Layer potentials for a bounded domain with fractal boundary

Hisako Watanabe

Department of Mathematics, Ochanomizu University 2-1-1 Otsuka, Bunkyo-ku, Tokyo, Japan

Abstract

For a bounded domain with fractal boundary we define the double layer potentials of Hölder continuous functions and functions in a Besov space on the boundary and investigate the boundary behavior of the double layer potentials.

1. Introduction

Let D be a bounded domain in \mathbb{R}^d with fractal boundary. We say that a domain D has a fractal boundary if the Hausdorff dimension β of ∂D is greater than d-1. There are many Jordan domains which have fractal boundaries. A typical example is the von Koch snowflake in \mathbb{R}^2 . In \mathbb{R}^d $(d \geq 3)$ we can also construct many domains with fractal boundary using finite similitudes (cf. [Hu]).

We consider double layer potentials for these domains D. A double layer potential is an useful concept mathematically as well as physically. For example, it is well-known that the Dirichlet and Neumann problems for the Laplacian in a smooth domain can be solved by using double layer potentials. Let D be a bounded $C^{1,\alpha}$ -domain in \mathbb{R}^d . Recall that the double layer potential Φg of $g \in L^p(\partial D)$ is defined by

(1.1)
$$\Phi g(x) = -\int_{\partial D} \langle \nabla_y N(x-y), n_y \rangle g(y) d\sigma(y),$$

where N(x-y) is the Newton kernel and n_y is the unit outer normal to ∂D . Furthermore if g is a C^1 -function with compact support, then we see by the Green formula that

(1.2)
$$\Phi g(x) = \int_{\mathbb{R}^{d} \setminus \overline{D}} \langle \nabla_{y} g(y), \nabla_{y} N(x - y) \rangle dy$$

for $x \in D$ and

(1.3)
$$\Phi g(x) = -\int_{\mathcal{D}} \langle \nabla_y g(y), \nabla_y N(x-y) \rangle dy$$

for $x \in \mathbb{R}^d \setminus \overline{D}$.

On the other hand if D is a domain with fractal boundary, then the integral in (1.1) can not be considered. But the integrals in (1.2) and (1.3) may be defined for sufficiently smooth functions g on \mathbb{R}^d .

Typeset by AMS-TEX

J. Harrison and A. Norton introduced an abstract line integtal over a fractal curve in the plane in [HN1] and a surface integral over a fractal surface in \mathbb{R}^d in [HN]. In their theory the box dimension of the boundary plays an important role.

In [W] we considered double layer potentials for a bounded domain D in \mathbb{R}^d such that ∂D has the following property (u).

(u) There are a positive Radon measure μ on ∂D and positive real numbers β , γ , r_0 , b_1 , b_2 such that $d-1 \leq \gamma \leq \beta < d$ and

$$b_1 r^{\beta} \le \mu(B(z, r) \cap \partial D) \le b_2 r^{\gamma}$$

for all $z \in \partial D$ and all $r \leq r_0$, where B(z,r) stands for the open ball with center z and radius r in \mathbb{R}^d .

We also investigated the boundary behavior of those double layer potentials.

In this paper we will study the further boundary behavior of layer potentials for a bounded domain D in \mathbb{R}^d such that ∂D is a β -set $(d-1 \leq \beta < d)$. According to [JW] we say that that a closed set F is a β -set if there are a positive Radon measure μ on F and positive real numbers, r_0 , b_1 , b_2 such that

$$(1.4) b_1 r^{\beta} \le \mu(B(z, r) \cap F) \le b_2 r^{\beta}$$

for all $z \in F$ and all $r \leq r_0$.

We note that, if D is a bounded Lipschitz domain, then the boundary of D is a (d-1)-set with respect to the surface measure. Further if the boundary of D consists of finite self-similar sets, which satisfy the open set condition and whose similarlity dimension are β , then the boundary D is a β -set with respect to the β -dimensional Hausdorff measure (cf. [Hu]).

Under these conditions we will define the double layer potential of a function defined on ∂D . To do so, let $0 < \alpha \le 1$ and F be a closed subset of \mathbb{R}^d . We denote by $\Lambda_{\alpha}(F)$ the Banach space of all bounded α -Hölder continuous real-valued functions on F with norm

$$||f||_{\Lambda_{\alpha}(F)} = \sup\{|f(z)|: z \in F\} + \sup\{\frac{|f(z) - f(w)|}{|z - w|^{\alpha}}: z, w \in F, z \neq w\}.$$

