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ABSTRACT 
We investigate the topological property of invariant sets with respect to a family of functions 

by using the quotient space of infinite sequences. We give s.ome results concerning t,he number 

of end points. 

S1. Introduction 

For a family of contraction functions { fl ' ' ' ' , fm }(m ~ 2) on a complet,e metric 

space, t,here is an invariant set li~ [3] satisfying the following 

li~ = fl(It') U . U f~(It'). 

M. Hata [2] investigated the topological propert,y of the invariant set K and gave 

some results conc.erning the number of end points. Consider the set E(ed) of infinite. 

sequences, where E = {1, 2, . . . , m}. Then there is a map ip of E(ev) onto 11~ such 

that ip(xlx2 ) = Iim f f . . . fx (11~) [3]. The space E(~') with product 
' "' n~oo xl x2 ~ 

topology is totally disc.onnected and perfect. If '~, is one to one, then the set li~ is 

also totally disconnected and pe_rfe.ct [e.g. the Cantor set]. If ip is not one to one, 

then the topology of K shows various aspects and It' is considered to be isomor-

phic to the quotient space induced by the equivalenc.e relation - on E(~'). The 

topology of the quotient space has been studied by some people. A. Karneyarna [4] 

studied the topology of the quotient space E(GJ)/- and considered t,he condition 

that E(~;)/- is connected or E(cv)/- is metrizable. C.Bandt, and K.Keller [1] also 

studied the topology of the quotient space and considered connectivity and rami-

fication properties. In [5], we investigated the topological property of the quotient 
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space in case #(E) = 2 and examined the number of end points. In this paper, we 

shall investigate the topological property of E(') /- for the case that the number 

of E is 

points. 

any finite number and give some results concerning the nuniber of end 

In S4, we shall show some examples. 

S2. The topology of the quotient space 

For m Z 2, Iet E = {1, 9_, . . . , m} and E(e)) be the set of infinite sequences from 

E. Let E(n) be the set of sequences frorn E of length n for n ~ N, E(o) be the 

empty set and E(*) be the set of finite sequences from E, i.e. E(*) = UnOO=0E(n). 

For r7, ~ N U {O}, Iet the ma,p Pn E(ea) : ~ E(*) be the projection such a,s 

P x xlx2 xn' where x xlx2 . . . e E(ev). 

For s ~ E and x xlx2 ' ' . , y = yly2 ' ' ' e E(ee) Iet 

sx = sxlx2 

(Pnx)y = xlx2 . . . xnyly2 

Let the map a : E(cJ) ~F E(~') be a shift, operator, i.e. 

(T(XIX2 . . .) =: X2X3 . 

An equivalence relation - on E(') is c_alled to be invariant if the following ( I ) and 

(2) are satisfied: 

(1) x - y implies sx - sy 

(2) sx - sy implies x - y 

(Vs ~ E) 

(Vs ~E E). 

For x e E(ee), Iet Qx be the equivalence class of x, i.e. Qx = {y ~ E(ev)lx - y}. 

Let A, As' Es and Fn be the set,s as follows: 

A := {x ~ E(u')1 l'y e Qx s.t. Plx ~ Ply}, A. := {x e A I Plx = s}, 

Es := {x ~ E(ev) I plx = s}, Fn = {s ~ E I ~(q(As)) = n}, 

where #(q(A3)) is the number of elements of q(As)' 

~ereafter, we assume that the equivalence relation - is invariant and #A < oo. 

By using the equivalence relation - on E(ev), we shall investigate the topology of 

the quotient space. 
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Lemma I W7ben #A < oo, x ~ A is non-cyclic. 

PTOof. Suppose x ~ A is cyclic, i.e. there exists n, e N such that x = anx. 

Since x e A implies that there exists y ~ E(ty) such that x - y and Plx ~ Ply, 

the relation (Pnx)ly - x holds for any I e N, which implies #A = oo. [Il 

For the equivalence class of x ~ E(eJ), we have the following lemma. 

Lemma 2 For x ~ E(~), it holds that either 

Qx = {x} OT 

Qx = {(Pjx)v I v e Qa} with some j e N U {O} and 30me a e A. 

