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ABSTRACT
We investigate the topological property of invariant sets with respect to a family of functions

by using the quotient space of infinite sequences. We give some results concerning the number
of end points.

§1. Introduction

For a family of contraction functions { f1,..., fm }(m > 2) on a complete metric

space, there is an invariant set K [3] satisfying the following
K= fi(K)U...U fu(K).

M. Hata [2] investigated the topological property of the invariant set K and gave
some results concerning the number of end points. Consider the set E(“) of infinite
sequences, where E = {1,2,...,m}. Then there is a map 3 of E‘“) onto K such
that ¥(z12,...) = limp oo fe, fey -+« fe, (K) [3]. The space E“) with product
topology is totally disconnected and perfect. If ¢ is one to one, then the set K is
also totally disconnected and perfect [e.g. the Cantor set]. If % is not one to one,
then the topology of K shows various aspects and K is considered to be isomor-
phic to the quotient space induced by the equivalence relation ~ on E®). The
topology of the quotient space has been studied by some people. A. Kameyama [4]
studied the topology of the quotient space E()/_ and considered the condition
that E(“)/. is connected or E)/., is metrizable. C.Bandt and K.Keller [1] also
studied the topology of the quotient space and considered connectivity and rami-

fication properties. In [5], we investigated the topological property of the quotient
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space in case §( E) = 2 and examined the number of end points. In this paper, we
shall investigate the topological property of E(«)/_ for the case that the number
of F is any finite number and give some results concerning the number of end

points. In §4, we shall show some examples.

§2. The topology of the quotient space

Form > 2, let E = {1,2,...,m} and E(“) be the set of infinite sequences from
E. Let E(™ be the set of sequences from E of length n for n € N, E(®) be the
empty set and E™) be the set of finite sequences from E, i.e. E® = U E™,
For n € N U {0}, let the map P, : E(“) — E™ be the projection such as

P,z =z123...7n, where 7 = z124... € B,

Forse Eand z =2129..., Yy = y192... € B, let
8T = ST1Z7 ... k
(Ppz)y = 2122 .. Tny1y2 - .- -
Let the map o : E(“) — E) be a shift operator, i.e.

o(z122...) = T273. ..

An equivalence relation ~ on E(“ is called to be invariant if the following (1) and
(2) are satisfied:
(1) ¢ ~ y implies sz ~ sy (Vs € E)
(2) sz ~ sy implies z ~ y (Vs € E).
For z € E), let Qz be the equivalence class of z, i.e. Qz = {y € E“|z ~ y}.
Let A, A, E;, and F, be the sets as follows:
A:={z € EW| 3y € Qz s.t. Pyz # Py}, Ag:={z € A| Pz = s},
E,:={z € E® | Pz = s}, F, ={s € E|#(q(As)) = n},
where §(¢q(A;)) is the number of elements of g(A4,).
Hereafter, we assume that the equivalence relation ~ is invariant and §4 < co.
By using the equivalence relation ~ on E*) we shall investigate the topology of

the quotient space.
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Lemma 1 When §4 < o0, x € A is non-cyclic.

Proof.  Suppose z € A is cyclic, 1.e. there exists n € N such that z = o"z.
Since € A implies that there exists y € E“) such that z ~ y and Piz # Py,
the relation (P,z)'y ~ = holds for any I € N, which implies 4 = co. O

For the equivalence class of z € E(“), we have the following lemma.

Lemma 2 For z € E“), it holds that either

Qz = {z} or

Qz = {(Pjz)v | v € Qa} with some j € NU {0} and some a € A.
Proof.  If there exists no y € E) such that y ~ z, then Qz = {z}. If there
exists y € E) such that y ~ z, then there exists ny such that P, = = P, y and
Tn,+1 # Yn,+1- Then o™z ~ o™z and o™z € A. Put j = min {ny |z ~y} and
a=o0lz . Thena € A since‘ there exists y € E(w) such that y ~ z, P;jy = Pjz and
Yj+1 7 Tj+1. Hence Qz = {(Pjz)v | v € Qa}. (v € Qa implies (.Pjo:)v ~ (Pjz)a =
z and so {(Pjz)v | v € Qa} C Qz. On the other hand, « ~ y implies Pjz = P;

and so 0’y € Qa by the relation o’z ~ oy.) O

By Lemma 2, we can define the number I(z) for z € E() as follows:

()= " if Qz = {(Ppz)v | v € Qa} for some a € A
(@) =1 % iQuz={a)

When we consider the boundary of open sets, the number {(z) plays an important
role.

