 4 we reduce our claim to the monotonicity of the
kneading sequence k(f.). And we prove this in Section

This paper was written in my stay at University of Warwick in the fall
term, 1996. I am very grateful to Masayo Fujimura who kindly edited this
article from my drafts sent by using e-mail. Without her help and patience,
I couldn’t finish it.
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2 The family of real quadratic rational maps

Let R be the real line and R be the compactification of R be the point oo
at infinity. Then R is a circle. We are interested in analyzing the dynamics
of one parameter family of real quadratic rational maps

felz) = % +c (ceR)

as the circle maps from R to R. In the following we consider the dynamics
of iterations of f., {f},en. First we remark that the critical set Q. of f. is
{0,00} and f. satisfies f.(0) = oo and f.(oc) = f2(0) = c. Because we are
mainly interested in the topological dynamics of f., the dynamics of f. and
one of Ao f, 0 A™' where A4 is a homeomorphism of R, are assumed to be
the same. Therefore by taking the real linear fractional transformation A,
which send {0,¢,00} to {—1,0,1}, we conjugate f. by A. as follows

1.e¢>0
Put A.(2) = ;;i Then /\ -------- :
go(x) = A.of.o AT (2) 'r ------ \Q:(
(z—1)2 -1 0 I
(z =12 +4c3(z + 1)%
2.¢=0

Put Ag(z) = 1. Then

41 et EEEEEEE :
ge(z) = Ao f.ooATN(z) /\
- ":"‘2‘}““ 'lg 0 51‘
(z+1)° :
3 e<0

Put A.(z) = —%5=. Then

-3’

ge(z) = Aco foo A;l(izz;) "/
1y

(z — 1)? + 4c32?
(z—1)% —4c2? h 0

Then each case of the graph of g. shows that
qp(f{) is a closed interval and ¢. preserves this in-
terval gc(fl) i.e., g. can also be considered as a map




on the interval g.(R). Above arguments show that
without the circle endomorphism f. : R — R, we can also considered the

interval map f. : fc(f{) — fc(f{)

3 The topological entropy

First following [dM-vS], we review the definition and basic properties of the
topological entropy. Let (X,d) be a compact metric space X with metric d
and f: X — X be a continuous map. A subset £ C X is (n,¢€)-separated
if any distinct points @,y € F, there is an integer j such that 0 < j < n
and d(f7(2), f/(y)) > e. That is, any two points of E must leave at least
e-distance from each other until n times. If K C X is a compact subset, we
denote by s, (¢, K, f) the smallest cardinality of any subset E of K which is
(n,€)-separated. Then the number

h(f, K) := lim(lim sup —1~log sn(€, K, f))

=0 p—co

is well defined and called the topological entropy of f with respect to K. The
number h(f) = h(f, X) is called the topological entropy of f. We remark
that A(f, K) = 0 if K is a finite set. Next theorem is a fundamental result
of the topological entropy.

Theorem 3.1 (Bowen)

Let (X,d) and (Y,d') be compact metric spaces, f : X LI X
X = X, g:Y =Y be continuous maps. If 7 : X — nl /D ln
Y is continuous and surjective such that mo f = gow

then Y=Y

o

h(g) < h(f) < h(g) + sup h(f,m ().

In particular this theorem shows that the topological entropy is a topo-
logical invariant, does not depend on the choice of the metric.

Corollary 3.1 Let X be a compact space, f : X — X be continuous and
finite to one. If there exists n > 1 such that f(f"(X)) C f*(X), then

h(f) = h(f, F(X)).

Therefore by using the results of Section 2, we can conclude that the
circle map f, : R — R and the interval map f. : fC(R) — fC(R) have the
same topological entropy.
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Next we define piecewise monotone maps. Let I be the closed interval
[0,1) and f: I — I be a continuous map. We call f be piecewise monotone
if there are a finite number of turning points ¢; < ¢ < -+ < ¢ and f
is monotone in each one of the intervals In = [0,¢1),[1 = (c1,¢2),---,[1 =
(¢7,1]. If f is piecewise monotone, then so are f™ for all n > 1. Let [(f")
be the number of maximal subintervals of I in which f" is monotone. We
call I(f™) the lap number of f*. Next theorem shows the relation between

the lap number I( f*) and the topological entropy h(f).

