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ABSTRACT. Given an equation with certain symmetry such as symmetry with 

respect to rotation, translation, it is important, from the point of view of applica-

tions, to study whether or not its solutions inherit the same type of symmetry. In 

this note, we restrict our attention to solutions that are 'stable' in a certain sense 

and consider this problem. To be more precise, in the order-preserving dynamical 

system having a symmetrY_' property corresponding the action of some group, we 

discuss the symmetr_v or monotonicity property of stable equilibrium points. As 

applications of our theor)', we prove the rotational symrr~etry of stable equilibrlum 

solutions and the monotonicity of stable travelling wave solutions for nonlinear 

diffusion equations, and the instabilit.1/ of stationary solutions for an evolution 

equation of surfaces. 

l. INTRODUCTION 

This note is a surnmary of my recent work [lO] with Professor Hiroshi Matano 

(University of Tokyo) . 

Many mathematical models in physics, biology and other fields possess sbme kind 

of symmetry= such as symmetry with respect to reflection, rotation, translation, 

dilation, gauge transformation, and so on. Given an equation with certain symmetry, 

it is important, from the point of view of applications, to study whether or not 

its solutions inherit the same type of symmetry. As is well-known, the answer is 

generally negative unless we impose additional conditions on the equation or on the 

solutions. We will henceforth restrict our attention to solutions that are 'stable' in 

a certain sense and discuss the relation between stability and symmetry, or stability 

and some kind of monotonicity. 

In the area of nonlinear diffusion equations or heat equations, early studies in this 

direction can be found in Casten-Holland [1], and Matano [8]. Among many other 

things, they showed that if a bounded domain ~ is rotationally symmetric then any 
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stable equilibrium solution of a semilinear difEusion equation 

u Au + f(u), x ~ ~, t > O 

inherits the same symmetry. Later, it was discovered that the same result holds in 

a much more general framework, namely in the class of equations in which the com-

parison principle holds in a certain strong sense. Such a class of equations form the 

so-called 'strongly order-preserving dynamical systems'. Mierczyiski-Pol~~ik [1l] 

(for the time-continuous case) and Tak~~ [14] (for the time-discrete case) showed 

that; in a strongly order-preserving dynamical system having a symmetry property 

corresponding to the action of a compact connected group C, any stable equilibrium 

point or stable periodic point is G-invariant. 

The aim of this note is to establish a theory analogous to [1l] and [14] for a wider 

class of systems. To be more precise, we will relax the requirement that the dynam-

ical system be strongly order-preserving. This will allow us to deal with degenerate 

diffusion equaticns and equations on an unbounded domain. Secondly, we will relax 

the requirement that the acting group be compact. This will allow us to discuss the 

symmetry or monotonicity properties with respect to translation. As applications 

of the results, we will prove the monotonicity property of stable travelling wave so-

lutions for nonlinear-diffusion equations and the instability of stationary solutions 

for an evolution equation of surfaces. 

As the space is limited, we omit the proof of our theorems. See the forthcoming 

paper [lO] for details. 

2. NOTATION AND MAlN RESULTS 

Let X be an ordered complete metric space, that is, a complete metric space 

with a closed partial order relation denoted by ~;. Here, we sa"v that a partial order 

relation in X is closed if, for any converging sequences {u~}, {v~} C X satisfying 

u~ ~: vn' Iim~_oo u~ :~ Iim~_oo v~ holds. We also assume that, for any u, v ~ X, the 

greatest lower bound of {u, v} -denoted by u A v- exists and that (u, v) H> u A v. 

is a continuous mapping from X x X into X. We write u ~ v if u ~( v and u ~ v, 

and denote by d the metric of X. 