Let Uyn(z) and V,,(z) be subsets of E(+) as follows:
Un(z) = {y € E*) | P,y = Pz}

Va(z) = {y € Un(z) | P.Qy C PaQxz}.
Let ¢ : E() — E®)/_ be the natural quotient map.

Let 6'n(q(x)) be the subset of the quotient space E(“)/_ as follows:

Ua(g(z)) = {q(y) € E“)/. | P.Qy C PoQx}.
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As for these sets, the following lemma holds.
Lemma 3 1. Up(2e)\Va(z) C{y| {y) <n—-1})
2. Va(z) 1s open.

3. Un(q(2)) = U{g(Vala") | 2’ € Qz}
Proof. 1) It is clear by definiton.
2) By #§(4) < oo, the set {y | {{y) < n— 1} is a finite set. So U,\V,, is a finite set
and a closed set. So V,(z) is open.

3) Tt is easily seen by definition. O

By using lemma 3, we get the following proposition.

Proposition 1 The family {Un(¢(z)) | 7 € N, g(z) € E)/. .} is a basis for the

quotient topology in E)/ .

Proof.  In order to show that ¢='(U,(g(z)) is open in E(“), we shall show that
¢ (Unla(2))) = U{Va(e') | ¢’ € Qz}.

By Lemma 3, it is obvious that ¢~} (U,(q(z))) D U{Va(2') | 2’ € Qz}.

On the other hand, let y € ¢~ (Un(g(2))). Then g¢(y) € Un(¢(z)). By Lemma 3,
there exists z € Vi(a') such that ¢(y) = ¢(z). Then P,Qy = P,Qz C P,Qz. So
there exists 2" € Qz such that y € V(z"). Hence ¢~!(U,(g(z)) is open, since
Va(z) is open.

Next suppose W is a subset of E() such that ¢~ (W) is open in E{*) and
q(z) € W. Then we shall show that there exists ng € N such that Uy, (g¢(z)) C W.
For any z' € Qu there exists n,s € N such that U,_, (z') C ¢~(W). Since #(4) <
00, put ng =max{n, | ' € Qz}. Then V,,(z') C Uny(z') C ¢"H(W) and so
U{q(Vpo(2') | 2’ € Qz} C W, which implies U,,,(¢(z)) C W.

Hence {U,(g(x))} is a basis for the quotient topology in E)/..0

Lemma 4 The boundary 0U,(q(z)) of the set Un(q(z)) is as follows:

U (q(x)) = {q(y) | Poy = Pnz’ for some z' € Qz and P,Qy ¢ P,Qz}
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Cgy) | l(y) n -1}

Proof. Suppose Pp,z' = P,y for some z' € Qz and P,Qy (£ P,Qzr. Then
q(y) ¢ Un(g(z)). Since for any k > n, there exists z € E(“) such that Qz = {z}
and Pyz = Py, the relation Ux(q(y)) N Un(g(z)) # ¢ holds. So q(y) € dU,(g()).
On the other hand, suppose ¢(y) does not belong to the set {g(y) | Pay =
P,z' for some 2z’ € Qz and P,Qy ¢ P,Qr}. If for any 2’ € Qz, Py #
P,z' holds, then U,(q(y)) N Un(q(x)) = ¢, which implies ¢(y) ¢ 0U.(q(z)). If
P,Qy C P,Qz holds, then ¢(y) € Un(g(z)), which implies g(y) ¢ 8Un(q(2)).
AUn(q(z)) C {a(y) | l(y) < n — 1} follows from the definition. O

Remark. If E« /~ is connected, then PyA = E holds.