In [S, Theorem 3 in Chapter 6] it is shown that there exists a linear bounded extension operator \mathcal{E}_0 from $\Lambda_{\alpha}(F)$ to $\Lambda_{\alpha}(\mathbb{R}^d)$ (cf. [S, Theorem 3 on p.174]). Multiplying $\mathcal{E}_0(f)$ by a fixed smooth function ϕ_0 such that $\phi_0 = 1$ on B(0, R) and supp $\phi_0 \subset B(0, 2R)$ we have

Theorem A. Let $0 < \alpha \le 1$ and F be a compact subset of \mathbb{R}^d satisfying $F \subset B(O, \frac{R}{2})$. Then there exists a bounded linear operator \mathcal{E} from $\Lambda_{\alpha}(F)$ to $\Lambda_{\alpha}(\mathbb{R}^d)$ such that supp $\mathcal{E}(f) \subset B(O, 2R)$, $\mathcal{E}(f) = f$ on F and the restriction of $\mathcal{E}(f)$ to the complement of F is a C^{∞} -function satisfying

$$|\nabla \mathcal{E}(f)(x)| \leq c \operatorname{dist}(x, F)^{\alpha - 1} ||f||_{\Lambda_{\alpha}(F)}, \ |\frac{\partial^{2} \mathcal{E}(f)}{\partial x_{i} \partial x_{k}}(x)| \leq c \operatorname{dist}(x, F)^{\alpha - 2} ||f||_{\Lambda_{\alpha}(F)}$$

for all $x \in \mathbb{R}^d \setminus F$, where c is a constant independent of x and f, and dist(x, A) stands for the distance of x from A.

Let $d \geq 2$ and $0 \leq \beta - (d-1) < \alpha < 1$. We define the double layer potential of $f \in \Lambda_{\alpha}(\partial D)$ by

(1.5)
$$\Phi f(x) = \int_{\mathbf{R}^d \setminus \overline{D}} \langle \nabla_y \mathcal{E}(f)(y), \nabla_y N(x-y) \rangle dy$$

for $x \in D$ and

(1.6)
$$\Phi f(x) = -\int_{D} \langle \nabla_{y} \mathcal{E}(f)(y), \nabla_{y} N(x-y) \rangle dy$$

for $x \in \mathbb{R}^d \setminus \overline{D}$, where

$$N(x - y) = \begin{cases} \frac{1}{\omega_d(d-2)|x-y|^{d-2}} & \text{if } d \ge 3\\ -\frac{3R}{2\pi} \log \frac{|x-y|}{3R} & \text{if } d = 2 \end{cases}$$

and ω_d stands for the surface area of the unit ball in \mathbb{R}^d .

We will prove the following theorem in §3.

Theorem 1. Suppose D is a bounded domain in \mathbb{R}^d $(d \geq 2)$ such that ∂D is a β -set. Furthermore, assume that $0 \leq \beta - (d-1) < \alpha < 1$. Then for every $f \in \Lambda_{\alpha}(\partial D)$ Φf is harmonic in $\mathbb{R}^d \setminus \partial D$ and for every $z \in \partial D$

$$\lim_{x \to z, x \in D} \Phi f(x) = K f(z) + \frac{f(z)}{2}$$

and

$$\lim_{x \to z, x \in \mathbf{R}^d \setminus \overline{D}} \Phi f(x) = K f(z) - \frac{f(z)}{2},$$

where K is a bounded operator from $\Lambda_{\alpha}(\partial D)$ to $\Lambda_{\alpha}(\partial D)$ defined by

(1.7)
$$Kf(z) = \frac{1}{2} \int_{\mathbb{R}^d \setminus \overline{D}} \langle \nabla_y \mathcal{E}(f)(y), \nabla_y N(z-y) \rangle dy - \frac{1}{2} \int_{D} \langle \nabla_y \mathcal{E}(f)(y), \nabla_y N(z-y) \rangle dy.$$

We next consider a Besov space on ∂D . More generally, let $p \geq 1$, $0 < \alpha \leq 1$ and F be a closed set satisfying (1.4). We denote by the space $\Lambda^p_{\alpha}(\mu)$ of all μ -measurable functions in $L^p(\mu)$ such that

$$\iint \frac{|f(x) - f(y)|^p}{|x - y|^{\beta + p\alpha}} d\mu(x) d\mu(y) < \infty,$$

and define the norm of a function $f \in \Lambda^p_{\alpha}(\mu)$ by

$$||f||_{p,\alpha} = \left(\int |f(x)|^p d\mu(x) + \int \int \frac{|f(x) - f(y)|^p}{|x - y|^{\beta + p\alpha}} d\mu(x) d\mu(y) \right)^{1/p}.$$

Let $1 \ge \alpha > \beta - (d-1) \ge 0$ and $f \in A^p_{\alpha}(\mu)$. Using an extention operator \mathcal{E} similar to that in [JW], we will define the double layer potential Φf of f by (1.5) and (1.6).

