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Abstract

For a bounded domain with fractal boundary we define the double layer potentials
of Hélder continuous functions and functions in a Besov space on the boundary and
investigate the boundary behavior of the double layer potentials.

1. Introduction

Let D be a bounded domain in R¢ with fractal boundary. We say that a domain
D has a fractal boundary if the Hausdorff dimension § of 8D is greater than
d — 1. There are many Jordan domains which have fractal boundaries. A typical
example is the von Koch snowflake in R?. In R? (d > 3) we can also construct
many domains with fractal boundary using finite similitudes (cf. [Hul).

We consider double layer potentials for these domains D. A double layer po-
tential is an useful concept mathematically as well as physically. For example,
it is well-known that the Dirichlet and Neumann problems for the Laplacian in a
smooth domain can be solved by using double layer potentials. Let D be a bounded
CYe-domain in R%. Recall that the double layer potential ®g of g € LP(8D) is
defined by

(1.1) Sg(z) = - /a (T = ), m)au)do o),

where N(z — y) is the Newton kernel and n, is the unit outer normal to 9D.
Furthermore if g is a Cl-function with compact support, then we see by the Green
formula that

(12) 29fe)= [ (9000, TN~ )y

for z € D and
(13) Ba(e) = = [ (V,500), Vo @ - )iy
forz € R4\ D.
On the other hand if D is a domain with fractal boundary, then the integral in

(1.1) can not be considered. But the integrals in (1.2) and (1.3) may be defined
for sufficiently smooth functions g on R<.
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J. Harrison and A.Norton introduced an abstract line integtal over a fractal
curve in the plane in [HN1] and a surface integral over a fractal surface in R? in
[HN]. In their theory the box dimension of the boundary plays an important role.

In [W] we considered double layer potentials for a bounded domain D in R
such that D has the following property (u).

(u) There are a positive Radon measure 1 on 8D and positive real numbers 3,
v, Tg, b1, bz such that d — 1 <7 < 8 < d and

bir? < w(B(z,7) N D) < byr?

for all z € D and all r < rg, where B(z,7) stands for the open ball with center z
and radius r in R
We also investigated the boundary behavior of those double layer potentials.
In this paper we will study the further boundary behavior of layer potentials
for a bounded domain D in R¢ such that 9D is a F-set (d—1 < B < d). According
to [JW] we say that that a closed set F' is a (-sct if there are a positive Radon
measure g on F and positive real numbers, 79, b1, bz such that

(1.4) birP < wB(z,r)NF) < byrP

forall z € F and all 7 < 7.

We note that, if D is a bounded Lipschitz domain, then the boundary of D is
a (d — 1)-set w1th respect to the surface measure. Further if the boundary of D
consists of finite self-similar sets, which satisfy the open set condition and whose
similarlity dimension are G, then the boundary D is a (-set with respect to the
F-dimensional Hausdorff measure (cf. [Hul).

Under these conditions we will define the double layer potential of a function
defined on 8D. To do so, let 0 < @ < 1 and F be a closed subset of R%. We
denote by A, (F') the Banach space of all bounded a-Holder continuous real-valued
functions on £ with norm

{If fw)l

—w|e

£l 4,5y = sup{|f(2)|: 2 € F} +sup Dz, wE F,z #w}.

In [S, Theorem 3 in Chapter 6] it is shown that there exists a linear bounded
extension operator & from A4(F) to AL(R?%) (cf. [S, Theorem 3 on p.174)]).
Multiplying & (f) by a fixed smooth function ¢y such that ¢g = 1 on B(0, R) and
supp ¢g9 C B(0,2R) we have

Theorem A. Let 0 < o < 1 and F be a compact subset of R? satisfying F C
B(O, 122-) Then there ezists a bounded linear operator £ from Ao(F) to Aq(R?)
such that supp £(f) C B(O,2R), E(f) = f on F and the restriction of E(f) to the
complement of F is a C°-function satisfying

g*E(f . .
axjazi(x)l < cdist(z, F)*2|| fll o, (5)

IVE(F)(@)] < edist(z, F)* [ fllau ), |
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for all z € R*\ F, where c is a constant independent of z and f, and dist(z, A)
stands for the distance of ¢ from A.