Proof. If there exists no y ~ E(cJ) such that y - x, t,hen Qx = {x}. If there 

exists y ~ E(~') such tha,t y - x, then there exists ny such that, Pnpx = Pnyy and 

x~y+1 ~ yny+1' Then crnyx - crnyx and (7nyx ~ A. Put j = min {ny I x - y} and 

a = (73x . Then a ~ A since there exists y ~ E(eu) such that y - x, Pjy = Pjx and 

yj+1 ~ xj+1' Hence Qx = {(Pjx)v I v ~ Qa}. (v e Qa implies (Pjx)v - (Pjx)a = 

x a,nd so {(Pjx)v I v e Qa} C Qx. On the other hand, x - y implies Pjx = Pjy 

and so (TJ'y e Qa by the relation crJx - a3y.) [] 

By Lemma 2, we can define the number l(x) for x e E(~) as follows: 

=
{
 

if Qx = {(P~x)t' I t; e Qa} for some a e A n l(x) 
if Qx = {x}. oo 

¥~rhen we consider the boundary of open sets, the number l(x) plays an important 

role . 

Let Un(x) and ~(x) be subsets of E(~) as follows: 

U~(x) = {y e E(~) I P~y = Pnx} 

Vn(x) = {y ~ U~(x) I P~Qy C P~Qx}. 

Let q : E(~) ~> E(~)/- be the natural quotient map. 

Let U~(q(x)) be the subset of the quotient space E(')/- as follow 

L~r~(q(x)) = {q(y) e E(~)/- I P~Qy C P~Qx}. 
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As for these sets, the following lemma holds. 

Lemma 3 1. Un(x)¥Vn(x) C {y I l(y) ~ n- 1}) 

2. Vn(x) is open. 

3. Un(q(x)) = U{q(.Vn(x')) I x' ~ Qx} 

PToof. 1) It is clear by definiton. 

2) By S(A) < oo, the set {y I l(y) ~ 'n - l} is a finite set. So Un¥V rs a fimte set 

and a closed set. So Vn(x) is open. 

3) It is easily seen by definition. C] 

By using lernma 3, we get the following proposition. 

Proposition I The family {~n(q(x)) I n e N, q(x) ~ E(~)/-} is (b basis foT the 

quotient topology in E(ee)/-. 

Proof. In order to show that q~1(~n(q(x)) is open in E(~), we shall show that 

q (U (q(x))) = U{Vn(xf) I x' e Qx}. 

By Lemma 3, it is obvious that q~1(Un(q(x))) D U{Vn(x') I xl ~ Qx}. 

On the other hand, Iet y e q~1(Un(q(x))). Then q(y) ~ Un(q(x)). By Lemma 3. 

there exists z e V~(x') such that q(y) = q(z). Then PnQy = P~Q~ * C P,nQx. So 

there exists xn e Qx such that y ~ V(xn). Henc.e q~1(Un(q(x)) is open, since 

V~(x) is open. 

Next suppose W is a subset of E(ea) such that q~1(W) is open in E(~') and 

q(x) e W. Then we shall show that there exists no ~ N such that U~o(q(x)) C VV. 

For any x' e Qx there exists nx' ~ N such that Un.'(x/) c q~1(W). Since S(-4) < 

oo, put no =max{nx' I xf ~ Qx}. Then V~o(xr) C U~,o(x') c q~1(W) and so 

U{q(Vno(x') I x' <E Qx} C W, which implies Uno(q(x)) C W. 

Hence {~n(q(x))} is a basis for the quotient topology in E(~)/-.C] 

Lemma 4 The boundary aUn(q(x)) of the set Un(q(x)) is as followa: 

aUn(q(x)) = {q(y) I Pny = Pnx/ for some x' ~ Qx and PnQy ~ PnQx} 
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C {q(y) I l(y) ~ n - 1} 

Proof Suppose P x P y for some x ~ Qx and P Qy ~ P Qx. Then 

q(y) ~ C~T~(.q(x)). Since for any k > n, there exist,s z e E(~) such that Qz = {z} 

and Pkz = Pk'y, the relation Uk(q(y)) n U~(q(x)) ~ ip holds. So q(y) e aU~(q(x)). 

