Topological property of an invariant set with respect to a family of functions

Fukiko Takeo

Department of Information Sciences, Ochanomizu University,

2-1-1, Otsuka, Bunkyo-ku, Tokyo 112, Japan

ABSTRACT

We investigate the topological property of invariant sets with respect to a family of functions by using the quotient space of infinite sequences. We give some results concerning the number of end points.

§1. Introduction

For a family of contraction functions $\{f_1, \ldots, f_m\}$ $(m \ge 2)$ on a complete metric space, there is an invariant set K [3] satisfying the following

$$K = f_1(K) \cup \ldots \cup f_m(K).$$

M. Hata [2] investigated the topological property of the invariant set K and gave some results concerning the number of end points. Consider the set $E^{(\omega)}$ of infinite sequences, where $E = \{1, 2, ..., m\}$. Then there is a map ψ of $E^{(\omega)}$ onto K such that $\psi(x_1x_2...) = \lim_{n\to\infty} f_{x_1}f_{x_2}...f_{x_n}(K)$ [3]. The space $E^{(\omega)}$ with product topology is totally disconnected and perfect. If ψ is one to one, then the set K is also totally disconnected and perfect [e.g. the Cantor set]. If ψ is not one to one, then the topology of K shows various aspects and K is considered to be isomorphic to the quotient space induced by the equivalence relation \sim on $E^{(\omega)}$. The topology of the quotient space has been studied by some people. A. Kameyama [4] studied the topology of the quotient space $E^{(\omega)}/_{\sim}$ and considered the condition that $E^{(\omega)}/_{\sim}$ is connected or $E^{(\omega)}/_{\sim}$ is metrizable. C.Bandt and K.Keller [1] also studied the topology of the quotient space and considered connectivity and ramification properties. In [5], we investigated the topological property of the quotient

space in case $\sharp(E)=2$ and examined the number of end points. In this paper, we shall investigate the topological property of $E^{(\omega)}/_{\sim}$ for the case that the number of E is any finite number and give some results concerning the number of end points. In §4, we shall show some examples.

§2. The topology of the quotient space

For $m \geq 2$, let $E = \{1, 2, ..., m\}$ and $E^{(\omega)}$ be the set of infinite sequences from E. Let $E^{(n)}$ be the set of sequences from E of length n for $n \in \mathbb{N}$, $E^{(0)}$ be the empty set and $E^{(*)}$ be the set of finite sequences from E, i.e. $E^{(*)} = \bigcup_{n=0}^{\infty} E^{(n)}$. For $n \in \mathbb{N} \cup \{0\}$, let the map $P_n : E^{(\omega)} \to E^{(*)}$ be the projection such as

$$P_n x = x_1 x_2 \dots x_n$$
, where $x = x_1 x_2 \dots \in E^{(\omega)}$.

For $s \in E$ and $x = x_1 x_2 \dots$, $y = y_1 y_2 \dots \in E^{(\omega)}$, let

$$sx = sx_1x_2\dots$$

$$(P_n x)y = x_1 x_2 \dots x_n y_1 y_2 \dots$$

Let the map $\sigma: E^{(\omega)} \to E^{(\omega)}$ be a shift operator, i.e.

$$\sigma(x_1x_2\ldots)=x_2x_3\ldots$$

An equivalence relation \sim on $E^{(\omega)}$ is called to be *invariant* if the following (1) and (2) are satisfied:

- (1) $x \sim y$ implies $sx \sim sy$ $(\forall s \in E)$
- (2) $sx \sim sy \text{ implies } x \sim y$ $(\forall s \in E).$

For $x \in E^{(\omega)}$, let Qx be the equivalence class of x, i.e. $Qx = \{y \in E^{(\omega)} | x \sim y\}$. Let A, A_s, E_s and F_n be the sets as follows:

$$\begin{split} A := \{x \in E^{(\omega)} | \; \exists y \in Qx \text{ s.t. } P_1 x \neq P_1 y\}, \qquad A_s := \{x \in A \; | \; P_1 x = s\}, \\ E_s := \{x \in E^{(\omega)} \; | \; P_1 x = s\}, \qquad F_n = \{s \in E \; | \; \sharp (q(A_s)) = n\}, \end{split}$$

where $\sharp(q(A_s))$ is the number of elements of $q(A_s)$.

Hereafter, we assume that the equivalence relation \sim is invariant and $\sharp A < \infty$. By using the equivalence relation \sim on $E^{(\omega)}$, we shall investigate the topology of the quotient space. **Lemma 1** When $\sharp A < \infty$, $x \in A$ is non-cyclic.

Proof. Suppose $x \in A$ is cyclic, i.e. there exists $n \in \mathbb{N}$ such that $x = \sigma^n x$. Since $x \in A$ implies that there exists $y \in E^{(\omega)}$ such that $x \sim y$ and $P_1 x \neq P_1 y$, the relation $(P_n x)^l y \sim x$ holds for any $l \in \mathbb{N}$, which implies $\sharp A = \infty$. \square

For the equivalence class of $x \in E^{(\omega)}$, we have the following lemma.

Lemma 2 For $x \in E^{(\omega)}$, it holds that either

$$Qx = \{x\}$$
 or

$$Qx = \{(P_jx)v \mid v \in Qa\}$$
 with some $j \in \mathbb{N} \cup \{0\}$ and some $a \in A$.

Proof. If there exists no $y \in E^{(\omega)}$ such that $y \sim x$, then $Qx = \{x\}$. If there exists $y \in E^{(\omega)}$ such that $y \sim x$, then there exists n_y such that $P_{n_y}x = P_{n_y}y$ and $x_{n_y+1} \neq y_{n_y+1}$. Then $\sigma^{n_y}x \sim \sigma^{n_y}x$ and $\sigma^{n_y}x \in A$. Put $j = \min\{n_y \mid x \sim y\}$ and $a = \sigma^j x$. Then $a \in A$ since there exists $y \in E^{(\omega)}$ such that $y \sim x$, $P_j y = P_j x$ and $y_{j+1} \neq x_{j+1}$. Hence $Qx = \{(P_j x)v \mid v \in Qa\}$. $\{v \in Qa \text{ implies } (P_j x)v \sim (P_j x)a = x$ and so $\{(P_j x)v \mid v \in Qa\} \subset Qx$. On the other hand, $x \sim y$ implies $P_j x = P_j y$ and so $\sigma^j y \in Qa$ by the relation $\sigma^j x \sim \sigma^j y$.) \square

By Lemma 2, we can define the number l(x) for $x \in E^{(\omega)}$ as follows:

$$l(x) = \begin{cases} n & \text{if } Qx = \{(P_n x)v \mid v \in Qa\} \text{ for some } a \in A\\ \infty & \text{if } Qx = \{x\}. \end{cases}$$

When we consider the boundary of open sets, the number l(x) plays an important role.