Letd>2and 0 < —(d—1) < a < 1. We define the double layer potential of
fe Aa(aD) by

(15) 2@ = [ (TEDW), TN @ = vy
for z € D and

(1.6) 21() = = [ (V£ VuN (e - )iy
for z € R4\ D, where

1 .
Nz —y) = | m@ e d20
—3B1og l22ul ifd=2
and wy stands for the surface area of the unit ball in RY.
We will prove the following theorem in §3.

Theorem 1. Suppose D is a bounded domain in R¢ (d > 2) such that 8D is
a B-set. Furthermore, assume that 0 < 0 —{(d—1) < a < 1. Then for every
f € A4(OD) ®f is harmonic in R*\ 9D and for every z € 8D

and
lim _ ®f(z) = Kf(2) — f(_“ﬁ,
z—3z,z€RI\D 2

where K is a bounded operator from Aq(90D) to Aa(0D) defined by

(17) K5G) =5 [ (T, VN e =iy

-5 [ TN, VN = )y

We next consider a Besov space on 8D. More generally, let p > 1,0 < a <1
and F be a closed set satisfying (1.4). We denote by the space AP () of all u-
measurable functions in LP(u) such that

/ |f(z) = f(y)IP

o g (E)au() < oo
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and define the norm of a function f € AZ(u) by

W= ([15pante) + [ HDIOP g 000) ™

|.’E —_ ylﬁ"l‘ﬂa

Let 1 >a>pf—(d—1) > 0and f € AZ(u). Using an extention operator £
similar to that in [JW], we will define the double layer potential ® f of f by (1.5)
and (1.6).

Furthermore let 2z € 9D and 7 be a positive real number. The nontangential
approach regions at z are defined as follows:

I(z)={zeD:|z—2z <(1+7)dist(z,0D)}
and
Ié(2)={z € R*\D: |z — 2| < (1 +7)dist (x,0D)}.
In §4 we will sketch the following theorem.

Theorem 2. Suppose D is a bounded domain in R? (d > 2) such that 8D is a
B-set, and assume that 0 < S —(d—1) < a <1 and p > 1. Furthermore assume
that I (z2) N B(z,7) # set and ['E{2)NB(z,7) # 0 forpn-a.e. z € 8D and for every
r < €. Then for every f € AL(p) ®f is harmonic in R\ 9D and

preiB () = K (2) ng)
and

at p-a.e. z € 8D.

2. Fundamental lemmas

Hearafter we assume that D is a bounded domain in R such that 9D is a S-set
(d—1 < B < d), and fix a positive Radon measure g on 8D satisfying (1.4) for
F = 8D. Further fix a positive recal number R satisfying D C B(O, R/2). We may
assume that (1.4) holds for ro = 12R and F = dD. The following fundamental
lemma was obtained in [W, Lemma 2.2] using a covering lemma.

Lemma B. Let 0 < f—(d—1) < a <1 and Ry > 0. Then there exists a constant
¢ such that
/ dist(z,0D)* tdz < cri=ite
B(z,r)

for all z € 8D and all positive real number r < Ry.
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Lemma 2.1. Letk >0 and 0<f—-(d—1) <a<]l.
(i) Ifd+a—1—k>0, then

/ dist(z, dD)* Yz — 2| *dz < crdta-i=k
B(z,r)

for allt < 4R and z € 9D.
(i) Ifd+a—1—k <0, then

/ dist(z,0D)* |z — 2| ¥dz < crdtoi=k
RI\B(z,r)

forallr >0 and z € 9D.
Proof. (i) Set
F,={z € B(z,7):|z—z7F > 2"}

and 7, = 27"/ On account of Lemma B we have

/ dist(z, dD)* Yz — 2| 7Fdz < Z 2”/ dist(z,0D)* tdz
B(z,r) B(z,rn)

n=m

oo oo
S. 1 Z 2717,;'11—1-{-0 S ¢y Z 2((k—d+l—a)/k)n’

n=m n=m

where m is the integer satisfying r,, > 7 > rpy1. Since k—d+1—a < 0, we have
the conclusion (i).
(i1) Similarly we have