§3. End points of the quotient space

Hereafter, we consider the case that E(“)/. is connected. In this paper, we
discuss the number of end points of E(*)/.. So at first we shall define the end

point using the basis {U,(g(z))} of the quotient space.

Definition. We shall call ¢(z) € E*)/. to be an end point of E“)/._ if there

exists N € N such that 80,(g(z)) is a singleton for any n > N.

Theorem 1 1. The following (a) and (b) are equivalent.
(a) g¢(z) € E®)/_ is an end point of E“)/ .

() i Qz={z} and
2. There exists N € N such that n > N implies

TpTnti ¢ PA, zn € Fy.

2. If q(z) is an end point, then g(oz) s also an end point.

3. If q(z) is an end point, then for s € E either sz € A holds or g(sz) is an

end point.
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Proof. 1) b) — a): Since Qz = {z}, there exists N' € N such that Pyiy =
Pyiz implies {(y) > N. For n > N’, let ¢(y) € 0Un(g(z)). Then by Lemma 4,
l{y) £ n—1 and P,y = Ppz, which implies [{y) > N.If N < l(y) < n — 2, then
y = wv with w € E'® v € A. So woyvy = Pyyy12y = Piyy4or implies vyvy =
Tyy)+121(y)+2 € P2A. This is a contradiction to v € A. Therefore I(y) = n — 1.
Pi(o"z) € F; implies that ¢(y) is a singleton.

a) = b): If Qz # {z}, there exist k € N,w € E¥ and u € 4 such that = = wu.
Hence 9U,(¢(z)) is not a singleton for n > k.
If Pyo"z € P, A with some n € N, then 90U, 42(g(z)) is not a singleton.
If Pio"z € {s | #(¢(A4s)) > 2} holds, there exist u',u? € A such that Pju! =
Piu? = s and g(u') # g(u?). Then ¢((Pnz)ul),q((Pnz)u?) € Uny1(g(z)) and
AU, +1(g(z)) is not a singleton. So if for any N € N there exists n > N such that
Pyo™z € PyA or Pio™z € {s | #(q(A,)) > 2}, ¢() is not an end point of E()/_.

2) is obtained by 1).

3) If sz ¢ A, then Q(sz) = {sz} holds and so ¢(sz) is an end point by 1). O

In E)/ ., end points do not necessarily exist. So we shall give the condition

for the existence of end points.
Theorem 2 The following are equivalent.
1. There exists an end point of E“)/ .,

2. F) # ¢ and there ezists {s1,82,...,8,} C Fy (n > 1) such that

sjsip1 € PRA(j =1,2,...,n—1), sps1 ¢ PA.

Proof. 1) — 2): Suppose ¢(z) is an end point of E®)/_. Then by Theorem 1,

there exists N € N such that n > N implies
TpTntl ¢ PQA, T, € Fl.

Put ky =N,k = TN415...,. Thenkjkji1 ¢ PyA(7 > 1) and k; € Fy. Since Fj is

afinite set, there exist n,l € N such that k,; = k. Sos; =k ;41 (1 =1,2,...,n)
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are desired ones.

2) = 1): Put £ = 5189 ...8,8182...9, ... be the iterated sequence of 135 ...3,.
Then Qz = {z}, Pio*x € F1(Vk € N) and Pyo*z ¢ P,A(Vk € N). So ¢(2) is an
end point of E)/_ by Theorem 1. O

To consider the number of end points, we shall show the following lemma.
Lemma 5 Let s',s?,s% be distinct elements of Fy. Then the following holds:
t{rt] rt € {s!,s%, 8%}, rt' ¢ P,A} > 5.

Proof. Let 1,7,k be distinct elements of {1,2, 3}.

1) At first we shall show that if s's’ belongs to P, A, then both s's/ and sis*
do not belong to P A.