Furthermore let $z \in \partial D$ and τ be a positive real number. The nontangential approach regions at z are defined as follows:

$$\Gamma_{\tau}(z) = \{ x \in D : |x - z| < (1 + \tau) \operatorname{dist}(x, \partial D) \}$$

and

$$\Gamma_{\tau}^{e}(z) = \{x \in \mathbb{R}^d \setminus \overline{D} : |x - z| < (1 + \tau) \text{dist}(x, \partial D)\}.$$

In §4 we will sketch the following theorem.

Theorem 2. Suppose D is a bounded domain in \mathbb{R}^d $(d \geq 2)$ such that ∂D is a β -set, and assume that $0 \leq \beta - (d-1) < \alpha < 1$ and p > 1. Furthermore assume that $\Gamma_{\tau}(z) \cap B(z,r) \neq \text{set}$ and $\Gamma_{\tau}^{e}(z) \cap B(z,r) \neq \emptyset$ for μ -a.e. $z \in \partial D$ and for every $r \leq \epsilon_0$. Then for every $f \in \Lambda_{\alpha}^p(\mu)$ Φf is harmonic in $\mathbb{R}^d \setminus \partial D$ and

$$\lim_{x \to z, x \in \Gamma_{\tau}(\mu)} \Phi f(x) = K f(z) + \frac{f(z)}{2}$$

and

$$\lim_{x \to z, x \in \Gamma_{\tau}^{\epsilon}(\mu)} \Phi f(x) = K f(z) - \frac{f(z)}{2}$$

at μ -a.e. $z \in \partial D$.

2. Fundamental lemmas

Hearafter we assume that D is a bounded domain in \mathbb{R}^d such that ∂D is a β -set $(d-1 \leq \beta < d)$, and fix a positive Radon measure μ on ∂D satisfying (1.4) for $F = \partial D$. Further fix a positive real number R satisfying $\overline{D} \subset B(O, R/2)$. We may assume that (1.4) holds for $r_0 = 12R$ and $F = \partial D$. The following fundamental lemma was obtained in [W, Lemma 2.2] using a covering lemma.

Lemma B. Let $0 \le \beta - (d-1) < \alpha < 1$ and $R_0 > 0$. Then there exists a constant c such that

$$\int_{B(z,r)} dist(x,\partial D)^{\alpha-1} dx \le cr^{d-1+\alpha}$$

for all $z \in \partial D$ and all positive real number $r \leq R_0$.

Lemma 2.1. Let k > 0 and $0 \le \beta - (d-1) < \alpha < 1$.

(i) If $d + \alpha - 1 - k > 0$, then

$$\int_{B(z,r)} dist(x,\partial D)^{\alpha-1} |x-z|^{-k} dx \le cr^{d+\alpha-1-k}$$

for all $r \leq 4R$ and $z \in \partial D$.

(ii) If $d + \alpha - 1 - k < 0$, then

$$\int_{\mathbf{R}^d \setminus B(z,r)} dist(x,\partial D)^{\alpha-1} |x-z|^{-k} dx \le cr^{d+\alpha-1-k}$$

for all r > 0 and $z \in \partial D$.

Proof. (i) Set

$$F_n = \{ x \in B(z, r) : |x - z|^{-k} > 2^n \}$$

and $r_n = 2^{-n/k}$. On account of Lemma B we have

$$\int_{B(z,r)} \operatorname{dist}(x,\partial D)^{\alpha-1} |x-z|^{-k} dx \le \sum_{n=m}^{\infty} 2^n \int_{B(z,r_n)} \operatorname{dist}(x,\partial D)^{\alpha-1} dx$$

$$\le c_1 \sum_{n=m}^{\infty} 2^n r_n^{d-1+\alpha} \le c_1 \sum_{n=m}^{\infty} 2^{((k-d+1-\alpha)/k)n},$$

where m is the integer satisfying $r_m \ge r > r_{m+1}$. Since $k - d + 1 - \alpha < 0$, we have the conclusion (i).

(ii) Similarly we have

$$\int_{\mathbf{R}^d \setminus B(z,r)} \operatorname{dist}(x,\partial D)^{\alpha-1} |x-z|^{-k} dx$$

$$= \int_{(\mathbf{R}^d \setminus B(z,r)) \cap \overline{B(z,4R)}} + \int_{\mathbf{R}^d \setminus (B(z,r) \cup \overline{B(z,4R)})}$$

$$\leq c_2 \sum_{n=-\infty}^{l} 2^{((k-d+1-\alpha)/k)n} + c_3 \int_{|x-z|>4R} |x-z|^{\alpha-1-k} dx,$$

where l is the integer satisfying $r_l \le r < r_{l-1}$. Since $k - d + 1 - \alpha > 0$, we also have (ii).