Let $U_n(x)$ and $V_n(x)$ be subsets of $E^{(\omega)}$ as follows:

$$U_n(x) = \{ y \in E^{(\omega)} \mid P_n y = P_n x \}$$

$$V_n(x) = \{ y \in U_n(x) \mid P_n Q y \subset P_n Q x \}.$$

Let $q: E^{(\omega)} \to E^{(\omega)}/_{\sim}$ be the natural quotient map.

Let $\tilde{U}_n(q(x))$ be the subset of the quotient space $E^{(\omega)}/_{\sim}$ as follows:

$$\tilde{U}_n(q(x)) = \{ q(y) \in E^{(\omega)} /_{\sim} \mid P_n Q y \subset P_n Q x \}.$$

As for these sets, the following lemma holds.

Lemma 3 1.
$$U_n(x)\setminus V_n(x)\subset \{y\mid l(y)\leq n-1\}$$

2. $V_n(x)$ is open.

3.
$$\tilde{U}_n(q(x)) = \bigcup \{q(V_n(x')) \mid x' \in Qx\}$$

Proof. 1) It is clear by definition.

- 2) By $\sharp(A) < \infty$, the set $\{y \mid l(y) \leq n-1\}$ is a finite set. So $U_n \setminus V_n$ is a finite set and a closed set. So $V_n(x)$ is open.
- 3) It is easily seen by definition. \Box

By using lemma 3, we get the following proposition.

Proposition 1 The family $\{\tilde{U}_n(q(x)) \mid n \in \mathbb{N}, \ q(x) \in E^{(\omega)}/_{\sim}\}$ is a basis for the quotient topology in $E^{(\omega)}/_{\sim}$.

Proof. In order to show that $q^{-1}(\tilde{U}_n(q(x)))$ is open in $E^{(\omega)}$, we shall show that

$$q^{-1}(\tilde{U}_n(q(x))) = \bigcup \{V_n(x') \mid x' \in Qx\}.$$

By Lemma 3, it is obvious that $q^{-1}(\tilde{U}_n(q(x))) \supset \bigcup \{V_n(x') \mid x' \in Qx\}.$

On the other hand, let $y \in q^{-1}(\tilde{U}_n(q(x)))$. Then $q(y) \in \tilde{U}_n(q(x))$. By Lemma 3, there exists $z \in V_n(x')$ such that q(y) = q(z). Then $P_nQy = P_nQz \subset P_nQx$. So there exists $x'' \in Qx$ such that $y \in V(x'')$. Hence $q^{-1}(\tilde{U}_n(q(x)))$ is open, since $V_n(x)$ is open.

Next suppose W is a subset of $E^{(\omega)}$ such that $q^{-1}(W)$ is open in $E^{(\omega)}$ and $q(x) \in W$. Then we shall show that there exists $n_0 \in \mathbb{N}$ such that $\tilde{U}_{n_0}(q(x)) \subset W$. For any $x' \in Qx$ there exists $n_{x'} \in \mathbb{N}$ such that $U_{n_{x'}}(x') \subset q^{-1}(W)$. Since $\sharp(A) < \infty$, put $n_0 = \max\{n_{x'} \mid x' \in Qx\}$. Then $V_{n_0}(x') \subset U_{n_0}(x') \subset q^{-1}(W)$ and so $\bigcup \{q(V_{n_0}(x') \mid x' \in Qx\} \subset W$, which implies $\tilde{U}_{n_0}(q(x)) \subset W$.

Hence $\{\tilde{U}_n(q(x))\}$ is a basis for the quotient topology in $E^{(\omega)}/_{\sim}$.

Lemma 4 The boundary $\partial \tilde{U}_n(q(x))$ of the set $\tilde{U}_n(q(x))$ is as follows:

$$\partial \tilde{U}_n(q(x)) = \{q(y) \mid P_n y = P_n x' \text{ for some } x' \in Qx \text{ and } P_n Qy \not\subset P_n Qx\}$$

$$\subset \{q(y) \mid l(y) \le n - 1\}$$

Proof. Suppose $P_nx' = P_ny$ for some $x' \in Qx$ and $P_nQy \not\subset P_nQx$. Then $q(y) \notin \tilde{U}_n(q(x))$. Since for any k > n, there exists $z \in E^{(\omega)}$ such that $Qz = \{z\}$ and $P_kz = P_ky$, the relation $\tilde{U}_k(q(y)) \cap \tilde{U}_n(q(x)) \neq \phi$ holds. So $q(y) \in \partial \tilde{U}_n(q(x))$. On the other hand, suppose q(y) does not belong to the set $\{q(y) \mid P_ny = P_nx' \text{ for some } x' \in Qx \text{ and } P_nQy \not\subset P_nQx\}$. If for any $x' \in Qx$, $P_ny \neq P_nx'$ holds, then $\tilde{U}_n(q(y)) \cap \tilde{U}_n(q(x)) = \phi$, which implies $q(y) \notin \partial \tilde{U}_n(q(x))$. If $P_nQy \subset P_nQx$ holds, then $q(y) \in \tilde{U}_n(q(x))$, which implies $q(y) \notin \partial \tilde{U}_n(q(x))$.

$$\partial \tilde{U}_n(q(x)) \subset \{q(y) \mid l(y) \leq n-1\}$$
 follows from the definition. \Box

Remark. If $E^{(\omega)}/_{\sim}$ is connected, then $P_1A = E$ holds.