Theorem 3.2 (Misiurewicz-Slenk)
If [ is a piecewise monotone map, then

1 /
h(f) = lim = logl(f")
Corollary 3.2 If f and g are piecewise monotone and satisfy [(f™) < I(g")
for alln > 1, then h{f) < h(g).

From the results of Section 2, the map f. is plecewise monotone, and
[(f*)=1for ¢ > 0, hence h(f) = 0. On the other hand I(f;) = 2 for ¢ < 0.
In general, a piecewise monotone map f is called unimodal if I(f) = 2. In
the following, putting a = 4¢® for ¢ < 0, we consider the one parameter

Far : - 41
family of unimodal maps g, = A. o fe. 0 A

(2 —1)% 4 aa?
Ja = (z —1)2 — aa?’

We will show that if a1 < a2, then l(g;,) < l(g,,) for any n > 1. Then
by Corollary 3.2, we can conclude our claim of the monotonicity of the
topological entropy for the family {f.}. To show this monotonicity of the
lap numbers [(g}), we prepare the combinatorial tool, the kneading theory
in the next section.

4 The kneading theory for unimodal maps

First we need some definitions and notations. Let I be the closed interval
(0,1} and f be a unimodal map. We denote its turning point by ¢ € [ and
assume that f is monotonely increasing on [0,¢) and monotonely decreas-
ing on (¢, 1]. Let us denote by S the symbol space S = {L,C, R} and ¥
be the space of infinite sequences A : N — ¥ | A = (ag, a1, Gny ")
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where a; = A(i). We also define the shift transformation o : ¥ — ¥ by
o(ag,ar,az,---) = (a1,az,---). For A = (ag,a1,---,an,---), we define A,
by the finite sequence (ag, a1, --,a,-1). We introduce an order structure in
the space ¥. First we assume that L < C' < R. Finite sequence of symbols
L and R is called even if it contains even number of R. For 4 = (ag.a,- )
and B = (bg,by,---), we say that A < B if there exists n € N such that
ay = b; for i < n and a, < b, if A|, is even, and a,, > b, if A|, is not even.
We call A € ¥ mazimalif 0™(A) < A for all n € N.

Let the map Iy : I — ¥ be defined by I¢(z) = (io(2),%1(x), -, in(2),---)
where i,(2) = L if f*(z) < 0, i,(z) = C if f*(z) = 0 and ¢,(z) = R if
f*(z) > 0. The sequence I¢(z) is called the itinerary of . The map Iy
relates the dynamics of f with the dynamics of the shift transformation:
ols(z) = I;(f(z)). We can also show that Iy(z) < If(z") means z < a2,
and = < 2’ means I;(x) < If(z’). Especially we call I#(f(c)) the kneading
sequence of f and denote it by k(f). Because the function f attains the
maximal value at the turning point ¢ € I, k(f) is a maximal sequence.

Now we go back to our original problem. For the unimodal map ¢, (a <
0), let h(a) and k(a) be the topological entropy and the kneading sequence
of g, respectively.

Proposition 4.1 If k(a1) > k(az) for a1 < az, then h(a1) > h(a2).

(Proof.) By Corollary 3.2, it is enough to show that under the assumption
that k(a1) > k(az), I( ;Ll) > U(fy) for all n € N. In fact I(f") is equal
to the number of finite sequences which is equal to /¢(z)|, for some point
xz € I. Therefore it is enough for us to show that under the assumption that
k(ay) > k(ag) if there exist finite sequence A of L and R of length n and
some point @ € [ such that I, (z)|, = A, then there exists z € [ such that
Iy, (2)ln = A. We prove this assertion by induction on n. It is trivial for
the case of n = 1. We assume that it holds for n = k£ and there exists @ € |
such that Iy, (2)|x41 = A. We separate our argument for the cases A = LB

and A = RB where B is a finite sequence of L and R of length £.

The case that A = LB.