Using Lemma 2.1, (i), we can show the following lemma (cf. [W, Lemma 2.4]).

Lemma 2.2. Let r > 0, $0 \le \beta - (d-1) < \alpha < 1$ and $d + \alpha - 1 - k > 0$. Then the function

$$x \mapsto \int_{B(O,r)} dist(y,\partial D)^{\alpha-1} |x-y|^{-k} dy$$

is bounded on \mathbb{R}^d .

3. Properties of double layer potentials

We first show that for $f \in \Lambda_{\alpha}(\partial D)$ the double layer potential Φf is defined in $\mathbb{R}^d \setminus \partial D$.

Lemma 3.1. Let $1 > \alpha > \beta - (d-1) \ge 0$ and $f \in \Lambda_{\alpha}(\partial D)$. Then the double layer potential Φf defined by (1.5) and (1.6) is harmonic in $\mathbb{R}^d \setminus \partial D$.

Proof. Let F be a compact subset of $\mathbb{R}^d \setminus \overline{D}$. Since Theore A yields

$$|\langle \nabla_y \mathcal{E}(f)(y), \nabla_y N(x-y) \rangle| \le c_1 ||f||_{\Lambda_{\alpha}(\partial D)} \operatorname{dist}(y, \partial D)^{\alpha-1} \operatorname{dist}(F, \overline{D})^{1-d}$$

and

$$|\langle \nabla_y \mathcal{E}(f)(y), \nabla_y \triangle_x N(x-y) \rangle| \le c_1 ||f||_{A_{\alpha}(\partial D)} \operatorname{dist}(y, \partial D)^{\alpha-1} \operatorname{dist}(F, \overline{D})^{-1-d}$$

for $x \in F$ and $y \in D$, we see by Lemma B that

$$\int_{D} \langle \nabla_{y} \mathcal{E}(f)(y), \nabla_{y} N(x-y) \rangle dy$$

converges for $x \in \mathbb{R}^d \setminus \overline{D}$ and Φf is harmonic in $\mathbb{R}^d \setminus \overline{D}$. Analogously we can show that Φf is harmonic in D.

Lemma 3.2 Let $0 \le \beta - (d-1) < \alpha < 1$. Then the operator K defined by (1.7) is bounded on $\Lambda_{\alpha}(\partial D)$.

Proof. For $f \in \Lambda_{\alpha}(\partial D)$ and $z \in \partial D$ we define

$$K_1 f(z) = \int_{\mathbf{R}^d \setminus \overline{D}} \langle \nabla_y \mathcal{E}(f)(y), \nabla_y N(z - y) \rangle dy$$

and

$$K_2 f(z) = -\int_D \langle \nabla_y \mathcal{E}(f)(y), \nabla_y N(z-y) \rangle dy.$$

To see that K is bounded, it suffices to show that K_j (j = 1, 2) are bounded. To do so, let $f \in \Lambda_{\alpha}(\partial D)$. Then we have, by Theorem A,

$$|K_{1}f(z)| \leq \int_{\mathbf{R}^{d}\setminus\overline{D}} |\nabla \mathcal{E}(f)(y)| |\nabla_{y}N(z-y)| dy$$

$$\leq c_{1} ||f||_{\Lambda_{\alpha}(\partial D)} \int_{B(0,2R)\setminus\overline{D}} \operatorname{dist}(y,\partial D)^{\alpha-1} |z-y|^{1-d} dy$$

$$\leq c_{1} ||f||_{\Lambda_{\alpha}(\partial D)} \int_{B(z,3R)\setminus\overline{D}} \operatorname{dist}(y,\partial D)^{\alpha-1} |z-y|^{1-d} dy.$$

Noting that $d-1+\alpha>d-1$ and using Lemma 2.1, we conclude that

$$|K_1 f(z)| \le c_2 ||f||_{A_{\alpha}(\partial D)} R^{\alpha}$$
 for every $z \in \partial D$.