§3. End points of the quotient space

Hereafter, we consider the case that $E^{(\omega)}/_{\sim}$ is connected. In this paper, we discuss the number of end points of $E^{(\omega)}/_{\sim}$. So at first we shall define the end point using the basis $\{\tilde{U}_n(q(x))\}$ of the quotient space.

Definition. We shall call $q(x) \in E^{(\omega)}/_{\sim}$ to be an end point of $E^{(\omega)}/_{\sim}$ if there exists $N \in \mathbb{N}$ such that $\partial \tilde{U}_n(q(x))$ is a singleton for any $n \geq N$.

Theorem 1 1. The following (a) and (b) are equivalent.

(a)
$$q(x) \in E^{(\omega)}/_{\sim}$$
 is an end point of $E^{(\omega)}/_{\sim}$.

(b) i.
$$Qx = \{x\}$$
 and

ii. There exists $N \in \mathbb{N}$ such that $n \geq N$ implies

$$x_n x_{n+1} \notin P_2 A, \qquad x_n \in F_1.$$

- 2. If q(x) is an end point, then $q(\sigma x)$ is also an end point.
- 3. If q(x) is an end point, then for $s \in E$ either $sx \in A$ holds or q(sx) is an end point.

Proof. 1) b) \to a): Since $Qx = \{x\}$, there exists $N' \in \mathbb{N}$ such that $P_{N'}y = P_{N'}x$ implies $l(y) \geq N$. For $n \geq N'$, let $q(y) \in \partial \tilde{U}_n(q(x))$. Then by Lemma 4, $l(y) \leq n-1$ and $P_ny = P_nx$, which implies l(y) > N. If $N < l(y) \leq n-2$, then y = wv with $w \in E^{l(y)}, v \in A$. So $wv_1v_2 = P_{l(y)+2}y = P_{l(y)+2}x$ implies $v_1v_2 = x_{l(y)+1}x_{l(y)+2} \notin P_2A$. This is a contradiction to $v \in A$. Therefore l(y) = n-1. $P_1(\sigma^n x) \in F_1$ implies that q(y) is a singleton.

a) \to b): If $Qx \neq \{x\}$, there exist $k \in \mathbb{N}, w \in E^k$ and $u \in A$ such that x = wu. Hence $\partial \tilde{U}_n(q(x))$ is not a singleton for n > k.

If $P_2\sigma^n x \in P_2A$ with some $n \in \mathbb{N}$, then $\partial \tilde{U}_{n+2}(q(x))$ is not a singleton.

If $P_1\sigma^n x \in \{s \mid \sharp(q(A_s)) \geq 2\}$ holds, there exist $u^1, u^2 \in A$ such that $P_1u^1 = P_1u^2 = s$ and $q(u^1) \neq q(u^2)$. Then $q((P_nx)u^1), q((P_nx)u^2) \in \partial \tilde{U}_{n+1}(q(x))$ and $\partial \tilde{U}_{n+1}(q(x))$ is not a singleton. So if for any $N \in \mathbb{N}$ there exists n > N such that $P_2\sigma^n x \in P_2A$ or $P_1\sigma^n x \in \{s \mid \sharp(q(A_s)) \geq 2\}, q(x)$ is not an end point of $E^{(\omega)}/_{\sim}$.

- 2) is obtained by 1).
- 3) If $sx \notin A$, then $Q(sx) = \{sx\}$ holds and so q(sx) is an end point by 1). \square

In $E^{(\omega)}/_{\sim}$, end points do not necessarily exist. So we shall give the condition for the existence of end points.

Theorem 2 The following are equivalent.

- 1. There exists an end point of $E^{(\omega)}/_{\sim}$.
- 2. $F_1 \neq \phi$ and there exists $\{s_1, s_2, \ldots, s_n\} \subset F_1$ $(n \geq 1)$ such that

$$s_i s_{i+1} \notin P_2 A (j = 1, 2, \dots, n-1), \ s_n s_1 \notin P_2 A.$$

Proof. 1) \rightarrow 2): Suppose q(x) is an end point of $E^{(\omega)}/_{\sim}$. Then by Theorem 1, there exists $N \in \mathbb{N}$ such that $n \geq N$ implies

$$x_n x_{n+1} \notin P_2 A, \qquad x_n \in F_1.$$

Put $k_1 = x_N, k_2 = x_{N+1}, \ldots$. Then $k_j k_{j+1} \notin P_2 A(j \ge 1)$ and $k_j \in F_1$. Since F_1 is a finite set, there exist $n, l \in \mathbb{N}$ such that $k_{n+l} = k_l$. So $s_j = k_{l+j-1} (j = 1, 2, \ldots, n)$

are desired ones.

2) \rightarrow 1): Put $x = s_1 s_2 \dots s_n s_1 s_2 \dots s_n \dots$ be the iterated sequence of $s_1 s_2 \dots s_n \dots$ Then $Qx = \{x\}, P_1 \sigma^k x \in F_1(\forall k \in \mathbb{N}) \text{ and } P_2 \sigma^k x \notin P_2 A(\forall k \in \mathbb{N}).$ So q(x) is an end point of $E^{(\omega)}/_{\sim}$ by Theorem 1. \square

To consider the number of end points, we shall show the following lemma.

Lemma 5 Let s^1, s^2, s^3 be distinct elements of F_1 . Then the following holds:

$$\sharp \{rt | r, t \in \{s^1, s^2, s^3\}, rt \notin P_2A\} \ge 5.$$

Proof. Let i, j, k be distinct elements of $\{1, 2, 3\}$.

1) At first we shall show that if $s^i s^i$ belongs to $P_2 A$, then both $s^i s^j$ and $s^i s^k$ do not belong to $P_2 A$.

If we suppose both $s^i s^i$ and $s^i s^j$ belong to $P_2 A$, then there exist $x, y \in E^{(\omega)}$ such that $s^i s^i x, s^i s^j y \in A$ and $q(s^i s^i x) = q(s^i s^j y)$. So $q(s^i x) = q(s^j y)$. Since $s^i \in F_1$, $q(s^i s^i x) = q(s^i x)$ holds, which implies $(s^i)^l s^j y \in A(\forall l)$. This is a contradiction to $\sharp (A) < \infty$.