If we suppose both sis’ and s's’ belong to Py A, then there exist z,y € E™) such
that s's’z,s's’y € A and q(s's'r) = ¢(s's’y). So ¢(s'z) = ¢(s7y). Since s' € F,
q(s's'z) = g(siz) holds, which implies (s?)!s’y € A(VI). This is a contradiction to
$(A) < oo.

2) Next we shall show that §({s's?, s's?,s's¥} N (P,A)°) = 1 implies

1({s7s7,87st, 595k} N (PyA)°) > 2.

#({s's?,s's7,s's¥} N (PyA)°) = 1 and 1) imply that both s's/ and s’s* belong to
P,A. So there exist a,b € E) such that sis’a,s's¥b € 4 and ¢(s's7a).= q(s's*b).
So g(s7a) = ¢(s*b).

If s7s7 belongs to Py A, then by 1), sisk sigt ¢ P;A holds. If both s/s* and
sks* belong to P,A, then there exist ¢,d € E“) such that s’s*c,s7s'd € A and

q(s7skc) = g(s7s'd). So g(s*c) = g(s'd). Since s%,s7,sF € Fy, the following holds:
a(s'd) = g(s"c) = ¢(s"b) = g(s’a = g(s7s"d),

which implies (s7)'s’d € A(VI). This is a contradiction to §( A) < co. So fi({s’s’,s7st, s7s%}N
(P,A)°) > 2 holds. Therefore f§{rt| r,t € {s!,s?,s3},rt ¢ PyA} > 5 holds. O

By using lemma, we get the following proposition in case §(Fy) > 3.
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Proposition 2 If§(F)) > 3, then there ezist infinitely many end points of E() /..

Proof.  Suppose s!,s%, s® are distinct elements of Fy. Put B = {rt| r,t €

{s',s?,s*},rt ¢ P,A}. Then by lemma 5, §(B) > 5 holds. Let z € E) satisfy
TnZnt1 € B for any n € N. Then ¢(z) is an end point of E“)/_ since z satisfies
the condition of (b) of Theorem 1. Since there are infinitely many z € E) such

that z,z,41 € B for any n € N, we get the conclusion. O

Now we shall consider the case §(F1) = 2.

Lemma 6 If {(F}) = 2, then there exists an end point q(e,;) such that Pies = s

for s € Fy.

Proef. Put Fy = {s,t}. If we suppose both ss and st belong to P, A, then there
exist z,y € E(“) such that ssz,sty € A and g(ssz) = ¢(sty). So g(sz) = ¢(ty).
Since s € Fy, ¢(sty) = ¢(sz) = g¢(ty) holds, which implies (s)'ty € A (VI). This is
a contradiction to §(A4) < co. So one of {ss, st} does not belong to P, A. So there

exists an end point g(e,) such that Pies; =s. O

Proposition 3 If §(F)) = 2, then the number of end points of EX)/_ is 2 or

nfinity.

Proof. Let Fy = {s,t}. Then by lemma 6 there exist end points g(es), g(et)
such that Pje, = s and Pyey = t.
If there exists r € E\{s, t} such that re, ¢ A or re; ¢ A, then either {s*re, | k €
N} or {s*re; | k € N} does not contain any element of A. So the numbe‘r of end
points are infinity.
If there exists ¢ € E\{s,r} such that t3 ¢ A [resp. pr3 ¢ A], then we see that
there exist infinitely many end points in the same way as Proposition 2.

If there exists no r € E\{s, t} such that re,, re; ¢ A, then the only ¢(e,) and

g(ey) are end points. O

When the number of end points is 2, we shall consider the condition that it is

isomorphic to the unit interval.
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Lemma 7 For z,y € E\A satisfying Pyz, Pyy € Fy (Pyxz # Piy), suppose
oz, oy, oz € {z,y} (Vz € A).
Then
1. for s,t € {Pyz, Pyy}, the following (a) and (b) are equivalent.
(a) st € PA
(b) st ¢ {Prx, Py}
2. The following (a) and (b) are equivalent.
(a) znzny1 ¢ P2A (Vn) and z, € {Pyz, Py} (Vn)
(b) z € {z,y}

Proof. 1. Suppose that st € P,AN {Pyz, Pyy}. Then there exists = € A
such that P,z = st. oz, oy, o0z € {x,y} implies ¢ = z or y = z, which is a
contradiction.