Next, let $z, w \in \partial D$. We write

$$|K_1 f(z) - K_1 f(w)| \le \int_{\mathbf{R}^d \setminus \overline{D}} |\nabla \mathcal{E}(f)(y)| |\nabla_y N(z - y) - \nabla_y N(w - y)| dy$$
$$= \int_A + \int_B \equiv I_1(z, w) + I_2(z, w),$$

where $A = \{y \in B(O, 2R) \setminus \overline{D} : |z - y| \le 3|z - w|\}$ and $B = \{y \in B(O, 2R) \setminus \overline{D} : |z - y| > 3|z - w|\}.$

Take $\epsilon > 0$ satisfying $\alpha - \epsilon > 0$. On account of Theorem A and Lemma 2.1 we obtain

$$I_{1}(z,w) \leq c_{3} \|f\|_{\Lambda_{\alpha}(\partial D)} |z-w|^{\alpha-\epsilon}$$

$$\times \int_{A} \operatorname{dist}(y,\partial D)^{\alpha-1} \left(|z-y|^{1-d-\alpha+\epsilon} + |w-y|^{1-d-\alpha+\epsilon}\right) dy$$

$$\leq c_{3} \|f\|_{\Lambda_{\alpha}(\partial D)} |z-w|^{\alpha-\epsilon} \int_{|z-y|\leq 3|z-w|} \operatorname{dist}(y,\partial D)^{\alpha-1} |z-y|^{1-d-\alpha+\epsilon} dy$$

$$+ c_{3} \|f\|_{\Lambda_{\alpha}(\partial D)} |z-w|^{\alpha-\epsilon} \int_{|w-y|\leq 4|z-w|} \operatorname{dist}(y,\partial D)^{\alpha-1} |w-y|^{1-d-\alpha+\epsilon} dy$$

$$= c_{4} \|f\|_{\Lambda_{\alpha}(\partial D)} |z-w|^{\alpha}.$$

We next estimate $I_2(z, w)$. Using Theorem A again, we have

$$\begin{split} &I_{2}(z,w) \\ &\leq c_{5} \|f\|_{\Lambda_{\alpha}(\partial D)} |z-w| \int_{B} \operatorname{dist}(y,\partial D)^{\alpha-1} \left(|z-y|^{-d} + |w-y|^{-d} \right) dy \\ &\leq c_{5} \|f\|_{\Lambda_{\alpha}(\partial D)} |z-w| \int_{|z-y|>3|z-w|} \operatorname{dist}(y,\partial D)^{\alpha-1} |z-y|^{-d} dy \\ &+ \leq c_{5} \|f\|_{\Lambda_{\alpha}(\partial D)} |z-w| \int_{|z-y|>2|z-w|} \operatorname{dist}(y,\partial D)^{\alpha-1} |w-y|^{-d} dy, \end{split}$$

whence, together with Lemma 2.1,

$$I_2(z,w) \le c_6 ||f||_{\Lambda_{\alpha}(\partial D)} |z-w||z-w|^{\alpha-1} \le c_6 ||f||_{\Lambda_{\alpha}(\partial D)} |z-w|^{\alpha}.$$

Therefore we have

$$|K_1 f(z) - K_1 f(w)| \le c_7 ||f||_{A_{\alpha}(\partial D)} |z - w|^{\alpha}$$

for every $z, w \in \partial D$.

Analogusly we can estimate K_2f .

To prove our theorem, we use the Whitney decomposition. More precisely, let G be an open set in \mathbb{R}^d . A cube Q is called a k-cube if it is of the form

$$[l_1 2^{-k}, l_1 + 2^{-k}] \times \cdots \times [l_d 2^{-k}, l_d + 2^{-k}],$$

where k, l_1, \dots, l_d are integers. We denote by $\mathcal{W}_k(G)$ the family of all k-cubes in G and set $\mathcal{W}(G) = \sum_{k=-\infty}^{\infty} \mathcal{W}_k(G)$. The following theorem is well-known (cf. [S, Theorem 1 in Chapter 6]).

Theorem C. Let G be an open set in \mathbb{R}^d . Then there exists a family $\mathcal{V}(G) = \{Q_j\}$ of cubes in $\mathcal{W}(G)$ having the following properties:

- (i) $\sum_{i} Q_{j} = G$,
- (ii) int $Q_j \cap \text{ int } Q_k = \emptyset \ (j \neq k),$
- (iii) diam $Q_j \leq \text{dist}(Q_j, \mathbb{R}^d \setminus G) \leq 4 \text{diam } Q_j$, where int A and diam A stand for the interior of A and the diameter of A, respectively.

Lemma 3.3. Let $0 \le \beta - (d-1) < \alpha < 1$ and $f \in \Lambda_{\alpha}(\partial D)$. Then

(3.1)
$$\int_{\mathbf{R}^{d} \setminus \overline{D}} \langle \nabla \mathcal{E}(f)(y), \nabla_{y} N(x-y) \rangle dy$$
$$= -\int_{D} \langle \nabla \mathcal{E}(f)(y), \nabla_{y} N(x-y) \rangle dy + \mathcal{E}(f)(x)$$

for every $x \in \mathbb{R}^d$.