2) Next we shall show that $\sharp (\{s^is^i,s^is^j,s^is^k\}\cap (P_2A)^c)=1$ implies

$$\sharp (\{s^js^j, s^js^i, s^js^k\} \cap (P_2A)^c) \geq 2.$$

 $\sharp(\{s^is^i,s^is^j,s^is^k\}\cap (P_2A)^c)=1$ and 1) imply that both s^is^j and s^is^k belong to P_2A . So there exist $a,b\in E^{(\omega)}$ such that $s^is^ja,s^is^kb\in A$ and $q(s^is^ja)=q(s^is^kb)$. So $q(s^ja)=q(s^kb)$.

If $s^j s^j$ belongs to $P_2 A$, then by 1), $s^j s^k$, $s^j s^i \notin P_2 A$ holds. If both $s^j s^k$ and $s^k s^i$ belong to $P_2 A$, then there exist $c, d \in E^{(\omega)}$ such that $s^j s^k c, s^j s^i d \in A$ and $q(s^j s^k c) = q(s^j s^i d)$. So $q(s^k c) = q(s^i d)$. Since $s^i, s^j, s^k \in F_1$, the following holds:

$$q(s^id) = q(s^kc) = q(s^kb) = q(s^ja = q(s^js^id),$$

which implies $(s^j)^l s^i d \in A(\forall l)$. This is a contradiction to $\sharp(A) < \infty$. So $\sharp(\{s^j s^j, s^j s^i, s^j s^k\} \cap (P_2 A)^c) \ge 2$ holds. Therefore $\sharp\{rt \mid r, t \in \{s^1, s^2, s^3\}, rt \notin P_2 A\} \ge 5$ holds. \Box

By using lemma, we get the following proposition in case $\sharp(F_1) \geq 3$.

Proposition 2 If $\sharp(F_1) \geq 3$, then there exist infinitely many end points of $E^{(\omega)}/_{\sim}$.

Proof. Suppose s^1, s^2, s^3 are distinct elements of F_1 . Put $B = \{rt | r, t \in \{s^1, s^2, s^3\}, rt \notin P_2A\}$. Then by lemma 5, $\sharp(B) \geq 5$ holds. Let $x \in E^{(\omega)}$ satisfy $x_n x_{n+1} \in B$ for any $n \in \mathbb{N}$. Then q(x) is an end point of $E^{(\omega)}/_{\sim}$ since x satisfies the condition of (b) of Theorem 1. Since there are infinitely many $x \in E^{(\omega)}$ such that $x_n x_{n+1} \in B$ for any $n \in \mathbb{N}$, we get the conclusion. \square

Now we shall consider the case $\sharp(F_1)=2$.

Lemma 6 If $\sharp(F_1) = 2$, then there exists an end point $q(e_s)$ such that $P_1e_s = s$ for $s \in F_1$.

Proof. Put $F_1 = \{s, t\}$. If we suppose both ss and st belong to P_2A , then there exist $x, y \in E^{(\omega)}$ such that $ssx, sty \in A$ and q(ssx) = q(sty). So q(sx) = q(ty). Since $s \in F_1$, q(sty) = q(sx) = q(ty) holds, which implies $(s)^l ty \in A$ $(\forall l)$. This is a contradiction to $\sharp(A) < \infty$. So one of $\{ss, st\}$ does not belong to P_2A . So there exists an end point $q(e_s)$ such that $P_1e_s = s$. \square

Proposition 3 If $\sharp(F_1)=2$, then the number of end points of $E^{(\omega)}/_{\sim}$ is 2 or infinity.

Proof. Let $F_1 = \{s, t\}$. Then by lemma 6 there exist end points $q(e_s)$, $q(e_t)$ such that $P_1e_s = s$ and $P_1e_t = t$.

If there exists $r \in E \setminus \{s, t\}$ such that $re_s \notin A$ or $re_t \notin A$, then either $\{s^k re_s \mid k \in \mathbb{N}\}$ or $\{s^k re_t \mid k \in \mathbb{N}\}$ does not contain any element of A. So the number of end points are infinity.

If there exists $t \in E \setminus \{s, r\}$ such that $t\overline{s} \notin A$ [resp. $pr\overline{s} \notin A$], then we see that there exist infinitely many end points in the same way as Proposition 2.

If there exists no $r \in E \setminus \{s, t\}$ such that re_s , $re_t \notin A$, then the only $q(e_s)$ and $q(e_t)$ are end points. \square

When the number of end points is 2, we shall consider the condition that it is isomorphic to the unit interval.

Lemma 7 For $x, y \in E^{(\omega)} \setminus A$ satisfying P_1x , $P_1y \in F_1$ $(P_1x \neq P_1y)$, suppose

$$\sigma x$$
, σy , $\sigma z \in \{x, y\}$ $(\forall z \in A)$.

Then

1. for $s, t \in \{P_1x, P_1y\}$, the following (a) and (b) are equivalent.

- (a) $s\vec{t} \in P_2A$
- (b) $st \notin \{P_2x, P_2y\}$
- 2. The following (a) and (b) are equivalent.

(a)
$$z_n z_{n+1} \notin P_2 A$$
 $(\forall n)$ and $z_n \in \{P_1 x, P_1 y\}$ $(\forall n)$

(b)
$$z \in \{x, y\}$$

Proof. 1. Suppose that $st \in P_2A \cap \{P_2x, P_2y\}$. Then there exists $z \in A$ such that $P_2z = st$. σx , σy , $\sigma z \in \{x,y\}$ implies x = z or y = z, which is a contradiction.