/ dist(z, dD)* Yz — 2| *dx
R B(z,r)

R Aypa—
KR“\B(z,r))ﬂB(zAR) R4\(B(z,r)UB(z,4R))

!
<o S 2((k—d+1—a)/k)n+C3/ |z — 2[o~1kdg,

n=-—o00 lz—z|>4R

where [ is the integer satisfying r; < r < 7_;. Since k—d+ 1 —a > 0, we also
have (ii).
O

Using Lemma 2.1, (i), we can show the following lemma (cf. [W, Lemma 2.4]).

Lemma 2.2. Letr >0,0<f0~-(d—-1)<a<landd+a—1—k>0. Then the
function

T - dist(y, 0D)*Hz — y|*dy
B(O,r)

is bounded on R,
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3. Properties of double layer potentials

We first show that for f € A,(0D) the double layer potential @ f is defined in
R\ 0D.

Lemma 3.1. Let1 > a > f—(d—1) >0 and f € A,(OD). Then the double
layer potential @ f defined by (1.5) and (1.6) is harmonic in R\ 9D.

Proof. Let F be a compact subset of R?\ D. Since Theore A yields
(V€ (W), VyN (z = y))| < cillflla, opydist(y, 8D)* dist (F, D)' ¢
and
(VyE(F) (W), VyloN(z — y))| < arllfll 4. (apydist(y, 0D)* dist (F, ﬁ)—l_d
for z € F and y € D, we see by Lemma B that

| [0, 9, e = ey

converges for £ € R¢\ D and @ f is harmonic in R\ D.
Analogously we can show that & f is harmonic in D. 0O

Lemma 3.2 Let 0 < — (d— 1) < a < 1. Then the operator K defined by (1.7)
is bounded on A4(9D).

Proof. For f € Ao(0D) and z € 9D we define
K07 = || (T80, Vi )y
RAD

and

Kol () = = [ (9,8(0)0), 9,V (z =)

To see that K is bounded, it suffices to show that K; (7 = 1, 2) are bounded. To
do so, let f € A4(0D). Then we have, by Theorem A,

KGOS [ VDTN~ iy

< cillfllaqapy /

dist(y, 0D)* "z —y|'~dy
B(0,2R)\D .

< allflla.ep) / dist(y,0D)* ™z — y|'~dy.

B(z,3R)\D
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Noting that d — 1 4+ a > d — 1 and using Lemma 2.1, we conclude that
{Klf(z)| < Cz”f”Aa(aD)Ra for every z € aD.

Next, let 2, w € 0D. We write

I&ﬂd—KJWN</ CIVEN NIV N(z = 3) — VN (w — y)ldy

/ / (z,w) + L(z,w),

where A = {y € B(O,2R)\ D : |z —y| <3|z —w|} and B = {y € B(O,2R)\ D :
|z y| > 3z — w).

Take € > 0 satisfying a — ¢ > 0. On account of Theorem A and Lemma 2.1 we
obtain

IQ—E

Ii(z,w) < a3l flla,apylz —w

x / dist (y’ aD)a—l (Iz _ yll—d—-a-}-e + |w _ y|1—d—a+e) dy
A

< &sllfllaaopylz — w]** / dist(y, 0D)*~ |z — y|'~doFedy
Je—y|<3|z—w]|

+ 3l fll aopy |2 — w|* ¢ / dist(y, 9D) w — y| ~F ey
|w—y|<4|z—w]| .