On the other hand, suppose q(y) does not belong t,o the set {q('y) I P~y = 

P~x' for some x' ~ Qx and P~Qy ~ P~Qx}. If for any x' e Qx, P~'y ~ 

P~x' holds, then U~(q(y)) n U~(q(x)) = ip, which irnplies q(y) ~ aU*(q(x)). If 

P~Qy C P~Qx holds, then q(y) ~ U~(q(x)), which implies q(y) ~ aU~(q(x)). 

aU~(q(x)) C {q(y) I l(y) ~ r~ - 1} follows from the definition. CII 

Remark. If E(')/- is connected then P A E holds 

S3. End points of the quotient space 

Hereaft,er, we c,onsider the case that E(-)/- is connec,ted. In this paper, we 

discuss the number of end points of E(~)/-･ So at first we shall de_fine, the end 

point using the basis {Un(q(x))} of the quotient space. 

Definition. We shall call q(x) e E(~v)/- t,o be an end point of E(~)/- if the.re 

e_xists N ~ N such that aUn(q(x)) is a singlet,on for any Tt ;~ N. 

Theorem 1 1. The following (a) and (b) aTe equivalent. 

(a) q(x) ~ E(ev)/- is an end point ofE('J)l--

(b) i. Qx = {x} and 

ii. TheTe exists N ~ N such that n ~ N implies 

xnxn+1 ~ P2A, xn C Fl' 

2. Ifq(x) is an end point, then q(ax) is also an end point. 

3. If q(x) is an end point, then for s e E either sx e A holds or q(sx) is a72. 

end point. 
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PTOof. 1) b) ~> a): Since Qx = {x}, there exists N' ~ N such tha,t PN,y = 

PN,x implies l(y) ~ .~r. For n ~~ -N~', Iet q(y) C aU~(q(x)). Then by Lemma 4, 

l(y) ~ n - I and Pny. = Pnx, which implies l(y) > N. If N < l(y) ~ n - 2, then 

y wv wrth w ~~ El(y),v ~ A So wvlv~ Pl(y)+2y = Pl(y)+2x implies vlv2 

xl(y)+1xl(y)+2 ~ P2A. This is a contradiction to v e A. Therefore l(y) = -n l 
Pl(crnx) e F1 unplies that q(y) is a singleton. 

a) ~ b): If Qx ~ {x}, there exist k ~ N, w e Ek and u ~ A such tha't x = wu. 

Hence aU~(q(x)) is not, a singleton for n > k. 

If P2(Tnx ~ p2A with some n, e N, then a~~+2(q~x)) is not a singlet,on. 

If P1(7nx e {s I #(q(As)) ~ 9-} holds, there exist ul u2 e A such that Plul = 

Plu2 = s and q(ul) ~ q(u2). Then q((Pnx)'ul),q((Pnx)u2) e aUn+1(q(x)) and 

aUn+1(q(x)) is not a singleton. So if for any N ~ N there exists n > N such that 

p2(7nx ~E P2A or P1(7nx ~ {s j S(q(As)) ~ 9-}, q(x) is not an end point of E(~)/-. 

2) is obtained by 1). 

3) If sx ~ A, then Q(sx) = {sx} holds a,nd so q(sx) is an end point by l). C] 

In E(cv)/ end points do not necessarily exist. So we shall give the condition 
~, 

for t,he existence of end points. 

Theorem 2 Thefollowing aTe equivalent. 

1 There exssts an end poi72,t ofE(~')/-. 

2. F1 ~ ~ and theTe excsts {sl ~2 , sl7} C F (T~ > 1) such that 

d5jsj+1 ~ P2A(j = 1,2 n - 1), snsl ~ P2A. 

PToof. l) ~> 2): Suppose q(x) is an end point of E(')/-. Then by _Theorem 1, 

there exists N ~E N such that n ~ N implies 

xnxn+1 ~ P2A, xn ~ F1' 

Put k"I = xN, k2 = xN+1, ' ' ' ) . Then kjkj+1 ~ P2A(j ~ 1) and kj ~ Fl' Since F1 is 

afinite set, the_re exist n, I ~ N such that kn+1 = kl' So sj = kl+j-1(j = 1, 2, . . . , n) 
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are desired ones. 

. . . be the iterated sequence of sls2 ' ' ' s~. 2) ~ 1): Put x = sls2 ' ' 'snsls2 ' ' 'sn 

Then Qx = {x},Plak~: e F1(Vk e N) and P2(Tkx ~ P2A(Vk ~ N). So q(x) is an 

end point of E(~)) /- by The.orem 1. Cl 

To consider the number of end points, we shall show the following lemma. 

Lemma 5 Let sl s2 s3 be distinct elements ofFl' Then the following holds: 

#{rtj r,t ~ {s ,s2 s3},rt'~ P2A} ~ 5. 