2. Since f§{st € P,A | s,t € {Piz,Piy}} = 2, #{Pyz,Py} = 2 and §{st €
P,EW | st € {Pyx,Piy}} =4 hold, P,AN { Pz, Py} # ¢ implies (a) < (b). O

Remark. Suppose oz, oy € {z,y}. Then the pair {z, y} is one of the
following four cases, where s = Pyz, t = Pyy:

(v o 5

Lemma 8 Suppose that §(Fy) = 2 and §(Fy) = m — 2. Then the following are

fi
0l
Il

o+l
Il
|2

Il
1 ot

I

.S,

I

equivalent.

1. There ezist distinct x,y € E“) satisfying
Uit {iz, oyt = Au{z,y}  (x)
2. Let Fy = {s,t}. Then there exist z,y € E“\ A satisfying

Piz=s, Pily=t and oz, oy, 0z € {z,y} (Vz € 4).
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3. Let Fy = {s,t}. Then there exist z,y € E“) satisfying

(a) q(z) and q(y) ere end points.

(b) Poa =s, Piy =t and oz, oy, 0z € {z,y} (Vz € A).

Proof. By the assumption, we have §(A) =2 x (m —2)+1x2=2m — 2.
(1) = (2): Considering the number of elements of both sides of (**), we have
z,y ¢ A. For s € Fy, both sz and sy do not belong to A and so either sz or sy
belongs to {z,y}, which implies s = Pz or Piy. In the same way, { = Pyz or
Py fort € Fy. So {s,t} = {Piz,Piy}. The relation (**) implies oz, oy, oz €
{z,y} (Vz € A).

(2) = (3): oz € {z,y} implies Qz = {z} and z, € {s,t} = Fy for all n € N.
TnTnt1 ¢ PoA follows from lemma 7. So ¢(z) and ¢(y) are end points.

(3) = (1): (3) implies AU {z,y} C UJL,{jz,jy}. Since ¢(z) is an end point,
we have Qr = {z}, which implies z ¢ A. By counting the number of elements of

both sides, we have AU {z,y} = UTL, {jz, jy}. D
Theorem 3 The following 1 and 2 are equivalent.
1. E)/_ is homeomorphic to the unit interval [0,1].
2. (o) §(F1)=2, §(Fo)=m—2
(b) 4(Qa) =2 for any a € A.
(¢) There e:m'.;t z,y € E™“) satisfying
UL {7z, gy} = AU {z,y}. ()
Proof. (1) = (2): Let ¢ : E/_ — [0,1] be a homeomorphism. Let j :
E® /. — E®/_ be defined by j(¢(z)) = ¢(jz) for any ¢(z) € E(“)/ .. Then j is
well-defined and continuous. So 1(g(E;)) = ¥(;(E(“)/.)) is a compact continuous

subset of [0,1] and a closed interval, say [a;, 3;] for any j € E (0 < a; < 85 < 1).
Since §(A) < oo,