= cal| fll A 2y 12 — w]*.
We next estimate Ip(z,w). Using Theorem A again, we have
I (2,w)

SCﬂHMAmmz—th&%WﬁDV”(V—M‘”Hw—yrﬂdy

< esllflla,opylz — wl dist(y, 0D)*" |z — y|~4dy
|z—y|>3]|z~w|

+ < csll flla, (apylz — w] : dist(y, 0D)* ! |w — y|~4dy,
lz=y|>2|z—w]|

whence, together with Lemma 2.1,

L(z,w) < ol fllaaiamylz = wllz = w]*™ < coll fll 4, o) |2 = w|*

Therefore we have

| K1 f(2) = K1 f(w)] < crll fllaa oyl — w|®

for every z, w € 9D.
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Analogusly we can estimate K5 f.
8]

To prove our theorem, we use the Whitney decomposition. More precisely, let
G be an open set in R4, A cube @ is called a k-cube if it is of the form

(275 + 278 x - x [la27% 1 + 275,

where k, 1, --- , 14 are integers. We denote by Wi (G) the family of all k-cubes in
G and set W(G) = Y7o _ . Wk(G). The following theorem is well-known (cf. [S,
Theorem 1 in Chapter 6]).

Theorem C. Let G be an open set in R%. Then there ezists a family V(G) = {Q,}
of cubes in W(G) having the following properties:

(i) Ej Q; =G,

(ii) int Q;N int Qr = 0 (j # k),

(iii) diam Q; < dist (Q;, R*\ G) <4diam Q;,

where int A and diam A stand for the interior of A and the diameter of A, respec-
tively.

Lemma 3.3. Let0<f—(d—1)<a< 1l and f € Au(0D). Then

(3.1 | (VE0) TN - o))y

RI\D

= - | Ve, TV e = vy + () )
for every z 5

Proof. To show (3.1), let z € R\ D. We denote by V(D) the union of k-cubes
in V(D) and set

An = Uia_oo Ugevi(p) @-

We take a family {v,,} of mollifiers on R? such that supp v., C B(0,1/m), and
set gm = E(f) * vm. Then g, is a Cl-function on R¢. The Green formula yields,
for a sufficient small number § > 0 and for a large number 7,

(3.2)

/  (Vgm(), VyN(z — v))dy
B(O,r)\(AnUB(z,8))

= | m@)(TuN ) m)iot)
- / Gm (YU VyN(z — y),ny)do(y) — / IGm(YUVyN(z —y), ny)do(y).
OAn . |z—

yl=4
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Using the Green formula again, we have

(3.3) —/aA gm(Y){(VyN(z — y),ny)do(y) =—/M (Vgm(y), VyN(z — y))dy.

n

As T — o0 and § — 0, we deduce from (3.2) and (3.3)

/ (Vam(y), VyN(z — y))dy = —/ (Vam(y), VyN(z = y))dy + gm(z)
R\An

int A,

As n — o0, we have

(3.4) / (Vam(y), VyN(z ~ y))dy = —/ (Vgm(y), VyN(z — y))dy + gm(z).
RI\D D .
We claim that

/ (Vom®), VyN(@ —p))dy = [ (VE()), Vol (z - y))dy
R\D R4\D

as m — o0.
To show the claim we write

[V (gm(y) = ELYINIVyN(z — y)|dy

T

RI\D

dist(y,0D)<2/m dist(y,0D)>2/m

and

B@ < [ VoIV N -l

+ / IVEH@NIVoN (@ — y)ldy = Ly (2) + La(2).
RI\D

We first estimate I;;(z). We choose € > 0 satisfying o — ¢ > § — (d — 1). Noting
that

IV, 9m(@)] < 1ll Fl o 00 / dist(y — z,0D)* v,u(z)dz

< aliflla.on) / dist(u, 8D)* v, (y — u)du,
B(w,3/m)

where w is a point on D such that dist(y, 0D) = |y — w|. Hence, together with
Lemmas B and 2.2,

3 a—1 _
Ii(e) < ol flla o) (=) / & — o]~ dy
m dist(y,0D)<2/m
< Ca“f”m(amﬂt“/ dist(y, dD)*" ¢z — y|*~ddy
B(O,R+1)

< cqllflla, (opym™¢.

41



10

Using Lemma 2.2 again, we also have

Iiz(z) < CSHfHAa(aD)m_E/ dist(y, 0D)* ' ¢|z — y|'dy
B(O,R+1)

< sl flla,apym™¢.