2. Since $\sharp \{st \in P_2A \mid s,t \in \{P_1x,P_1y\}\} = 2$, $\sharp \{P_2x,P_2y\} = 2$ and $\sharp \{st \in P_2E^{(\omega)} \mid s,t \in \{P_1x,P_1y\}\} = 4$ hold, $P_2A \cap \{P_2x,P_2y\} \neq \phi$ implies (a) \Leftrightarrow (b). \square

Remark. Suppose σx , $\sigma y \in \{x, y\}$. Then the pair $\{x, y\}$ is one of the following four cases, where $s = P_1 x$, $t = P_1 y$:

$$\left\{ \begin{array}{l} x=\overline{s} \\ y=\overline{t} \end{array} \right. \left\{ \begin{array}{l} x=\overline{s} \\ y=t\overline{s} \end{array} \right. \left\{ \begin{array}{l} x=s\overline{t} \\ y=\overline{t} \end{array} \right. \left\{ \begin{array}{l} x=\overline{st} \\ y=\overline{ts}. \end{array} \right.$$

Lemma 8 Suppose that $\sharp(F_1)=2$ and $\sharp(F_2)=m-2$. Then the following are equivalent.

1. There exist distinct $x, y \in E^{(\omega)}$ satisfying

$$\cup_{j=1}^{m} \{jx, jy\} = A \cup \{x, y\} \qquad (**)$$

2. Let $F_1 = \{s,t\}$. Then there exist $x,y \in E^{(\omega)} \setminus A$ satisfying

$$P_1x = s, P_1y = t$$
 and $\sigma x, \sigma y, \sigma z \in \{x, y\} \ (\forall z \in A).$

- 3. Let $F_1 = \{s, t\}$. Then there exist $x, y \in E^{(\omega)}$ satisfying
 - (a) q(x) and q(y) are end points.
 - (b) $P_1x = s$, $P_1y = t$ and σx , σy , $\sigma z \in \{x, y\}$ $(\forall z \in A)$.

Proof. By the assumption, we have $\sharp(A) = 2 \times (m-2) + 1 \times 2 = 2m-2$.

- (1) \to (2): Considering the number of elements of both sides of (**), we have $x,y \notin A$. For $s \in F_1$, both sx and sy do not belong to A and so either sx or sy belongs to $\{x,y\}$, which implies $s=P_1x$ or P_1y . In the same way, $t=P_1x$ or P_1y for $t \in F_1$. So $\{s,t\} = \{P_1x, P_1y\}$. The relation (**) implies σx , σy , $\sigma z \in \{x,y\}$ ($\forall z \in A$).
- (2) \to (3): $\sigma x \in \{x, y\}$ implies $Qx = \{x\}$ and $x_n \in \{s, t\} = F_1$ for all $n \in \mathbb{N}$. $x_n x_{n+1} \notin P_2 A$ follows from lemma 7. So q(x) and q(y) are end points.
- $(3) \to (1)$: (3) implies $A \cup \{x,y\} \subset \bigcup_{j=1}^m \{jx,jy\}$. Since q(x) is an end point, we have $Qx = \{x\}$, which implies $x \notin A$. By counting the number of elements of both sides, we have $A \cup \{x,y\} = \bigcup_{j=1}^m \{jx,jy\}$. \square

Theorem 3 The following 1 and 2 are equivalent.

- 1. $E^{(\omega)}/_{\sim}$ is homeomorphic to the unit interval [0, 1].
- 2. (a) $\sharp(F_1) = 2$, $\sharp(F_2) = m 2$
 - (b) $\sharp (Qa) = 2$ for any $a \in A$.
 - (c) There exist $x, y \in E^{(\omega)}$ satisfying

$$\cup_{i=1}^{m} \{jx, jy\} = A \cup \{x, y\}. \tag{*}$$

Proof. (1) \to (2): Let $\psi: E^{(\omega)}/_{\sim} \to [0,1]$ be a homeomorphism. Let $\tilde{j}: E^{(\omega)}/_{\sim} \to E^{(\omega)}/_{\sim}$ be defined by $\tilde{j}(q(x)) = q(jx)$ for any $q(x) \in E^{(\omega)}/_{\sim}$. Then \tilde{j} is well-defined and continuous. So $\psi(q(E_j)) = \psi(\tilde{j}(E^{(\omega)}/_{\sim}))$ is a compact continuous subset of [0,1] and a closed interval, say $[\alpha_j, \beta_j]$ for any $j \in E$ $(0 \le \alpha_j < \beta_j \le 1)$. Since $\sharp(A) < \infty$,

$$q(E_j) \cap q(E_i) \neq \phi$$
 implies $\beta_j = \alpha_i$ or
$$\alpha_j = \beta_i. \tag{**}$$

Let q(x) and q(y) be $\psi^{-1}(0)$ and $\psi^{-1}(1)$ respectively. Then q(x) and q(y) are end points of $E^{(\omega)}/_{\sim}$. Put $s = P_1 x$. Then $\psi(q(E_s)) = [0, \beta_s]$. Since $E^{(\omega)}/_{\sim}$ is connected and $\sharp(A) < \infty$, there exists only one $r \in E$ such that $q(E_s) \cap q(E_r) \neq \phi$ and so $s \in F_1$. In the same way, $t = P_1 y \in F_1$. Then by the relation (**) and $\sharp(A) < \infty$, there exists a permutation $\pi : E \to E$ such that $\pi(1) = s$, $\pi(m) = t, \ q(E_{\pi(j)}) \cap q(E_{\pi(j+1)})$ is a singleton, say, $\{q(a^j)\}\ (j = 1, \dots, m-1)$ and $q(E_{\pi(l)}) \cap q(E_{\pi(k)}) = \phi$ for $|k-l| \geq 2$. So $F_1 = \{s, t\}$ and $\sharp(F_2) = m-2$. $a\in A$ implies $q(a)\in \{q(a^1),\ldots,q(a^{m-1})\}$ and so $\sharp(Qa)=2$. Since $E^{(\omega)}/_{\sim}$ is homeomorphic to [0,1], the number of end points of $E^{(\omega)}/_{\sim}$ is 2 and q(x), q(y) are end points. By Theorem 1 (2), $q(\sigma x)$, $q(\sigma y)$ are end points and σx , $\sigma y \in \{x,y\}$. By Theorem 1 (3), $jx \in A$ or q(jx) is an end point. So $\bigcup_{j=1}^{m} \{jx, jy\} \subset A \cup \{x, y\}$. Since the numbers of elements of both sides are 2m, the equality holds and we get (*).