Proof. Let i, j, k be distinct elements of {1, 2, 3}. 

1) At first we shall show that if s'si belongs to P2A, then both stsj and stsk 

do not belong to P2A. 

If we suppose both sest and sssj belong to P2A, then there exist x, y ~ E(~) suc.h 

that ststx,stsjy e A and q(stssx) = q(s'sjy). So q(s'x) = q(s y) Smce ~ ~ F1' 

q(ststx) = q(sex) holds, which implies (si)Isjy ~ A(Vl). This is a contradiction to 

#(A) < oo. 

2) Next we shall show that tt({s~se,s'sj sesk} n (p2A)') = I implies 

#({sjsj sjst,sjsk} n (p2A)c) ~ 2. 

#({stse,sssj s'sk} n (p2A)c) = I and 1) imply that, both stsj and s'sk belong to 

P2A. So there exist a, b e E(ey) such that, sssja, s'skb e A and q(s3sja). = q(seskb). 

So q(s3a) = q(skb). 

If sjsj belongs to P2A, then by 1), sjsk sjse ~ P2A holds. If both sjsk and 

sksi belong to P2A, then there exist c, d ~ E(e') such that sjskc,sjsid ~ A and 

q(sjskc) = q(sjsid). So q(skc) = q(sid). Since st, sj, sk e F1' the following holds: 

q(sid) = q(skc) = q(skb) = q(sJa = q(sjs'd) 

which implies (sj)Isid ~ A(Vl). This is a contradiction to tt(A) < oo. So #({s3sj sjse, sjsk}n 

(P2A)c) ;~ 2 holds. Therefore #{rtl r,t ~ {sl s2 s3},T.t ~ P2A} ~ 5 holds. C] 

By using lemma, we get the following proposition in case ~(FI ) ~ 3. 
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Proposition 2 If#(F1) ~ 3; then theTe exist inftnitely many en,d points ofE(~)/--

Proof Suppose sl s2 s3 are distmct elements of F Put B = {rtl r,t ~E 

{sl s2 s3},,rt ~ P2A}. Then by lemma 5, #(B) ;~ 5 holds. Let x ~ E(ev) satisfy 

x~xn+1 e B L0r any n, ~ N. Then q(x) is an end point of E(~)/- since x satisfies 

the. condition of (b) of Theorem I . Since there are infinitely many x ~ E(ee) such 

that xr~xn+1 ~ B for any n e N, we get the conclusion. [] 

Now we shall consider the case #(FI ) = 2. 

Lemma 6 If #(F1) = 2, then there exists an end poil~,t q(es) such that Ples = s 

for s ~ F1' 

PToof. Put F1 = {s, t}. If we suppose both ss and st belong to P2A, then there 

exist x,y e E(~)) such that ssx,sty ~ A and q(ssx) = q(sty). So q(sx) = q(ty). 

Since s ~ Fl' q(sty) = q(sx) = q(ty) holds, which implies (s)Ity ~ A (Vl). This is 

a contradiction to S(A) < oo. So one of {ss, st} does not belong to P2A. So t,here 

exists an end point q(e.) such that Ple. = s. [Il 

Proposition 3 If ~(F1) = 2, then the number of end points of E(ca)/- is 2 or 

infi nity. 

Proof. Let F1 = {s,t}. Then by lemma 6 there exist end points q(es)' q(et) 

such that Ples = s and Plet = t. 

If there exists r ~ E¥{s, t} such that res ~ A or ret ~ A , then either {skres I k ~ 

N} or {skret I k ~ N} does not contain any element of A. So the number of end 

points are infinity. 

If there exists t ~ E¥{s,r} such that t~ ~ A [resp. pr~ ~ A], then we see that 

there exist infinitelv. many end points in the same wa_v as Proposition 2. 

If there exists no r ~ E¥{s, t} such that res' ret ~ A, then the onlv_ q(es) a,nd 

q(et) are end points. C] 

When the number of end points is 2, we shall consider the condition that it is 

isomorphic to the unit interval. 
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Lemma 7 FOT x,y ~ E(~)¥A satisfying Plx, Ply e Fl (Plx ~ Ply), suppose 

(7x, ay, az ~ {x,y} (Vz e A). 

Then 

1. for s, t ~ {plx, P1'y}, the following (a,) and (b) are equivalent. 