¢(E;j)Ng(E;) # ¢ implies §; = a; or
a; = ;Bi' (**)
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Let g(z) and ¢(y) be 1»~1(0) and ¥ ~!(1) respectively. Then ¢(z) and ¢(y) are
end points of E®)/_. Put s = Piz. Then %(g(E,)) = [0, 3,]. Since E()/_ is
connected and §(A) < oo, there exists only one r € E such that ¢(E,) N¢(E;) # ¢
and so s € Fy. In the same way, t = P,y € F;. Then by the relation (**)
and §(A) < oo, there exists a permutation 7 : E — E such that n(1) =
#(m) = t, 6(En(sy) N a(Enginy) i & singleton, say, {a(a)} (= 1,...,m — 1)
and ¢(Er)) Nq(Exry) = ¢ for |k —1| > 2. So Fy = {s, t} and §(Fy) = m — 2.
a € A implies g(a) € {g(a'),...,q(a™ ")} and so §(Qa) = 2. Since E™)/_ is
homeomorphic to [0,1], the number of end points of E“)/, is 2 and ¢(z), ¢(y) are
end points. By Theorem 1 (2), ¢(oz),¢(oy) are end points and oz,0y € {z,y}.
By Theorem 1 (3), jz € A or ¢(jz) is an end point. So UTL,{jz,jy} C AU {z,y}.
Since the numbers of elements of both sides are 2m, the equality holds and we get
*).

(2) = (1): By lemma 6, ¢(z) and ¢(y) are end points of E“)/_. By (a) and

(b), there exists a permutation 7 of E satisfying
(1), m(m) € Fy, #(2),...,7(m—-1) € F,
and A
WExi)) N a(Erjr) #¢ (G =1,...,m=1).

So we may suppose that Pz =1, Piy = m, Fy = {1,m} and
WEj)Ng(Ejp) #¢ (j=1,...,m=1).

1 if q(jz) € q(Ej-1) (9 < g
L 2<j<m—
(1 i le=z _[1 if my=y
A"—{—1 it ly=2 andA""”{—l if me=y-
Put v (u) = E“;;}l
Hz:‘;"’““(un —1)+ ﬂ%&&(m — up)

Yn(u) = for n>2

mﬂ.
and y(u) = S oo | Yn(u) for v € E&). Then forn >2and j € E,u € E),

711(]“) —L'Yn l(u + —"“‘L—“‘)‘ Nm—1) . (* * *)

It is obvious that y1(z) = 72(z) = 0 and 71 (y) = 21, 12(y) =

relation (***), we get v,(z) = 0 and y,(y) = 23! for all n € N. So 7(:1:) = 0 and
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v(y) = 1. By using the relation (¥***), we also get that y(u) = v(v) holds if and
only if g(u) = ¢(v). O

Now we shall consider the case §(Fy) = 1.

Proposition 4 If {(F1) = 1, then the following hold.
1. The number of elements of E is greater than 8, i.e. m > 3.
2. The number of end points of E<“)/. is 0, 1, 2 or infinity.

Proof. 1. Suppose that m = 2, ie. E = {s,t}. If F; = {s}, then }§(4;) > 2,
that is, theré exist sz, ty, tz € A(y # z) such that sz ~ ty ~ tz. y # z and
E = {s,t} imply that there exists w € E® such that y = wsy', z = wtz' or vice
versa. So sy’ ~ tz'. Since §(As) = 1, then 2 = y'. So sz ~ tz' ~ twts, from
which z' ~ (wt)'2’ follows for any ! € N. This is a contradiction to f(4) < co. So
m > 3.

2. Suppose the number of end points is n(3 < n < oo). Since §(F;) = 1, we
can put Fy = {s}. So by Theorem 1, there exists w € E*) such that ¢(w3) is an
end point. Theorem 1 2) implies ¢(3) is also an end. point. Since the number of
end points is not 1, there exists r € F\{s} such that rs ¢ A by Theorem 5. If
there exists t € E\{s,r} [resp. p € E\{s}] such that 5 ¢ A [resp. pr5 ¢ A], then
either {s*r3 | k € N} or {s¥t3 | k € N} [resp. {s*pr5 | k € N} ] does not contain
any element of A and we see that there exist infinitely many end points in the
same way as Proposition 3. So t3 € A for any t € E\{r, s} [resp. prs € A for any
t € E\{s}] and end points are either 5 or 8878 (0 < VI £ n—2). Therefore
§...875 € A. If n > 2 holds, then ss € PQAI, which implies that ¢(3) is not an

n-—1

end point. This is a contradiction. So the number of end points of E)/_ is 0, 1,

2 or infinity. O

By Propositions 2, 3 and 4, we get the following theorem.
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Theorem 4 If {4 < oo, then the number of end points of E“) /. is 0, 1, 2 or

mnfinity.
We shall give a condition that the number of end points is 1.
Theorem 5 The following are equivalent.
1. The number of end points is 1.
2. (a) $(Fy) =1, 1.e. F} = {s}, and ss ¢ P, A,
(b) r5 € A for any r € E\{s}.