Proof. To show (3.1), let $x \in \mathbb{R}^d \setminus D$. We denote by $\mathcal{V}_k(D)$ the union of k-cubes in $\mathcal{V}(D)$ and set

$$A_n = \bigcup_{k=-\infty}^n \cup_{Q \in \mathcal{V}_k(D)} Q.$$

We take a family $\{v_m\}$ of mollifiers on \mathbb{R}^d such that supp $v_m \subset B(0, 1/m)$, and set $g_m = \mathcal{E}(f) * v_m$. Then g_m is a C^1 -function on \mathbb{R}^d . The Green formula yields, for a sufficient small number $\delta > 0$ and for a large number τ ,

$$(3.2)$$

$$\int_{B(O,r)\setminus(A_n\cup\overline{B(x,\delta)})} \langle \nabla g_m(y), \nabla_y N(x-y) \rangle dy$$

$$= \int_{|y|=r} g_m(y) \langle \nabla_y N(x-y), n_y \rangle d\sigma(y)$$

$$- \int_{\partial A_n} g_m(y) \langle \nabla_y N(x-y), n_y \rangle d\sigma(y) - \int_{|x-y|=\delta} g_m(y) \langle \nabla_y N(x-y), n_y \rangle d\sigma(y).$$

Using the Green formula again, we have

$$(3.3) - \int_{\partial A_n} g_m(y) \langle \nabla_y N(x-y), n_y \rangle d\sigma(y) = -\int_{\inf A_n} \langle \nabla g_m(y), \nabla_y N(x-y) \rangle dy.$$

As $r \to \infty$ and $\delta \to 0$, we deduce from (3.2) and (3.3)

$$\int_{\mathbf{R}\backslash A_{\mathbf{n}}} \langle \nabla g_{m}(y), \nabla_{y} N(x-y) \rangle dy = -\int_{\mathbf{int}\, A_{\mathbf{n}}} \langle \nabla g_{m}(y), \nabla_{y} N(x-y) \rangle dy + g_{m}(x)$$

As $n \to \infty$, we have

$$(3.4) \int_{\mathbf{R}^d \setminus D} \langle \nabla g_m(y), \nabla_y N(x-y) \rangle dy = -\int_D \langle \nabla g_m(y), \nabla_y N(x-y) \rangle dy + g_m(x).$$

We claim that

$$\int_{\mathbf{R}^d \setminus D} \langle \nabla g_m(y), \nabla_y N(x-y) \rangle dy \to \int_{\mathbf{R}^d \setminus D} \langle \nabla \mathcal{E}(f)(y), \nabla_y N(x-y) \rangle dy$$

as $m \to \infty$.

To show the claim we write

$$\int_{\mathbb{R}^d \setminus \overline{D}} |\nabla (g_m(y) - \mathcal{E}(f)(y))| |\nabla_y N(x - y)| dy$$

$$= \int_{\text{dist}(y,\partial D) \le 2/m} + \int_{\text{dist}(y,\partial D) > 2/m} \equiv I_1(x) + I_2(x)$$

and

$$I_{1}(x) \leq \int_{\mathbf{R}^{d} \setminus \overline{D}} |\nabla(g_{m}(y))| |\nabla_{y} N(x - y)| dy$$
$$+ \int_{\mathbf{R}^{d} \setminus \overline{D}} |\nabla \mathcal{E}(f)(y)| |\nabla_{y} N(x - y)| dy \equiv I_{11}(x) + I_{12}(x).$$

We first estimate $I_{11}(x)$. We choose $\epsilon > 0$ satisfying $\alpha - \epsilon > \beta - (d-1)$. Noting that

$$|\nabla_{y}g_{m}(y)| \leq c_{1}||f||_{\Lambda_{\alpha}(\partial D)} \int \operatorname{dist}(y-z,\partial D)^{\alpha-1}v_{m}(z)dz$$

$$\leq c_{1}||f||_{\Lambda_{\alpha}(\partial D)} \int_{B(w,3/m)} \operatorname{dist}(u,\partial D)^{\alpha-1}v_{m}(y-u)du,$$

where w is a point on ∂D such that $\operatorname{dist}(y, \partial D) = |y - w|$. Hence, together with Lemmas B and 2.2,

$$I_{11}(x) \leq c_2 \|f\|_{\Lambda_{\alpha}(\partial D)} \left(\frac{3}{m}\right)^{\alpha - 1} \int_{\operatorname{dist}(y, \partial D) \leq 2/m} |x - y|^{1 - d} dy$$

$$\leq c_3 \|f\|_{\Lambda_{\alpha}(\partial D)} m^{-\epsilon} \int_{B(O, R + 1)} \operatorname{dist}(y, \partial D)^{\alpha - 1 - \epsilon} |x - y|^{1 - d} dy$$

$$\leq c_4 \|f\|_{\Lambda_{\alpha}(\partial D)} m^{-\epsilon}.$$

Using Lemma 2.2 again, we also have

$$I_{12}(x) \le c_5 ||f||_{A_{\alpha}(\partial D)} m^{-\epsilon} \int_{B(O,R+1)} \operatorname{dist}(y,\partial D)^{\alpha-1-\epsilon} |x-y|^{1-d} dy$$

$$\le c_6 ||f||_{A_{\alpha}(\partial D)} m^{-\epsilon}.$$

Thus we see that $I_1(x) \to 0$ as $m \to \infty$.