(a) st' e p2A 

(b) st ~ {P2x,P2'y} 

2. The following (a) and (b) are equivalent. 

(a) z~~~+1 ~ P2A (Vn) and ~ ~ {plx,P y} (Vn) 

(b) z e {x,y} 

Proof. 1. Suppose that st ~ p2A n {p2x, P2'y}. Then there exists .- ~E A 

such that P2z = st. cTx, ay, (TZ e {x,y} implies x = z or y = z, which is a 

contradiction. 

2. Since S{st ~ p2A I s,t ~ {plx,Ply}} = 2, yi{P2x,P2y} = 2 and ~{st e 

P,2E(~) I s,t ~E {Plx,Ply}} = 4 hold, P2An {p2x, P2y} ~ ip implies (a) ~~ (b). [] 

Remark. Suppose ax, (ry ~ {x,y}. Then the pair {x, y} is one of the 

following four cases, where s = Plx, t = Ply: 

{ x~~ { { ･=j~ x=st { -x = qt x=~ 
y := t~ y t y = ts y=t 

Lemma 8 Suppose that #(Fl) = 2 ~nd #("F2) = m - 2. Then the .follo'wing aTe 

equivalent. 

1. TheT'e exist distinct ~t:,y ~ E(~') satisfying 

U;T~=1{jx 3y} AU {x y} (**) 

2 Let F1 = {s,t}. Then there exist x,y ~ E(Lv)¥A satisfying 

Plx =s, Py t and (7x (7y (7' ~ {r y} (V ~EA) 
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3. Let F1 = {s,t}. Then there exist x,y ~ E(') satisfying 

(a) q(x) and q(y) aTe end points. 

(b) Plx = s, Ply = t and (Tx, ay, crz ~ {x,y} ~V_' e A). 

PToof. By the assumption, we have #(A) = 2 x (m - 2) + I x 2 = ~)_m - 2. 

(1) ~ (2): Conside'ring the numbe_.r of elements of both sides of (**), we ha,ve 

x, y ~ A. For s ~ F1 ' both sx and sy do not belong to A and so either sx or sy 

belongs to {x,y}, which irnplies. s = Plx or Ply. In the same way, t = Plx or 

Ply for t ~ F1' So {s,t} = {Plx,Ply}. The relation (**) implies cTx, cr'y, (TZ ~ 

{x,y} (Vz e A). 

(9-) ~, (3): ax ~ {x,y} implies Qx = {x} and x~ ~ {s,t} = Fl for all n ~ N. 

x~x,.+1 ~ P2A follows from lemma 7. So q(x) and q(y) are end points. 

(3) ~~ (1): (3) implies A U {x,y} C U31~=1{.ix,jy}. Since q(x) is an end point, 

we ha,ve Qx = {x}, which implies x ~ A. By counting t,he number of elements of 

both sides, we kLave A U {x,y} = U31~=1{jx,jy}. C] 

Theorem 3 The following I and 2 aTe equivalent. 

1. E(~)/- is homeomoTp.hic to the unit interval [O, I]. 

2. (a) #(F1) = 2, S(F2) = m-2 

(b) ~(Qa) = 9- for any a ~ A. 

(c) There exist x,y e E(~)) satisfying 

U'J!)_=,_1{jx,jy} = A U {x,y}. (*) 

Proof. (1) ~' (2): Let ip : E(~)/- ~ [O, I] be a homeomorphism. Let j 

E(-)/- ~~ E(-)/- be defined by j(q(x)) = q(jx) for any q(x) e E(*)/-. Then j rs 

well-defined and continuous. So ip( q(Ej)) = '~'(j(E(~) /-)) is a compact continuous 

subset of [0,1] and a closed interva,1, say [aj' pj] for any j e E (o ~ aj < pj ~ l). 

Since #(A) < oo. 

q(Ej) n q(.Ei) ~ ip implies ,8j = ai or 

j pi . 
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Let q(x) and q(y) be ip-1(O) and ~)-1(1) respectively. Then q(x) and q(y) are 

end points of E(~)/-. Put s = Plx. Then V'(q(E.)) = [O,p.]. Since E(')/- is 

connected and ~(A) < oo, the_re exists only one r e E such that q(E*) n q(E.) ~ ip 

and so s ~ F1' In the same way, t = Ply e F1' Then by the relation (**) 

and tt(A) < oo, there exists a permutation 7r : E ~~ E such that 7r(1) = s, 

7r(m) = t, q(E~(j)) n q(E~(j+1)) is a singleton, say, {q(aj)} (j = 1,. . . ,m - 1) 

and q(E*(1)) n q(E*(k)) = ip for lk - Il ~ 2. So Fl = {s, t} and #(F2) = m - 2. 

a ~ A implies q(a) ~ {q(al),. . . ,q(a~~1)} and so #(Qa) = 2. Since E(~)/- is 

homeomorphic to [0,l], the number of end points of E(~) /- is 2 and q(x), q(y) are 

end points. By Theorem I (2), q((Tx),q(cry) are end points and ax,cry e {x, y}. 