 $(2) \to (1)$: By lemma 6, q(x) and q(y) are end points of $E^{(\omega)}/_{\sim}$. By (a) and (b), there exists a permutation π of E satisfying

$$\pi(1), \ \pi(m) \in F_1, \ \ \pi(2), \dots, \pi(m-1) \in F_2$$

and

$$q(E_{\pi(i)}) \cap q(E_{\pi(i+1)}) \neq \phi \quad (j = 1, \dots, m-1).$$

So we may suppose that $P_1x = 1, P_1y = m, F_1 = \{1, m\}$ and

$$q(E_j) \cap q(E_{j+1}) \neq \phi \quad (j=1,\ldots,m-1).$$

$$\begin{split} q(E_j) \cap q(E_{j+1}) \neq \phi \quad & (j=1,\ldots,m-1). \\ \text{Put } \lambda_j := \left\{ \begin{array}{ll} 1 & \text{if} \quad q(jx) \in q(E_{j-1}) \\ -1 & \text{if} \quad q(jx) \in q(E_{j+1}) \end{array} \right. \text{ for } j(2 \leq j \leq m-1), \\ \lambda_1 := \left\{ \begin{array}{ll} 1 & \text{if} \quad 1x = x \\ -1 & \text{if} \quad 1y = x \end{array} \right. & \text{and } \lambda_m := \left\{ \begin{array}{ll} 1 & \text{if} \quad my = y \\ -1 & \text{if} \quad mx = y \end{array} \right.. \\ \text{Put } \gamma_1(u) = \frac{u_1-1}{m} \end{split}$$

$$\gamma_n(u) = \frac{\frac{\prod_{k=1}^n \lambda_{u_k} + 1}{2} (u_n - 1) + \frac{1 - \prod_{k=1}^n \lambda_{u_k}}{2} (m - u_n)}{m^n} \quad \text{for } n \ge 2$$

and $\gamma(u) = \sum_{n=1}^{\infty} \gamma_n(u)$ for $u \in E^{(\omega)}$. Then for $n \geq 2$ and $j \in E, u \in E^{(\omega)}$,

$$\gamma_n(ju) = \frac{\lambda_j}{m} \gamma_{n-1}(u) + \frac{(1-\lambda_j)(m-1)}{2m^n}.$$
 (***)

It is obvious that $\gamma_1(x) = \gamma_2(x) = 0$ and $\gamma_1(y) = \frac{m-1}{m}, \gamma_2(y) = \frac{m-1}{m^2}$. By using the relation (***), we get $\gamma_n(x) = 0$ and $\gamma_n(y) = \frac{m-1}{m^n}$ for all $n \in \mathbb{N}$. So $\gamma(x) = 0$ and

 $\gamma(y)=1$. By using the relation (***), we also get that $\gamma(u)=\gamma(v)$ holds if and only if q(u)=q(v). \square

Now we shall consider the case $\sharp(F_1)=1$.

Proposition 4 If $\sharp(F_1) = 1$, then the following hold.

- 1. The number of elements of E is greater than 3, i.e. $m \geq 3$.
- 2. The number of end points of $E^{(\omega)}/_{\sim}$ is 0, 1, 2 or infinity.
- Proof. 1. Suppose that m=2, i.e. $E=\{s,t\}$. If $F_1=\{s\}$, then $\sharp(A_t)\geq 2$, that is, there exist sx, ty, $tz\in A(y\neq z)$ such that $sx\sim ty\sim tz$. $y\neq z$ and $E=\{s,t\}$ imply that there exists $w\in E^{(*)}$ such that $y=wsy',\ z=wtz'$ or vice versa. So $sy'\sim tz'$. Since $\sharp(A_s)=1$, then x=y'. So $sx\sim tz'\sim twtz'$, from which $z'\sim (wt)^lz'$ follows for any $l\in \mathbb{N}$. This is a contradiction to $\sharp(A)<\infty$. So $m\geq 3$.
- 2. Suppose the number of end points is $n(3 \le n < \infty)$. Since $\sharp(F_1) = 1$, we can put $F_1 = \{s\}$. So by Theorem 1, there exists $w \in E^{(*)}$ such that $q(w\overline{s})$ is an end point. Theorem 1 2) implies $q(\overline{s})$ is also an end point. Since the number of end points is not 1, there exists $r \in E \setminus \{s\}$ such that $r\overline{s} \notin A$ by Theorem 5. If there exists $t \in E \setminus \{s,r\}$ [resp. $p \in E \setminus \{s\}$] such that $t\overline{s} \notin A$ [resp. $pr\overline{s} \notin A$], then either $\{s^k r\overline{s} \mid k \in \mathbb{N}\}$ or $\{s^k t\overline{s} \mid k \in \mathbb{N}\}$ [resp. $\{s^k pr\overline{s} \mid k \in \mathbb{N}\}$] does not contain any element of A and we see that there exist infinitely many end points in the same way as Proposition 3. So $t\overline{s} \in A$ for any $t \in E \setminus \{s\}$] and end points are either \overline{s} or $\underbrace{s \dots s}_{l} r\overline{s}$ ($0 \le \forall l \le n-2$). Therefore $\underbrace{s \dots s}_{l} r\overline{s} \in A$. If n > 2 holds, then $ss \in P_2A$, which implies that $q(\overline{s})$ is not an end point. This is a contradiction. So the number of end points of $E^{(\omega)}/_{\sim}$ is 0, 1, 2 or infinity. \square

By Propositions 2, 3 and 4, we get the following theorem.

Theorem 4 If $\sharp A < \infty$, then the number of end points of $E^{(\omega)}/_{\sim}$ is 0, 1, 2 or infinity.

We shall give a condition that the number of end points is 1.

Theorem 5 The following are equivalent.

- 1. The number of end points is 1.
- 2. (a) $\sharp(F_1) = 1$, i.e. $F_1 = \{s\}$, and $ss \notin P_2A$,
 - (b) $r\overline{s} \in A$ for any $r \in E \setminus \{s\}$.