We next estimate $I_2(x)$. To do so, suppose $\operatorname{dist}(y, \partial D) > 2/m$. Noting that

$$\left|\frac{\partial^{2} \mathcal{E}(f)}{\partial y_{i} \partial y_{k}}(y)\right| \leq c_{7} \|f\|_{\Lambda_{\alpha}(\partial D)} \operatorname{dist}(y, \partial D)^{\alpha - 2}$$

by Lemma A, we have

$$\begin{split} & \left| \frac{\partial g_{m}}{\partial y_{j}}(y) - \frac{\partial \mathcal{E}(f)}{\partial y_{j}}(y) \right| \\ & \leq c_{8} \|f\|_{\Lambda_{\alpha}(\partial D)} \int \left| \frac{\partial \mathcal{E}(f)}{\partial y_{j}}(y-z) - \frac{\partial \mathcal{E}(f)}{\partial y_{j}}(y) \right| v_{m}(z) dz \\ & \leq c_{9} \|f\|_{\Lambda_{\alpha}(\partial D)} \frac{1}{m} \mathrm{dist}(y, \partial D)^{\alpha-2}, \end{split}$$

whence, by Lemma 2.2,

$$I_{2}(x) \leq c_{10} \|f\|_{\Lambda_{\alpha}(\partial D)} \frac{1}{m}$$

$$\times \int_{\{\operatorname{dist}(y,\partial D)>2/m\}\cap B(O,2R+1)} \operatorname{dist}(y,\partial D)^{\alpha-2} |x-y|^{1-d} dy$$

$$\leq c_{11} \|f\|_{\Lambda_{\alpha}(\partial D)} m^{-\epsilon} \int_{B(O,2R+1)} \operatorname{dist}(y,\partial D)^{\alpha-1-\epsilon} |x-y|^{1-d} dy$$

$$\leq c_{12} \|f\|_{\Lambda_{\alpha}(\partial D)} m^{-\epsilon}.$$

Therefore we also see that $I_2(x) \to 0$ as $m \to \infty$. Thus we see that the claim is true.

Similarly we can show that

$$\int_{D} \langle \nabla g_{m}(y), \nabla_{y} N(x-y) \rangle dy \to \int_{D} \langle \nabla \mathcal{E}(f)(y), \nabla_{y} N(x-y) \rangle dy$$

as $m \to \infty$.

As $m \to \infty$ in (3.4), we obtain (3.1) for every $x \in \mathbb{R}^d \setminus D$.

We can show that (3.1) holds for every $x \in D$, by using $\mathcal{V}(\mathbb{R}^d \setminus \overline{D})$. we can show (3.1) for every $x \in D$.

Proof of Theorem 1. Let $f \in \Lambda_{\alpha}(\partial D)$. In [W, Theorem] we proved that

$$\lim_{x \to z, x \in D} \Phi f(x) = \int_{\mathbf{R}^d \setminus \overline{D}} \langle \nabla \mathcal{E}(f)(y), \nabla_y N(z - y) \rangle dy$$

and

$$\lim_{x \to z, x \in \mathbb{R}^d \setminus \overline{D}} \Phi f(x) = -\int_{D} \langle \nabla \mathcal{E}(f)(y), \nabla_y N(z - y) \rangle dy$$

for every $z \in \partial D$. Using Lemma 3.3 we see that

$$\int_{\mathbf{R}^d \backslash \overline{D}} \langle \nabla \mathcal{E}(f)(y), \nabla_y N(z-y) \rangle dy = Kf(z) + \frac{f(z)}{2}$$

and

$$-\int_{D}\langle\nabla\mathcal{E}(f)(y),\nabla_{y}N(z-y)\rangle dy=Kf(z)-\frac{f(z)}{2}.$$

Therefore we have the conclusion.

4. Layer potentials of functions in a Besov space

Let $p \ge 1$ and μ be a measure satisfying (1.4). To extend functions in $L^p(\mu)$ to be functions on \mathbb{R}^d , we use the Whitney decomposition. Fix a positive real number η satisfying $\eta < 1/4$ and choose a C^{∞} -function ϕ on \mathbb{R}^d such that

$$\phi = 1$$
 on Q_0 , supp $\phi \subset (1 + \eta)Q_0$, $0 \le \phi \le 1$,

where Q_0 is the closed cube of unit length centered at origin and $(1+\eta)Q_0$ stands for the set $\{(1+\eta)x : x \in Q_0\}$.