By Theorem I (3), jx e A or q(jx) is an end point. So UJT~=1{jx, jy} C A U {x, y}. 

Since the numbers of elements of both sides are 2m, the equality holds and we get 

(*), 

(2) ~ (1): By lemma, 6, q(x) and q(y) are end points of E(~)/-. By (a) and 

(b), there e.xists a, permutation 7T Of E satisfV. ing 

7r(1) 7r(m) e F1' 7r(2) 7r(m-1) eF2 

an d 

q(Elr(j))nq(Elr(j+1))~ip (j = I m 1) 

So we may suppose that Plx = 1, Ply = m, F1 = {1, m} and 

q(EJ) n q(Ej+1) ~ ip - (.j = 1, . . . , m - l). 

= { I if q(jx) ~ q(Ej-1) forj(2 ~j ~ m - l), 
Put Aj : _ if q(jx)eq(Ej+1) l

 

A = I if lx = x and Am := { I if my = y 1 {~ 
1 if ly=x -1 if mx = y 

Put ~l(u) = ~L~'u -1 
1 n 

(un ~ 1) + 1~n~=1A~ (m' - un) H~=1 A~k +1 

n for r~; ~ -9 m 
and nr(u) = ~no0=1 ~/n(u) for u ~ E(ee). Then for n ~:: 2 and j ~ E, u ~ E(~e), 

~LA (1~A')(m-1) (* * *) ~rn(ju) = '7n-1(u)+ 

m 2m" ' m-1 m'-1 It is obvious that 71(x) = ~(2(x) = O and ~'1(y) = m m2 ' BV. using the ' ~/2(y) = 

relatron (***) we get 7n(x) = O and 7n(y) = m'-1 for all n ~ N. So ~/(x) = O and 
m" 
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~/(y) = l. By using the relation (***), we also get, that 7(u) = ~/(v) holds if and 

only if q(u) = q(v). [] 

Now we shall consider the case #(FI ) = 1. 

Proposition 4 If #(F1) = l, then the following hold. 

1. The number of elements of E is gTeater than 3, i.e. m ~ 3. 

2. The numbeT of end points of E(ee)/- is O, 1, 2 or infinity. 

Proof I Suppose that m = 2, i.e. E {s t} If F1 = {s}, then ~(At) ~ 2 

that is, there exist sx, ty, tz ~ A(y ~ z) such that sx - ty - tz. y ~ ~･ and 

E = {s,t} implv. that there exists w ~ E(') such that y = wsy', z = wtz' or vice 

versa. So sy' - tz'. Since ~(As) = 1, then x = yf. So sx - tzf - twtz', from 

which z' - (u't)lz/ follows for any I ~ N. This is a contradiction t,o ~(A) < oo. So 

m, > 3. 

2. Suppose the. number of end points is n(3 ~ n < oo). Since #(F1) = 1, we 

can put F1 = {s}. So bV. Theorem l, there exists tL' e E(*) such that q(w~) is an 

end point,. Theorem 1 2) implies q(~) is also an end point. Since the number of 

end points is not l, there exists r ~ E¥{s} such that r~ ~ A by Theorem 5. If 

there exists t ~E E¥{s,r} [resp. p ~ E¥{s}] such that t~: ~ A [resp. pr~ ~ A], then 

eithe.r {skr~ 1 k ~ N} or {skts~ I k ~ N} [resp. {skpr~ I k ~ N} J does not contain 

any element, of A and we see that t,here exist infinitely many end points in the 

same way as Proposition 3. So t~ ~~ ~A for any t ~ E¥{r, s} [resp. p'r~ ~ A for any 

t ~ E¥{s}] and end points are either ~ or ~~r~ (O ~ Vl ~ n - 2). Therefore 

s . . . s r~ ~ A If n > 2 holds then s-~ ~ p2A, which implies that q ~~ is not an 

n-1 
end point. This is a contradiction. So the number of end points of E(~)/- is O, 1, 

9- or infinity. C] 

By Propositions 2, 3 and 4, we get the following theorem. 
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Theorem 4 If ~A < oo, then the number of end points of E(~)/- is O, 1 2 OT 

infi nity. 