Let {~t}t~0 be a semigroup of mappings ~t from X to X satisfying the following 

conditions (~~1)= (~~2), (~3) : 

(~1) ~~t is order-preserving (that is, u ~: v implies ~tu ~ ~tv for all u, v ~ X) for 

all t ~: O, 

(~~2) ~t Is upper semicontinuous (that is, if a sequence {un} in X converges to a 

point uoo e X and if the corresponding sequence {~~tun} also converges to some 

point w c X, then w ~ ~)t(uoo)) for all t ~ O, 
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(~)3) any bounded monotone decreasing orbit (a bounded orbit {~)tt/,}t~c satisfying 

~tu ;~ ~~t'u for t ~ t/) is relatively compact. 

Let G be a metrizable topological group acting on X. We say G acts on X if 

there exists a continuous mapping n/ : G x X -~ X such that g H> 7(g, ') is a group 

homomorphism of G into Hom(X), the group of homeomorphisms of X onto itself. 

For brevity, we wTite 7(g, u) = gu and identify the element g e G with its action 

7(g, '). We assume that 

(G1) 7 is order-preserving (that is, u ~~ v implies gu ~: gv for any g c G) , 

(G2) n/ commutes with ~)t (that is, g~t(u) = ~>t(gu) for all g e G, u ~ X) for all 

t > o. 

(G3) C is connected. 

In what follows, e will denote the unit element of G, and B5(e) the 6-neighborhood 

of e. 

Definition 2.1. An equilibrium point u ~ X of {~t}t>0 Is lower stable if, for any 

c > O, there exists some 6 > O such that 

d(~~tv, u) < c 

for any t ~ O, v ~ X satisfying v ~ u and d(v, u) < 6. 

Remark 2.2. It is easily seen that if u is stable in the sense of Ljapunov, then it is 

lower stable. 

Main Theorem. Let ~~ be an equilibrium point of {~t}t>0 satisfying the following 

conditions : (1) ~~ is lower stable ; (2) for any equilibrium point u ~: ~Z, there exists 

some 6 > O such that glJ, ~( ~; for any g e ~5(e). Then, for any g ~ G, the inequality 

g~~ ;~ ~~ or g~ I~ ~ holds. 

If the group C is compact, one can easily show that neither the inequality g~Z ;~ ~: 

nor g!~ ~ ~~ holds (see Taka~ [14j). Thus we have the following corollary. 

Corollary 2.3. Under the hypotheses of Main Theorem, assume further that C is 

a compact group. Then ~l is C-invariant, that is, ~~ is symmetric. 

Now let us consider the case where C is isomorphic to the additive group R : 

C = {g* I a ~ R} g + gb g*+b 

Then the following holds : 

Corollary 2.4. Under the hypotheses of Main Theorem, assume further that G is 

isomorphic to R. Then one of the following holds: 
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(i) ~; is C-invariant; 

(ii) g*~~ is strictly monotone increasing in a (a < b implies ga~~ ~ gbi~) ; 

(iii) ga~1 is strictly monotone decreasing in a (a < b implies g~~~ >- gb~~) . 

Remark 2.5. If the mapping ~t is strongly order-preserving for some t > O (that 

is, u ~: v implies ~>tl~5(u) I~ ~tB6(v) for sufliciently small 6 > O), then clearly 

assumption (2) in Main Theorem is automatically fulfllled. 

Remark 2.6. If G is not connected, then the conclusion of Main Theorem does not 

necessarily hold_ See [8], [9] for detail. 

3. AppLICATIONS I ROTATIONAL SYMMETRY OF STABLE EQUILIBRIA 

The flrst example has already been discussed in Mierczy~ski-Pol~~ik [1l] and 

Taka~ [14], but in view of its importance, we summarize their results. 

Let C be a connected subgroup of the rotation group SO(n) and ~ C 1~:" be ~ 

bounded G-invariant domain with smooth boundary a~. Here we say that a domain 

~ is G-invariant if gx e ~ for all x ~ ~, g e C. A typical exarnple of such a domain 

is a disk or an annulus in the case of n = 2 ; a ball, a spherical shell, a solid torus 

or any other body of rotation in the case of n = 3. 