Proof. 1) \to 2): Since there exists an end point of $E^{(\omega)}/_{\sim}$, $\sharp(F_1) \geq 1$ by Theorem 2. By Propositions 2 and 3, $\sharp(F_1) \leq 1$. So $\sharp(F_1) = 1$ i.e. $F_1 = \{s\}$, which implies that if q(x) is an end point, then $x = w\overline{s}$ with some $w \in E^{(*)}$. Hence $ss \notin P_2A$. If $r\overline{s} \notin A$, then $q(r\overline{s})$ is also en end point. So $r\overline{s} \in A$ for any $r \in E \setminus \{s\}$.

2) \to 1): If q(x) is an end point, then $\sharp(A_s)=1$ implies $x=w\overline{s}$ with some $w\in E^{(*)}$. The condition (b) implies that $q(r\overline{s})$ is not an end point of $E^{(\omega)}/_{\sim}$ for $r\in E\backslash\{s\}$. So $q(\overline{s})$ is the only end point. \square

To consider a condition that the number of end points is 2, we give some definitions.

Let T be the set

$$\{(r,s)|r,s\in F_1,rs\notin P_2A \text{ and } sr\notin P_2A\}$$

and let EN(j) (j=0,1,2) be the following:

$$EN(0) = \{e = \overline{rs} | (r, s) \in T\}$$

$$EN(1) = \{t\overline{rs}|t \in E, (r,s) \in T, t \neq s \text{ and } t\overline{rs} \notin A\}$$

$$EN(2) = \{te | t \in E, e \in EN(1) \text{ and } te \notin A\}.$$

Then the following theorem 6 shows a condition that the number of end points is 2.

Lemma 9 If x belongs to EN(j) $(2 \ge j \ge 0)$, then q(x) is an end point.

Proof. If $x \in EN(j)$, then $Qx = \{x\}$ holds. So by Theorem 1, q(x) is an end point. \Box

Theorem 6 The following are equivalent.

- 1. The number of end points is 2.
- 2. $1 \le \sharp(F_1) \le 2$, $EN(2) = \phi$ and $\sharp(EN(0)) + \sharp(EN(1)) = 2$.

Proof. 1) \to 2): $1 \le \sharp(F_1) \le 2$ follows from Theorem 2 and Proposition 2. By definition of EN(j), $EN(i) \cap EN(j) = \phi$ ($i \ne j$) follows. If there exists $x \in EN(2)$, then $q(x), q(\sigma x), q(\sigma^2 x)$ are distinct end points by Lemma 9 and Theorem 1. So $EN(2) = \phi$ and $\sharp(EN(0)) + \sharp(EN(1)) = 2$ follows.

2) \to 1): If q(x) is an end point, there exist $n \in \mathbb{N} \cup \{0\}$, $w \in E^{(n)}$ and $(r,s) \in T$ such that $x_n \neq s$ (if $n \neq 0$) and $x = w\overline{rs}$, since $\sharp(F_1) \leq 2$. Since $q(\sigma^j x)$ is an end point for any $j \in \mathbb{N}$, $n \leq 2$ follows from $EN(2) = \phi$, which implies $q(x) \in EN(0) \cup EN(1)$. So $\sharp(EN(0)) + \sharp(EN(1)) = 2$ implies that the number of end points is 2. \square

§4. The invariant set and examples

For a family of contraction functions $\{f_1, \ldots, f_m\}(m \geq 2)$ on a complete metric space, let K be the invariant set, that is, $K = f_1(K) \cup \ldots f_m(K)$ and ψ be a map of $E^{(\omega)}$ onto K such that $\psi(x_1x_2\ldots) = \lim_{n\to\infty} f_{x_1}f_{x_2}\ldots f_{x_n}(K)$ [3]. Define the equivalence relation \sim on $E^{(\omega)}$ by

$$x \sim y$$
 if and only if $\psi(x) = \psi(y)$ for $x, y \in E^{(\omega)}$.

Then the equivalence relation \sim is invariant and K is isomorphic to $E^{(\omega)}/_{\sim}$. Let A be the set $\{x \in E^{(\omega)} \mid \exists y \in E^{(\omega)} \text{ such that } x \sim y \text{ and } P_1 x \neq P_1 y\}$. When $\sharp A < \infty$, the results in §3 can be applied to K. We shall show some examples for $\{f_1, \ldots, f_m\}(m \geq 2)$ on \mathbb{C} . Let $\sharp (EP)$ denote the number of end points.

Example 1.
$$[\sharp(EP) = 0]$$

Let $f_1(z) = \frac{1}{2}z$, $f_2(z) = \frac{1}{2}z + \frac{1}{2}$,
 $f_3(z) = \frac{1}{2}z + \frac{1}{4} + \frac{\sqrt{3}}{4}i$.
Then $E = \{1, 2, 3\}$, $F_1 = \phi$ and

$$A = \{1\overline{2}, 1\overline{3}, 2\overline{1}, 2\overline{3}, 3\overline{1}, 3\overline{2}\}.$$

 $A=\{1\overline{2},1\overline{3},2\overline{1},2\overline{3},3\overline{1},3\overline{2}\}.$ Since $F_1=\phi$, by Theorem 2 the number of end points of K is 0.

Example 2.
$$[\sharp(EP)=1]$$

Put
$$\theta = \frac{\pi}{6}$$
 and $r = \frac{1}{4 * \cos \theta}$.
Let $f_1(z) = \frac{1}{2}z$, $f_2(z) = r * e^{\theta i}z + 1$,
 $f_3(z) = r * e^{-\theta i}z + 1$, $f_4(z) = r * e^{(\pi - \theta)i}z + 2$,
 $f_5(z) = r * e^{(\pi + \theta)i}z + 2$.
Then $E = \{1, 2, 3, 4, 5\}$, $F_1 = \{1\}$ and

 $A = \{14\overline{1}, 15\overline{1}, 2\overline{1}, 24\overline{1}, 25\overline{1}, 3\overline{1}, 34\overline{1}, 35\overline{1}, 4\overline{1}, 44\overline{1}, 45\overline{1}, 5\overline{1}, 54\overline{1}, 55\overline{1}\}.$

So $11 \notin P_2A$ and $r\overline{1} \in A$ for any $r \in E \setminus \{1\}$. Hence by Theorem 5 the number of end points of K is 1.