We sha,ll give a c.ondit,ion that the number of end points is I . 

Theorem 5 The following are equivalent. 

1. The number of end points is 1. 

2. (a) tt(F1) = l, i.e. F1 = {s}, and ss ~ P2A, 

(b) r~= e A foT any r ~ E¥{s}. 

PTOof. 1) ~ 2): Since there exists an end point, of E(')/-, #(F1) ~ I by 

Theorem 2. By Propositions 2 and 3, #(Fl) ~ 1. So ~(F1) = I i.e. F1 = {s}, 

which implies that if q(x) is an end point, then x = w~ with sorne 'w ~ E('). Hence 

ss ~ P2A. If rs* ~ A, then q(r~) is also en end point,. So r~ ~ A for anv. r ~ E¥{s}. 

2) ~~ 1): If q(x) is an end point, then #(A.) = I implies x = w~ with some 

u' ~ E('). The condition (b) implies that q(r~) is not an end point of E(')/- for 

?' e E¥{s}. So q(~) is t,he only end point. C] 

To consider a condition that the number of end points is 2 we grve some 

definitions. 

Let T be the set 

{(r, s)lr, s ~ F1' rs ~ P2A a,nd sr ~ P2A} 

and let EN(j) (j=0,1,9_) be the following: 

EN(O) = {e = ~~1(r, s) e T} 

EN(1) = {tT~:It e E, (r, s) e T,t ~ s and t7=s ~ A} 

EN(2) = {telt ~ E, e e EN(1) and te ~ A}. 

Then the following theorem 6 shows a. condition that the number of end points 

is 2. 

Lemma 9 If x belongs to EN(j) (2 ~~ j Z O), then q(x) is an end point. 
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Proof. If x e EN(j) , then Qx = {x} holds So by Theorem I q(x) rs an end 

point. C] 

Theorem 6 The following aTe equi'valent. 

1. The number of end points is 2. 

2. I ~ #(F1) ~ 2. EN(2) = ip and ~(EN(O)) + #(EN(1)) = 2. 

Proof. l) ~ 2): I ~ s(FI ) ~ 2 follows from Theorem 2 and Proposition 2. By 

definition of EN(j), EN(i)nEN(j) = ~ (i ~ j) follows. If there exists x ~ EN(2), 

then q(x), q((Tx), q((72x) are distinct end points by Lemma 9 and Theore.m l. So 

EN(2) = c and #(EN(O)) + s(EN(1)) = 2 follows. 

2) ~ l): If q(x) is an end point, t,here exist n, e N U {O}, w ~ E(~) and 

(r, s) e T such that x~ ~ s (if r~ ~ O) and x = wr~, since ~(Fl) ~ 2. Sinc,e q(a3x) 

is an end point for a,ny j e N, n ~ 2 follows from EN(2) = ip, which implies 

q(x) ~ EN(O) U EN(1). So #(EN(O)) + ~(EN(.1)) = 9_ implies t,hat the number of 

end points is 2. CI} 

S4. The invariant set and examples 

For a farnily of contraction functions { fl ' ' ' " fm }(m. ~ 2) on a complete metric 

space, Iet, It' be the invariant set, that is, It~ = fl(Ii~) U . . . fm(11L~) and ip be a map 

of E(ev) onto 11L Such that ip(xlx2' ' ') = Iim f f . . . fx (K) [3] Define the 
nH*oo xl x2 ~ 

equivalence rela.tion - on E(-) bv 

x - y if and only if ip(x) = ip(y) for x.y ~ E("). 

Then t,he equivalence relation - is invariant and 11~ is isomorphic to E(-)/-. Let 

A be t,he set {x ~ E(~) I ~y ~ E(~) such that x - y and Plx ~ Ply}. When 

#A < oo, the results in S3 can be applied to It'. We shall show some examples for 

{fl' ' ' " fm}(m ;~ 2) on C. Let ti(EP) denote the nuniber of end points. 
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Example 1. [~(EP) = O] 

1 l l
 -z, f2(z) = Let fl(z) = _ ~z + 2' 9
 

l I fi. f3(z) = ~z + ~ + 2 

Then E = {1, 2, 3}, Fl = ip and 

A = {12, 13, 21 , 23, 31 , 32}. 