Thus we see that I(z) — 0 as m — oo.
We next estimate Iz(z). To do so, suppose dist(y, 8D) > 2/m. Noting that

9%e(f)
0y;9ys

W) < erll Flla, oy dist(y, 8D) >

by Lemma A, we have

1T ) - 25

)l

dy;

g€
< eolflaomy [ 1258 ¢ 2y - U 1 ()
6:‘/] 33/]

1 . ae
< C9||f”Aa(aD)Ed15t(y> oD)>2,

whence, by Lemma 2.2,

1
I3(z) < eroll fllaacomy

X / dist(y, 9D)* ?|z — y|* ~4dy
{dist(y,0D)>2/m}NB(0,2R+1)

< CH“fHAa(aD)m"E/ v dist(y, 9D)* 1|z — y|'~4dy
B(O,2R+1)

< el fllag copym ™

Therefore we also see that Ir(z) — 0 as m — oo. Thus we see that the claim is
true.
Similarly we can show that

/ (Vgm(¥), Vo N (& — y))dy - / (VE(F) (W), VyN(z —y))dy
D D

as m — co.

As m — oo in (3.4), we obtain (3.1) for every z € R4\ D.

We can show that (3.1) holds for every z € D, by using V(R4 \ D). we can
show (3.1) for every z € D. O

Proof of Theorem 1. Let f € Aq(9D). In [W, Theorem] we proved that

lim ®f(z)= /;{d\5<vg(f)(y), VyN(z —y))dy

z—rz,xED
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and

lim | 87(2) = = [ (VE(N)L TV - 1)y

z—+z,2€R4\D

for every z € 9D. Using Lemma 3.3 we sece that

/ (VE()(), VyN(z —y))dy = K f(2) + f(2z)
RI\D

and
- [ Ve, 91~ vy = K1) - L2,

Therefore we have the conclusion.

4. Layer potentials of functions in a Besov space

Let p > 1 and p be a measure satisfying (1.4). To extend functions in LP(x) to be
functions on R9, we use the Whitney decomposition. Fix a positive real number
7 satisfying 7 < 1/4 and choose a C*®-function ¢ on R? such that

¢=1o0nQo, supppC (14+7)Qo, 0L ¢ <1,

where Qg is the closed cube of unit length centered at origin and (1 +7)Qp stands
for the set {(1+n)z :z € Qo}.

We simply denote by V = {Q;} the family V(R?\ 8D). Further let q\9), {; be
the center of @; and the common length of its side, respectively. For each j pick
a point al9) € 9D satisfying dist(0D, Q;) = dist(al?), Q;) and fix it. Set

z— o9 o — a1
t(z)=Z¢( qu ) and qs;(m):ﬂ(_t(_‘i_)_l/iﬁ_

We define, for f € LP(u),

1 .
E(f)(z) = Z m </B(a(i),nl,-) f(m)dﬁt('li)> d)j(m)

J

ifz € R*\ 8D and &(f)(z) = f(z) if z € &D. Choose a C*-function ¢y such
that

¢o =1 on B(O,R), supp¢o C B(O,2R), 0<¢p <1
and define
E(f)(z) = Eo(f)(z)do(z).

Then £(f) is a C*®-function in R4\ dD. Furthermore £(f) has following property.
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Lemma4.1. Letp > 1,1>a>0,6 € R? and f € AR (1). Ifp(a—1)+d—LB+ps >
0, then

/ VE(7)()[P dist(y, @D)*?dy < c|| |12
R4\OD '

Using this lemma, we can show the following two lemmas.

Lemma 4.2. Letp>1landl>a>F—(d—1) >0 and f € AL(n). Then K is
a bounded operator from AP (u) to LP(u).

Lemma 4.3 Let p>land 1>a>B—(d—1)>0 and f € AE(u). Define, for
z € 0D,

(8f)"(2) = sup{[|2f(z)| : = € I':(2) N B(2,e)}
and
(¢f)"*(z) =sup{|®f(z)|: z € I'¢(z) N B(z,ep)}.
Then
(@) Nlp < clifllpa and [[(2F)7lp < cllfllpa

On the other hand, by constucting a mollifier on 9D, we see that the set of all
Lipschitz functions on 8D is dense in AZ(u). So, using Theorem 1, Lemma 4.2
and Lemma 4.3, we can prove Theorem 2.
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