Example 3. $[\sharp(EP)=2, \sharp(F_1)=2 \text{ and } K \text{ is homeomorphic to } [0,1]]$

Put
$$\theta = \frac{\pi}{3}$$
 an $r = \frac{1}{3}$.
Let $f_1(z) = r * z$, $f_2(z) = r * e^{\theta i}z + \frac{1}{3}$, $f_3(z) = r * e^{-\theta i}z + \frac{1}{2} + \frac{\sqrt{3}}{6}i$, $f_4(z) = r * z + \frac{2}{3}$.

Then $E = \{1, 2, \overline{3}, 4\}, F_1 = \{1, 4\}$ $A = \{1\overline{4}, 2\overline{1}, 2\overline{4}, 3\overline{1}, 3\overline{4}, 4\overline{1}\}, T = \{(1, 1), (4, 4)\}, T = \{(1, 1), (4, 4)$

 $EN(0)=\{\overline{1},\overline{4}\}$ and $EN(n)=\phi$ for $n\geq 1$. So by Theorem 6, the number of end points of K is 2. The conditions 2(a),2(b) and 2(c) of Theorem 3 are satisfied. So K is homeomorphic to the unit interval.

Example 4.
$$[\sharp(EP) = 2 \text{ and } \sharp(F_1) = 2]$$

Put $\theta = \frac{\pi}{4}$ and $r = \frac{\sqrt{2}}{4}$.
Let $f_1(z) = \frac{1}{4}z$, $f_2(z) = r * e^{\theta i}z + \frac{1}{2}$, $f_3(z) = \frac{\pi}{4}z$, $f_4(z) = r * e^{(\pi-\theta)i}z + \frac{3}{2}$, $f_5(z) = r * e^{(\pi+\theta)i}z + \frac{3}{2}$, $f_6(z) = \frac{1}{4}z + \frac{3}{2}$.

Then $E = \{1, \overline{2}, 3, 4, 5, 6\}$, $F_1 = \{1, 6\}$, $A = \{1\overline{6}, 2\overline{1}, 2\overline{6}, 3\overline{1}, 3\overline{6}, 4\overline{1}, 4\overline{6}, 5\overline{1}, 5\overline{6}, 6\overline{1}\}$, $T = \{(1, 1), (6, 6)\}$, $EN(0) = \{\overline{1}, \overline{6}\}$ and $EN(n) = \phi$ for $n \ge 1$. So by Theorem 6, the number of end points of K is 2. The conditions 2(a) and 2(c) of Theorem 3 are satisfied, but for $a = 1\overline{6} \in A$, $Qa = \{1\overline{6}, 2\overline{1}, 3\overline{1}\}$ does not satisfy 2(b) of Theorem 3. So K is not homeomorphic to the unit interval.

Example 5.
$$[\sharp(EP)=2 \text{ and } \sharp(F_1)=1]$$

Put $w_1=0, r_1=\frac{1}{2}, w_2=\frac{5}{18}\pi, r_2=\frac{3}{20\cos w_2}, \ w_3=-w_2, \ r_3=r_2, \ w_4=\frac{3}{20\cos w_4}, \ w_5=\frac{3}{120\cos w_4}, \ w_5=\frac{3}{120\cos w_4}, \ w_6=\pi,$

$$\tan^{-1}(\frac{39}{11}\tan w_2), \ r_5=\frac{11}{260\cos w_5}, \ w_6=\pi,$$

$$r_6=\frac{4}{13},$$

 $p_1 = q_1 = q_2 = q_3 = q_6 = 0, p_2 = p_3 = 1, p_4 = 1.6, q_4 = \frac{6}{65} \tan w_2, p_5 = 1.3,$ $q_5 = -\frac{3}{10} \tan w_2 \text{ and } p_6 = 2. \text{ Let } f_j(z) = r_j * e^{w_j i} z + p_j + q_j i \text{ for } j = 1, 2, \dots, 6.$ Then $E = \{1, 2, 3, 4, 5, 6\}, F_1 = \{1\}, A = \{16\overline{1}, 2\overline{1}, 26\overline{1}, 3\overline{1}, 36\overline{1}, 4\overline{1}, 46\overline{1}, 5\overline{1}, 56\overline{1}, 626\overline{1}, 646\overline{1}, 66\overline{1}\},$ $T = \{(1, 1)\}, EN(0) = \{\overline{1}\}, EN(1) = \{6\overline{1}\} \text{ and } EN(n) = \phi \text{ for } n \geq 2. \text{ So by}$ Theorem 6, the number of end points of K is 2.

Example 6.
$$[\sharp(EP) = \infty]$$

Put $\theta = \frac{\pi}{6}$ and $r = \frac{1}{\sqrt{3}}$.
Let $f_1(z) = r * e^{\theta i} \overline{z}$, $f_2(z) = \frac{2}{3} \overline{z} + \frac{1}{3}$.

Then $E = \{1,2\}$, $F_1 = \{1,2\}$, $A = \{11\overline{2},2\overline{1}\}$, $T = \{(2,2)\}$, $EN(0) = \{\overline{2}\}$, $EN(1) = \{1\overline{2}\}$, $EN(2) = \{21\overline{2}\}$ and $EN(2) \neq \phi$. So by Proposition 3 and Theorem 6, the number of end points of K is ∞ .

References

- C.Bandt and K. Keller, A simple approach to the topological structure of fractals. Math. Nachr. 154 (1991), 27-39.
- [2] M.Hata. On the structure of Self-Similar Sets. Japan J. Appl. Math. 2(1985), 381-414.
- [3] J.E.Hutchinson. Fractals and self-similarity. Indiana Univ. Math. J. 30(1981), 713-747.
- [4] A. Kameyama. Self-Similar Sets from the Topological point of View. Japan J. Indust. Appl. Math. 10(1993) 85-95.
- [5] F. Takeo. Self similar sets and quotient sets of infinite sequences. Nat. Sci. Rep. Ochanomizu Univ. 43(2)(1992), 61-74.