Since Fl = ip, by Theorem 2 the number of end points of It' is O. 

Example 2. [~(EP) = I] 

Put 6 = - and r = . 
l
 Let fl(z) = z, f2(z) = r*e6iz+.1, - -~~~~ 'O ~+ 
~ -~~l~'~~/~'<;~;~" -~ / f3(z) = r * e('~e)iz + '7-, ~~ r * e~6iz + l, f4(z) = 

f5(z) = r * e(*+e)iz + 9-. 

Then E = '{1,2, 3,4, 5}, F1 = {1} and 

A = {141 , 151 , 21 , 9_41, 251 , 31, 341 , 351, 41, 441, 451, 51 , 541, 551 } . 

So ll ~ P2A and rT ~ A for any r e E¥{1}. Hence by Theorem 5 the number of 

end points of It' is l. 

Example 3. [~(EP~ = 2, ~(F1) = 2 and I(~ is homeomorphic to [0,l]] 

Put e = ~ an r = 
1
 Let fl(z) = r * r * eoiz + ~, z, f2(z) = 

f3(z) = r * e~oiz + ; +* V~63 . 

2
 f4(z) = r * z + -. 
3
 Then E = {1,2,3,4}, Fl = {1,4} A = {14, 21, 24, 31, 34,41}, T = {(1, l), (4,4)}, 

EN(O) = {1,4} and EN(n) = ip for n ~ l. So by Theorem 6, the number of end 

points of 11' is 2. The conditions 2(a),2(b) and 9_(c) of Theorem 3 are satisfied. So 

K is homeomorphic to the unit inteival. 
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Example 4. [~(EP) = 2 and #(Fl) = ~-] 
¥/~ 

put e = ~r_ and r = . 

1
 

Let fl(z) = -z, f2(z) = r*e6,z+ ; f3(z) 
4
 r * e~a'._ + ~, f4(z) = r * e('~e)iz + ~, f5(z) = 

r * e('+6)iz + ~, f6(z) = 1 3 
4z + 2' 

Then E = {1,~, 3,4, 5, 6}, F1 = {1, 6}, A = {16, 21, 9_6, 31, 36, 41, 46, 51, 56, 61 }, 

T = {(1, 1), (6,6)}, E_~r(O) = {1, 6} and EN(n) = c for n ~ l. So by Theorem 6, 

the number of end points of It' is 2. The conditions 2(a) and 9_(c) of Theorem 3 are 

satisfied, but for a = 16 e A, Qa = {16, 21,31} does not satisfy 9-(b) of Theorem 

3. So li~ is not homeomorphic to the unit interval. 

Example 5. [~(EP) = 2 and ~(F1) = I] 

Put wl = O,rl = ~'w2 = I~7r,r2 
3
 

20cosw2' w3 = -w2, r3 r2, w4 = 

7r tan~1(1~;tanw ), 4 I, w5 r =1 20 cos w4 

tan~1 -tanw2), r5 = 7r, ~ 260cosw5 w6 
(
 
I
l
 4
 r6 - -13' 

pl = ql = q2 = q3 q O, p2 p l, p4 1 6, q4 6 
= ~~ tanw2, p5 1 3 

tanw2 and p6 = 2. Let fj(z) = rj * e~j'z + pj + qji for j = 1, 2, . . . , 6. q5 = --10 
Then E ~ {1, 2, 3, 4, 5, 6}, F1 = {1}, A = {161, 21, 261, 31, 361 , 41 , 461, 51 , 561, 6261, 6461, 661}, 

T = {(1,1)}, EN(O) = {1}, EN(1) = {61} and EN(n) = ip for n ~ 2. So by 

Theorem 6, the number of end points of It' is 2. 

Example 6. [~(EP) = oo] 

7r l = - and r = . ~/~ 6
 

9_ l Let fl(z) = r * e6i~, f2(z) = -~+ -. 

3 3 
Then E = {1,9_}, Fl = {1,2}, A = {ll2,21}, T = {(2,2)}, EN(O) = {2}, 

EN(1) = {1~}, EN(2) = {9_1~} and EN(9_) ~ c . So by Proposition 3 and 

Theorem 6, the number of end points of 11L' is oo. 
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