First let us consider an initial boundary value problem for a nonlinear di~usion 

equation of the form 

ut = Au + f(u~, x e ~, t > O, 

u = O, x ~ O~, t > O, (3.1) 
u(', O) = uo, x e ~, 

where f : I~ -> ~ is a Cl function satisfying f(O) = O, f!(O) / O. 

Let X = Co(~) = {w ~ C(~) I tL' = O on a~} and {~)t}t~[0,00) be the semiflow 

that (3.1) deflnes in X. Then the following holds : 

Theorem 3.1. Any stable equilibrium solution ~1 of (3.1) is C-invariant, that is, 

~1(gx) = ~~(x) for all x e ~, g e G. 

Outline of the proof Deflne an order relation in X by 

11 ~ u2 if ul(x) ~ u2(x) a.e. x e ~. 

Then, it follows from the well-known 'maximum principle' ([13]) that (~1) holds. 

Applying Corollary 2.3, we obtain this theorem. [] 
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Next we consider an initial boundary value problem for a degenerate equation of 

the form 

ut = A(ttm) + f(u), 

u = O, 

u(', O) = ?1'o' 

x e ~, t > O, 

x ~ a~, t > O, 

x ~ ~, 

(3.2~ 

where ~ and f are as above, and m > I is a constant so that equation (3.2) 

degenerate at u = O. Here we consider only bounded nonnegative solutions. Given' 

an equilibrium solution ~~ of (3.2), we set 

X = {u ~ J_1(~) I for some g e C, o ~ ~(x) + tL(x) ~ ~~(gx) a.e. x ~ ~} 

and {~)t}t>0 being the semiflow that (3.2) in X. Then, by the same argument as m 

the proof of Theorem 3.1, we have the fcllowing : 

Theorern 3.2. Any stable equilibTium solution of (3_2) is C-invariant. 

Finally we apply our result m Sectlon 2 to the case where the domam ~ Is not 

bounded. Let C be a connected subgroup of the rotation group SO(TL) and ~ C R" 

be a C-invariant unbounded domain with smooth boundary a~. We assume that 

there exists a constant I. such that any points x, y e ~ can be joined by a polygonal 

arc contained in ~ and of length d ~ J.lx - yl･ In the case where the domain ~ is 

bounded, this condition is automatically satisfied. An example of such a domain is 

the entire space R" or an inflnite cylinder. Let us again consider the initial boundary 

value problem of the form 

ut = At" + f(u), 

u = O, 

u(', O) = uo' 

x e ~, t > O, 

x e a~, t > O, 

x e ~. 

(3.3) 

Under the additional condition that f'(O) < O, we obtam the followmg 

Theorem 3.3. Any stable equilibrium solution ~~ of (3.3) satisfying 

~~(x) -~ o as xl -> oo 

is C-invariant. 

Here we set X = Co(~). Now, by X = C(~), we mean the space of bounded and 

uniformly continuous functions on ~. 
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　　　　　　　　　　4．APPL互cATI0Ns　II－INsTABILITY0F　sOLITARY　wAvEs

　　We　app1y　our　theory　to　the　so－ca11ed　trave11ing　wave　so1u七ions　for　systems　of

equations　of　the　form

　　　　　　　　　　　　　　　　　｛二
　　　　　　　　　　　　　　　　　　叫＝α工π十∫（u，η），　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　z∈R，む＞0，
　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　（4．ユ）