Proof. 1) = 2): Since there exists an end point of E“)/_, #(F) > 1 by
Theorem 2. By Propositions 2 and 3, §(Fy) < 1. So §(Fy) = 1ie. F; = {s},
which implies that if ¢(z) is an end point, then z = ws with some w € E®*). Hence
ss ¢ PoA. If r5 ¢ A, then ¢(r3) is also en end point. So r3 € A for any r € E\{s}.

2) — 1): If ¢(z) is an end point, then §(A4,) = 1 implies 2 = w3 with some
w € E®. The condition (b) implies that ¢(r3) is not an end point of E“)/_ for
r € E\{s}. So ¢(3) is the only end point. O

To consider a condition that the number of end points is 2, we give some

definitions.

Let T be the set
{(r,3)|r,s € Fi,7s ¢ P2A and sr ¢ P, A}

and let EN(j) (j=0,1,2) be the following:
EN(0) = {e =73|(r,s) € T}
EN(1) = {tTs|t € E,(r,s) € T\t # s and t7s ¢ A}
EN(2) = {te|t € E,e € EN(1) and te ¢ A}.

Then the following theorem 6 shows a condition that the number of end points

is 2.

Lemma 9 If z belongs to EN(3) (2> j > 0), then g(z) 1s an end point.
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Proof. Ifz € EN(j), then Qzr = {z} holds. So by Theorem 1, ¢(z) is an end

point. O
Theorem 6 The following are equivelent.
1. The number of end points is 2.
2 1<§(F1)<2 EN(2)= ¢ and §(EN(0)) + §( EN(1)) = 2.

Proof. 1) — 2): 1 < §(Fy) £ 2 follows from Theorem 2 and Proposition 2. By
definition of EN(j), EN(i{)NEN(j) = ¢ (¢ & j) follows. If there exists ¢ € EN{2),
then ¢(z),q(ox), ¢(o%z) are distinct end points by Lemma 9 and Theorem 1. So
EN(2) = ¢ and §{EN(0)) + §( EN(1)) = 2 follows.

2) — 1): If ¢(z) is an end point, there exist n € N U {0}, w € E™ and
(r,s) € T such that z, # s (if n # 0) and = = w73, since {(F;) < 2. Since ¢(0’x)
is an end point for any j € N, n < 2 follows from EN(2) = ¢, which implies
g(z) € EN(0)U EN(1). So {(EN(0)) + (EN(1)) = 2 implies that the number of

end points is 2. O
§4. The invariant set and examples

For a family of contraction functions {fi, ..., fm }(m > 2) on a complete metric
space, let K be the invariant set, that is, K = f1(K)U... fn(K) and ¢ be a map
of E™ onto K such that ¢(z1z2...) = iMp—seofzy fes - - - fo, (K) [3]. Define the

equivalence relation ~ on E®) by
z~y ifand only if ¢(z)=¢(y) for z,y € B,

Then the equivalence relation ~ is invariant and K is isomorphic to E(“)/_. Let
A be the set {z € E® | 3y € E“ such that z ~ y and Piz # Piy}. When
fA < oo, the results in §3 can be applied to K. We shall show some examples for

{fi,---y fm}(m > 2) on C. Let §( EP) denote the number of end points.
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Example 1. [§(EP) = 0]
Let fi(2) = 22, fal2) =

1.1 V3
f3(2’): 3Z+Z+T?

Then E = {1,2,3}, F; = ¢ and

l\DI»—A
MH—*

A = {12,13,21,23, 31, 32}.
Since F1 = ¢, by Theorem 2 the number of end points of K is 0.