We simply denote by $\mathcal{V} = \{Q_j\}$ the family $\mathcal{V}(\mathbf{R}^d \setminus \partial D)$. Further let $q^{(j)}$, l_j be the center of Q_j and the common length of its side, respectively. For each j pick a point $a^{(j)} \in \partial D$ satisfying $\operatorname{dist}(\partial D, Q_j) = \operatorname{dist}(a^{(j)}, Q_j)$ and fix it. Set

$$t(x) = \sum_{j} \phi(\frac{x - q^{(j)}}{l_j})$$
 and $\phi_j^*(x) = \frac{\phi((x - q^{(j)})/l_j)}{t(x)}$.

We define, for $f \in L^p(\mu)$,

$$\mathcal{E}_{0}(f)(x) = \sum_{j} \frac{1}{\mu(B(a^{(j)}, \eta_{j}))} \left(\int_{B(a^{(j)}, \eta l_{j})} f(x) d\mu(x) \right) \phi_{j}^{*}(x)$$

if $x \in \mathbb{R}^d \setminus \partial D$ and $\mathcal{E}_0(f)(x) = f(x)$ if $x \in \partial D$. Choose a C^{∞} -function ϕ_0 such that

$$\phi_0 = 1$$
 on $B(O, R)$, supp $\phi_0 \subset B(O, 2R)$, $0 \le \phi_0 \le 1$

and define

$$\mathcal{E}(f)(x) = \mathcal{E}_0(f)(x)\phi_0(x).$$

Then $\mathcal{E}(f)$ is a C^{∞} -function in $\mathbb{R}^d \setminus \partial D$. Furthermore $\mathcal{E}(f)$ has following property.

Lemma 4.1. Let p > 1, $1 > \alpha > 0$, $\delta \in \mathbb{R}^d$ and $f \in \Lambda^p_{\alpha}(\mu)$. If $p(\alpha - 1) + d - \beta + p\delta > 0$, then

$$\int_{\mathbf{R}^d \setminus \partial D} |\nabla \mathcal{E}(f)(y)|^p \operatorname{dist}(y, \partial D)^{\delta p} dy \le c \|f\|_{p, \alpha}^p.$$

Using this lemma, we can show the following two lemmas.

Lemma 4.2. Let p > 1 and $1 > \alpha > \beta - (d-1) \ge 0$ and $f \in \Lambda^p_{\alpha}(\mu)$. Then K is a bounded operator from $\Lambda^p_{\alpha}(\mu)$ to $L^p(\mu)$.

Lemma 4.3 Let p > 1 and $1 > \alpha > \beta - (d-1) \ge 0$ and $f \in \Lambda^p_{\alpha}(\mu)$. Define, for $z \in \partial D$,

$$(\phi f)^*(z) = \sup\{|\Phi f(x)| : x \in \Gamma_{\tau}(z) \cap B(z, e_0)\}$$

and

$$(\phi f)^{**}(z) = \sup\{|\Phi f(x)| : x \in \Gamma_{\tau}^{e}(z) \cap B(z, e_0)\}.$$

Then

$$\|(\Phi f)^*\|_p \le c\|f\|_{p,\alpha}$$
 and $\|(\Phi f)^{**}\|_p \le c\|f\|_{p,\alpha}$.

On the other hand, by constucting a mollifier on ∂D , we see that the set of all Lipschitz functions on ∂D is dense in $\Lambda^p_{\alpha}(\mu)$. So, using Theorem 1, Lemma 4.2 and Lemma 4.3, we can prove Theorem 2.

References

- [HN1] Harrison, J., Norton, A., Geometric integration on fractal curves in the plane. Indiana Univ. Math. J. 40 (1991), 567-594.
- [HN2] The Gauss-Green theorem for fractal boundaries. Duke Math. J. 67 (1992), 575-588.
- [Hu] Hutchinson, J.E., Fractals and selfsimilarity. Indiana Univ. Math. J. 30 (1981), 713-747.
- [JW] Jonsson, A., Wallin, H., A Whitney extension theorem in p and Besov spaces, Ann. Inst. Fourier, Grenoble 28, 1 (1978), 139-192.
- [S] Stein, E.M., Singular integrals and differentiability properties of functions. Princeton University Press, Princeton-New Jersey, 1970.
- [W] Watanabe, H., The double layer potentials for a bounded domain with fractal boundary. Potential theory—ICPT94, 464-471, de Gruyter, Berlin-New York, 1996.