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Abstract

Four classes of rules of cellular automata are defined in {3]. In this paper,
based on the definition, we redefine four classes mathematically and classify
some rules of the simplest cellular automata.

1 Introduction

Cellular automata are a class of mathematical systems characterized by discrete-
ness (in space, time, and state values), determinism, and local interaction.

Let Z and IN be the set of integers and the set of natural numbers. A cellular
automata consists of d-dimensional lattice (Zd,d € N), and each site takes a
state, one of the values from the set Z; = {0,---,k — 1}, where k is a natural
number. ¢t € Z; denotes the state of a site i € Z¢ at time t € N . The state of a
site ¢ at time t+1 is determined from the states of its neighborhood i —r,- -+, i 47,
at time ¢, i.e.

1 _ 1 oot t ot t
T —f(l"i—rv' s L 19Ty Tig1s "!$i+r)7

where f : ( Zk)zr+1 — Zj represents the “rule” defining the automata, (f is called
a rule function), and parameter r determines the “range” of the rule.
Based on investigation of a large sample of cellular automata, it suggests that

many (perhaps all) cellular automata fall into four basic behavior classes. In ref.

[3], four classes were defined as follows.
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Class 1 Evolution leads to a homogeneous state.

Class 2 Evolution leads to a set of separated simple stable or periodic structures.
Class 3 Evolution leads to a chaotic pattern.

Class 4 Evolution leads to complex localized structures, sometimes long-lived.

In this paper we discuss classification of rules of the simplest cellular automata
without simulation. The simplest cellular automata are those with r = 1 and
k = 2, these automata are defined on a one-dimensional spatial lattice, and consist
of binary-valued sites evolving in time according to a nearest-neighbor interaction
rule. Since the domain of f is the set of 2% possible 3-tuples, the rule function
f is completely defined by specifying the “rule table” of values ¢; € {0,1} with
¢ =0,1,---7 such that

000 — 4,001 = ¢y,---,111 = ¢,

where xyz — ¢; indicates that f(zyz) = ¢;. There is a total of 28 = 256 distinct
rules. The conventional labeling scheme [1] assigns the integer
7
R = Z 2 (eq: 1)
=0
to the rule defined by f. The rule number thus assumes an integer value between
0 and 255.

We redefine four classes mathematically and in Section 3 show another expres-
sion (eq: 2) of rules. This expression is useful to see the property of rules for
classification. Since some linear rules are studied in [2], the other linear rules are
investigated in Section 4 and the nonlinear rules are investigated in Section 5 using
the expression of Section 3. Finally we classify some rules of the simplest cellular

automata using the results of Section 4 and 5.
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2 Injectivity and linearity

A rule R is said to be linear if the function f defining the rule R satisfies
additivity condition; that is, for y and z € X = {0,1}*"*,

fy)+f(z) = f(y+z2),

where “4-” denotes binary addition. A rule R is said to be injective in the (i + m)th

component (m € {—r,---,—1,0,1,---r}) if for every tuple
(Timr " X1 Ziig1 - Tigr) € X,

the rule table for R represents a one-to-one mapping between z;4m, and

f(Zimr Ti—1TiTip1 - Tigr) When the other components .r;.,_j (3 # m) are fixed.
In this section, the relationship between injectivity and linearity is discussed. It

is easy to check injectivity of a rule, but difficult to check linearity of a rule by

definition of R (eq: 1). The following proposition asserts that a rule is linear if

the function f defining the rule R is injective and satisfies a certain condition.
Notation 1 1. For z € {0,1}, let 7 := z+1.
2. Fore =2, Ti pp1 - Ti Tipr—1Titr € X, let

FM . . . >’ . . .
T = Ti—rTi—r41 " Tipm " Titr—1Ti4r-

3. For the function f defining the rule R, let

Xf={zeX|f(2)=0} and
XP={eeX|f(x)=1},

where X = {0,1}>"t".

Proposition 2 If each site takes one of the values from Z = {0,1}, the following

(I) and (II) are equivalent.
(I) R is a linear automata rule.

(II) Either (1) or (2) holds.
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(1) A rule R is injective in at least one component and for any ®,y € X&,

there exists z € X{E such that z+y = z.
(2) R=0
proof (II)=-(I) It is obvious that (2) implies (I). So we show that (1) implies
that (I).