　　　　　　　　　　　　　　　　　　叫＝仏。十9（u，η），　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　z∈R，乏〉0，

where　d＞0is　a　constant　and∫，g：R×R一→R　are01f㎜ctions．

　　Here　we　assume∫”≦0，g。≦0so　that　system（4．1）be　of　competition　t犯e－

　　Aso1ution（u，り）of（4．ユ）iscaユ1edatraveuingwaveso1utionwithspeedc∈Rif

it　c㎝be　witten　h　the　form

　　　　　　　　　　　　　　　　　（u（Z，亡），U（Z，t））＝（φ（Z－Ct），ψ（Z－Cf）），

whereφ（ひ），ψ（ひ）are　some　functions，Here　we　restrict　our　attention　to　the　trave11ing

wave　so1utions　that　satisfy　the　condition

　　　　　　　　　　　　　　　　　　　　　1im（u（z，0），η（z，0））＝（叫，η土），

　　　　　　　　　　　　　　　　　　　　z→土oo

whereα十，u＿，〃十and〃＿are　constants．A　trave11ing　wave　so1ution　is　ca11ed　a

so1itary　wave（a　travening　puIse）if（u＋，η十）＝（u＿，η＿），and　a　trave11ing　front辻

（叫，η十）≠（L，η一）．We　assume　that（叫，η±）are　both　stab1e　equi1ibrium　so1utions

of　the　ordinary　di任erentiaユequation　corresponding　to（4．1），name1y，

　　　　　　　　　　　　　　　　　　　　　　｛
　　　　　　　　　　　　　　　　　　　　　　　　1・寸＝∫（u，η），　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　τ〉O，

　　　　　　　　　　　　　　　　　　　　　　　　叫＝　　9（仙，〃），　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　f＞0．

　　Given　a　traveI1ing　wave　so1ution（石，τ）㎞th　speed　c，Iet　us　de丘ne　a　metric　space

X　by
　　　　　　　　　　　　　X＝｛（亙（・，0）十ω。，τ（・，0）十ω。）1ω。，ω。∈∬1（R）｝

and　a　semigroup　of　mappings｛Φオ｝±≧o　by

　　　　　　　　　　　　　　　　　　Φt（u（Z），〃（Z））＝Ψt（u（Z＋Cf），η（Z＋α））

with｛Ψ山≧o　being　the　semi且ow　that　equa七ion（4。ユ）de趾es　in　X．It　is　e鎚i1y　seen

tha七｛Φf｝｛∈一〇，。。）is　the　semiHow　de丘ned　by　the　equation

　　　　　　　　　　　　　　｛
　　　　　　　　　　　　　　　　吻＝u工π十・叱十∫（u，り），　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　z∈R，τ＞0，

　　　　　　　　　　　　　　　　叫＝牝ゴ←ω工十9（u，り），　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　z∈R，t〉0．

C1ear！y（π（一，0），τ（．，0））is　an　equi1ibrium　point　of｛Φ士｝t≧o．A　trave11ing　wave　so1ution

（瓦，τ）is　ca11ed　stab1e　if（可（・，0），τ（・，0））is　a　stabIe　equi1ibrium　point　of｛Φt｝t≧o．

　　We　say　that　a　trave11ing　wave　so1ution（仙，〃）is肌㎝o尤㎝εifψ，0）and＿ψ，0）

aエe　both　nonincreasing　functions　or　both　nondecreasing　func七ions．

Theorem4－1．ルμ3肋1e亡m〃e肋ηgωα〃ε801肋oπo∫（4－1）｛3moηo亡㎝e、
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Cor'ollary 4.2. Solitary wave solutions of (4.1) aTe unst(Lble. 

(monotone travelling wave) (solitary wave) 
(another type of travelling wave) 

Outline of the proof of Theorem 4.1. Deflne ah order relation in X by 

(ul'vl) ~; (u2,v2) if u (x) < u2(x) vl(x) > v (x) ae x ~ ~ 

Letting G be the group of translations (~~ R) and applying Corollary 2.4, we obtain 

Remark 4.3. Results corresponding to Theorem 4.1 and Corollary 4.2 hold true if 

(4.1) is of cooperation type (that is, f~~~ O, g*;~ O). In this case, we call a travelling 

wave (~~, ~) monotone if ~7(x, O) and ~(x, O) are both nondecreasing functions or both 

nonincreasing functions. 