Example 2. [{(EP) = 1]

1
Put@:%amdr:

4 x cos8’
1 23@'_\:
Let fi(z) = 52, fa(z) =7 *e"2 41, Nm,g“m o7

-

fs(z )_7"*6_9’24—1 fi(2)=rrem iz 42, nggi

fs(z) = raelmtOiz 42,
Then E =7{1,2,3,4,5}, F; = {1} and

A = {141,151, 271,241,251, 31,341, 351,41, 441, 451, 51, 541, 551 }.
So 11 ¢ P,A and r1 € A for any r € E\{1}. Hence by Theorem 5 the number of

end points of K is 1.

Example 3. [{(EP) =2, {(F1) = 2 and K is homeomorphic to [0,1]]

_ 1
Puteaganr—S.

. 1
Let fi(z) =r*z, fal2) =rxe¥z + 3
. 1 3
fle) = et L Y

fa(z) =r*z+ %

Then E = {1,2,3,4}, i = {1,4} A = {14,21,24,31,34,41}, T = {(1,1),(4,4)},
EN(0) = {1,4} and EN(n) = ¢ for n > 1. So by Theorem 6, the number of end
points of K is 2. The conditions 2(a),2(b) and 2(c) of Theorem 3 are satisfied. So

K is homeomorphic to the unit interval.
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Example 4. [{(EP) =2 and §(Fy) =2]

PutH:Eandr:

o5

Let fi(z) :%z, f(2) = r*eeiz—}—%, falz) =

o T

rxe iz 4 bR fa(z) = rx ez 4 2’ fs(z) =
) 3 1 3

rx el T, 4 5 fe(z) = Zz + 9"

Then E = {1,2,3,4,5,6}, Fy = {1,6}, A = {16, 21,26, 31, 36, 41, 46, 51, 56, 61},

T = {(1,1),(6,6)}, EN(0) = {1,6} and EN(n) = ¢ for n > 1. So by Theorem 6,

the number of end points of K is 2. The conditions 2(a) and 2(c) of Theorem 3 are

satisfied, but for a = 16 € 4, Qa = {16, 21,31} does not satisfy 2(b) of Theorem

3. So K is not homeomorphic to the unit interval.

Example 5. [{(EP) = 2 and §(Fy) = 1]
. 1 5
Put w; = 0,7‘1 = —,wWp = —T,Tp =

2 18
3

—_—— w3 = —wWq, T3 = T3, Wyq = . _
20 cos we 3 2 8 2 4 :
ﬂ-tan"l(gta,nwg), Ty = |—3—-——i, ws = W@'{?)
13 20 coswy
1,39 11
tan (Etanwg), Ts = ————, 1 = T,

We =
260 cos ws '

4
rg = ——
6 13) 5
=1 =q=q¢g =g =0,pp=p3=1,ps =186, ¢4 = ——tanwy, ps = 1.3,

65
3 i . .
g5 = -——1—6tanw2 and ps = 2. Let fi(z) =r; *’ew"z%—pj +gji for y =1,2,...,6.

Then E = {1,2,3,4,5,6}, Fy = {1}, A = {16T, 2T, 26T, 3T, 367,41, 461, 51, 56T, 6261, 646, 661}
T = {(1,1)}, EN(0) = {I}, EN(1) = {61} and EN(n) = ¢ for n > 2. So by

Theorem 6, the number of end points of K is 2.

?

Example 6. [{(EP) = o]
Put § = % and r =

1
7
Let fi(z) =r*ef'z, fo(z) =27 +

wibo
W[

Then E = {1,2}, Fy = {1,2}, 4 = {112,2T}, T = {(2,2)}, EN(0) = {3},

EN(1) = {12}, EN(2) = {212} and EN(2) # ¢ . So by Proposition 3 and

Theorem 6, the number of end points of K is co.
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