The equation Iy, (¢)|k41 = A = RB shows that —1 < /Y

2z < 0. Hence gaz( 1) < gay(2) < gq,(0). It means :

(z)

that Iy%(gag( 1)) < gag(gaz ) < QaQ(QQQ(O))' In Z
other words, 02k(az) < B--- < k(as).
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The assumption k(az) < k(a1) and k(a)ly = RL shows that o?k(ay) <
o?k(az).

Therefore Iy, (ga,(—1)) < B+ < I, (g0,(0)). By the induction hypothe-
sis, there exists y € [ such that Iy, (y)|x = B and from the above inequality
we can assume that g, (—1) < y.

Since g,, is continuous, by the intermediate value theorem, there exists z < 0
such that y = go,(#), which means that Iy, (2)[s41 = LB = A.

2. The case that A = RB.

By the induction hypothesis, there exists y € I such that I,, (y) = B. We
can assume that y € [—1,1). Then there exists z > 0 such that y = ¢,,(2)
which means that Iy, (2)[x41 = RB = A.

Hence by the induction hypothesis, we can prove our claim.

From the above result, to show the monotonicity of the lap number I(g}),
it is enough to show the monotonicity of the kneading sequence k(a) which
will be proved in the next section.

5 Monotonicity of kneading sequences

In this section we prove that the kneading sequence k(a) is monotone for
the family {g,}. For this purpose, we prepare the following lemmas.

Lemma 5.1 “End points attain the extremal kneading sequences”
There exist g < p41 satisfying the following conditions

~

. For any a < 0 with a < pp, k(a) = RL*™.
2. For any a < 0 with py < a, k(a) = (RL)>.
3. Forany a < 0, RL*™ > k(a) > (RL)>™.

(Proof.) The fact that g,(0) = 1 and ¢2(0) = g.(1) = —1 for all @ < 0 means
that k(a)ls = RL.
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1. It is checked by direct calculation that there ex-
ists po < 0 such that for any a < po the graph
of g, and the diagonal intersects at three points.
Hence if we write the smallest z-coordinate of
these intersection points by @1, ¢7(—1) < 0 for
any n € N and ¢7(—1) goes to z; as n goes
to infinity. This means that for any a < puo,
k(a) = RLL...= RL*.

2.620) = gu(-1) = 2 gi0) = P, [T
Hence if we put p; = —6 4 2v/5, then ¢2(0) > 0
and ¢}(0) < 0 for any a > py. Because g,
is monotonely increasing on [—1,0] and mono-
tonely decreasing on [0,1], ¢2"*1(0) > 0 and
g2"*2(0) < Ofor all n € N. Therefore for a > p1,
k(a) = RLRL... = (RL)™.

X

3. By using the definition of the order of knead-
ing sequences and the fact that k(a)ly = RL,
RL* is the maximum. On the other hand, the
proof of 2 shows that if k(a)ls = RLRL, then
k(a) = (RL)*>. This means that (RL)* is the
minimum.

Lemma 5.2 “Intermediate value theorem”

Let A € ¥ be a mazimal sequence and assumed that A # (BL)* and A #
(BR)™ for any finite sequence B of L and R. If there exist a1 < ay such
that k(a1) > A > k(az), then there exists b € (ay,az2) such that k(b) = A.

(Proof.) Put

My = {aé€ar,az]lk(a) > A}
Py = {a€lar,az]lk(a) < A}.

Then a4 € M4 and ay € P4. Because [ay,az2] is connected, if both of .M 4
and P4 are open, then there exists b € (a1, ay) such that £(b) = A. In the
following we show the openness of M4. For any element d € My, we will
show that we can take an open neighborhood U of d in [aq,az2] which is
contained in M 4. Since k(d) = dy,dy,--- > A = ay,ay,- -, there exists the
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smallest © € N with d; # @;. We separate our arguments for the cases when
di = C and d; # C.