Remark ~.A. It is known that monotone travelling fronts are stable ([15], [5]). 

Remark 4.5. The result in Theorem 4. I is somewhat known; in the special case where 

f(u, v) = u(1 - u - Irv), g(tl., v) = v(a - pll. - v), (4.1) is well-known as the Lotka-

Volterra competition system. Under certain assumptions on coefficients a, p and ~!) 

Kan-on [7], has proved the instability of a stationary solution (~, ~) that satisfies' 

O < ~~ < l, O < ~7 < a, (u~, v~) = (0,0i). On the other hand, for general f, g, under 

the assumptions on the proflle (ip, ip) that there be at most a finite number of extrema 

(component wise), it was proved by Volpert et al. [15] that nonmonotone travelling 

waves are unstable. Our method is able to relax their conditions. Furthermore, 

our method works equally well for some degenerate diffusion equations. Degenerate 

equations will be discussed in a forthcoming paper ([12]). 

5. AppLICATIONS 111 INSTABILITY OF STATIONARY SURFACES 

Let {7(t)}t;~o be a family of time-dependent hypersurfaces embedded in I~~. We 

assume that the motion of 1/(t) is subject to 

V = f(n, Vn), (5.1) 
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where n = n(x, t) is the outward unit normal vector at each point of ~/(t) and V 

denotes the normal velocity of 7(!.) in the outward direction. A typical example of 

(5.1) is 

V = a(n)/~ + g(n) 

where /~) = (1/(n - l)) traceVn is the mean curvature at each point of ~/(t). In the 

case where ai(n) E I and g(n) E O, this equation is known as the mean curvature 

flow equation. 

We consider (5.1) in the frarnework of generalized solutions. The notion of such 

solutions was introduced by Evans and Spruck [4] and independently by Chen, Giga 

and Goto [2]. 

We assume that f is a smooth function and that equation (5.1) is strictly par~h 

bolic. 

Let us define a metric ~pace X by 

X D is a bounded open set in I~n and } {
 

(r. D) 
r(C Rn ¥ D) is a compact set containing aD 

equipped with the metric d defined by 

d((r D) (r D!)) = h(r, r/) + h(D U r, D/ U r!). 

Here, for compact sets K1 and K2, h(Kl' K2) means the Hausdorf~ metric between 

Kl and K2 if Kl' K2 ~ ~, h(K1' K2) = oo if K1 ~ ~ and K2 = ~, and h(K1' K2) = O 

if K1' K2 = ~. Then, deflne a mapping ~~t On X by 

~t(r, D) = (rt, Dt), 

where (rt, Dt)t>0 denotes a solution of (5.1) with initial data (ro, Do) = (r, D). 

In this note, we will call a family of surfaces {nf(t)}t~0 compact if ~/(t) is a compact 

for each t ~ O, and smooth if nr(t) is a smooth hypersurface for each t ~: O. 

Theorem 5.1. Any smooth compact stationary surface is unstable. 

Outline of the proof. Define an order relation in X by 

(rl,D1) ~ (r2,D2) if D1 C D2 and Dl U rl C D2 U r2' 

Letting C be the group of translations and applying Main Theorem, we obtain this 

RemaTk 5.2. Giga and Yama-uchi [6], Ei and Yanagida [3] have shown the above 

result by using methods different from ours. Hpwever, unlike their methods which 

depend on linearization arguments or distant fLmction arguments (thus smoothness 

assumptions are essential), our method may be extendable to generalized solutions 
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of (5.1) if one is able to check condition (2) of Main Theorem holds for generalized 

solutions (which remains to be checked). 

Remark 5.3. With minor modiflcations, most of the results in Section 2 carry over 

to time-discrete systems. Thus the results in Theorems 3.1-5.1 can be extended 

to nonautonomous equations (equations that are periodic in t). For example, an 

analogy of Theoretn 5.1 holds for periodic solutions of 

V = f(n, Vn, t) (f is periodic in t). 
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