1. The case that d; = C.
We can take U as U := {a € [a1, as]k(a)|; = k(d)|;}.

2. The case that d; # C.

In this case, k(d) can be written as k(d) = (DC)*® where D is a
finite sequence of R and L. Then by Lemma 11.5 of [M-T], there
exists an open neighborhood of d in [a;1, @2] such that for any a« € U,
k(a) can be written as (DL)*>, (DC)™ or (DR)*. We remark that
this claim requires the smoothness of the map g,. Moreover there are
no maximal sequences between (DL)* and (DC)*®, and (DC)™ and
(DR)>. The idea of a proof of this claim is the following; if D is
even, then (DL)® < (DC)* < (DR)™. If there exists a maximal
sequence B with (DL)* < B < (DC)*, then B|; = DL. Because DL
is also even and (DL)™ < B, we can conclude that o*(B) > B which
contradicts to the maximality of B. If there exists a maximal sequence
B with (DC)* < B < (DR)™, then B|; = DR. Because DR is not
even, we conclude that o'(B) > (DR)® > B which also contradicts
to the maximality of B. Above arguments show our claim for the case
that D is even. It is also the same for the case thatD is not even.

By using the same arguments, we can also prove the openness of Py.

Lemma 5.3 “Combinatorial rigidity for post critically finite maps”
Let ay < ay satisfy the following conditions

1. There ewists the smallest n € N satisfying g (0) = g7 (0) = 0.

2. k(ar) = k(ay).

Then ay equals to ay.

(Proof.)

We go back to the notion of f.. For
i = 1,2, we define ¢; < 0 by a; = 4¢?
for 7 = 1,2. Then the condition (1) —a

gives f(0) = f2(0) = 0. The con-

dition (2) shows that fZ (0) < f£(0) ; . , §
if and only if f2(0) < f£(0). Lo Lo Lo £10

C2
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Therefore there exists an orienta-
tion preserving homeomorphism ¢ :
R — R which satisfies o(f2(0)) =

2,(0) for all j € N. Moreover
there exists an orientation preserv-
ing homeomorphism @ :C = C
whose restriction to R is ¢ and

preserves the upper and lower half
planes HT, H™.

Next we define the orientation pre—
serving homeomorphism ¥ : C —
C. Considering fe, and fe, as ra-
tional maps from C to C, they send
the first and third quadrants to the
lower half plane H™ and the second
and fourth quadrants to the upper
half plane HT. Therefore if z is
a point of the i-th quadrant, then
we can choose a unique point of
f5l o ® o fo(2) which is contained
in the i-th quadrant. We denote this
point by ¥(z). Then the map ¥ sat-
isfies the following conditions

L ¥(f5,(0)) = ®(f2(0)) = fL,(0).
2. ®ofo = fe, 0¥, £

c)

C
4
C

3. ® and ¥ are isotopic relative to the post critical
set of fe, Pfq = {f (0), 31(0),---, 2(0) =
0}.
In o}ther words, this means that as rational maps on
C, f., and f., are equivalent in the sence of Thurston ([D-H]). Then f,, and
fe, are PSLy(C)-conjugate by the theorem of Thurston ([D-H] Theorem 1),
and in our case we conclude that ¢y = ¢,
hence a1 = as.
Now we can prove our main theorem.

Theorem 5.1 The kneading sequence k(a) is monotonely decreasing i.e.,
k(ay) > k(az) for aq < as.
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(Proof.) By Lemma 5.1, we can restrict our attention to the closed interval
[0, p1]. We assume that there exist a3 < ag in this interval such that
k(ay) < k(asg).

L. The case that k(ay) = (AC)™ where A is a finite
sequence of I and R.
The assumption that k(az) > k(ay) > k(p1) and
Lemma 5.2 show that there exists b € (aq, 1)
such that k(b) = k(ay) = (AC)*. Then by

Lemma 5.3, a; = b which is a contradiction.

[N

. The case that k(aq) is a infinite sequence of L
and R.
The assumption that k(a;) < k(az) shows that
there exists by € (ay,ap] such that k(by) =
(BC)*™ where B is a finite sequence of L and
R. Then k(po) > k(b2) > k(ay) and by Lemma
5.2, there exists by € (pp,aq) such that k(by) = woa 8, p 1L
k(by) = (BC)®>. Therefore by Lemma 5.3, ! b
by = by which is a contradiction.

Above arguments show that k(a) is monotonely de-

creasing.
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