Let R is injective in the (¢ + m)th component (m € {—r,---,r}) and x,¥y
belong to X . Then ™, %™ belong to X&. So 2™ +7™ = x-+y. Therefore

flety) =0=f(=)+f(9).
In other cases, we can prove in a similar way.

(I)=(II) Suppose a rule R is not injective in any component. Then it follows

that all y € X are mapped to 0 by the linearity of the rule R. a

3 Definition of class

In this section, based on Wolfram’s four classes, we redefine four classes math-

ematically.

Notation 3 1. An initial condition {2%;—~0c0 <i < 0o} is said to be a finite
initial condition I{My, M;]on an infinite lattice if there exist finite numbers

My, M, satisfying ¢ = 0 for ¢+ < My, > M, and 2§, =23, =1.

2. Let a member of the set {zf;—00 < i< oo} [ resp. {zf;t=0,1,---}] be

called a spatial sequence S*[ resp. a temporal sequence W;].

Definition 4 Let {z;M; —t <i < M, +t,t > 0} be generated by the rule for
initial condition I{Mj, Ms]. Consider the following three cases (a),(b),and (c).

Case (a)
There exists a time to such that {zf; My — ¢ <i < Mz +1t},5, is homoge-

neous, that is,
zt=0 (Vt>toand My —t<Vi<M;+1t)
or

zt=1 (Vt>tpand M; —t<Vi<M+1)
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Case (b)
For each site 7 there exist a time #; and a natural number m such that

zt = !*™ for t > t;, and not case (a).

Case (c)

There exists at least one site ¢ such that a temporal sequence W; is aperiodic.

Then one of the above cases occur and we define four classes as follows:

Class I Case(a) holds for any initial condition I{M;,M,].

Class II Case(b) holds for any initial condition I[My, M,].

Class IIT Case(c) holds for any initial condition I[M;, Ms].

Class IV At least two of cases (a)~(c) occur depending on the initial condition.
To show which class a rule belongs to, we use the following theorem.
Notation 5 For a state mfFE ZF let 2t 2t =2l x ot

Theorem 6 Let By = {0}, B; = {1,2,4}, By = {3,5,6} and B; = {7}, and
define {a,-}z___o by using {c,-}z___o in (eq: 1) as follows.

(1) Fori € By, let a; = ¢;.

(2) Fori € By, let a; = co+c;.

(3) Forie€ By,

o a; = ci+ep dag + 209 + a1 =t ordas +2a, +a; =T7—1
“EN a = citeco+1  otherwise ’

(4) Fori e B,

{ 14¢r o Z?—o a; mod 2 =1
ar = . 6
et if Y, _paimod2=0

Then the rule function f can also be expressed as follows:

t t ot _ 1 to ottt t

flioizizly,) = actaizly,+agaitase) - ol +agzi
1 t t 1 t t ] t A 1 .
taszi g i tastiy c titare_g - 2wy {eq 2)

where a; € {0,1} with j =0,---,7 and “+” denotes addition modulo 2.
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proof To show that the function (eq: 2) represents the rule R defined by (eq: 1),
it is enough to show that f(zsz120) = ¢z,2244,244, holds for any zsz iz € X.
For & = 000, f(000) = a¢ = co by (1).
For & € {001,010,100}, let @ = zyz129, 25 = 1(k € {0,1,2}). Then 2* € B,
and by (2),

f(ﬂvzl'ﬂo) G4$2+G21’14’a0$0+ao
= am+tag
= (Co-i*czk) *i-ao
= Cok.
For z € {011,101,110}, let & = 292129, 2§ = & = 1 (k # m; k,m € {0,1,2}).
Then 2642™ € B;. We show f (z22120) = Coryom. Now f (z22120) = ags mk+a2mxm+a2k+2mxk-

Tm+ag. If either day + 2a9 + @y =1 or 4aq + 2a2+ ay = 7 —1, agr = asm. By (3),

i

f(i) Aok pom+ao
= C2k+2m"§'ca+ao
= Cokyom.
Otherwise since agx # agm, agr+agm = 1. By (3),
f(z) = ldageipm+tao
= 1+ (62k+2m+co+1) +ag

= C2k+2m.

Therefore f(zaz120) = Coyom.

For @ = 111, let & = zx120. Then 20 + 2! + 22 € B3 and by (4),

f(111) = ao+ai+---+agtar
= 14 (14¢r)

= O,
where Z?=0 a; mod 2 =1, and

f(l].l) = a0+a1-i—-"+a64-07
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= 07’
6 :
where y_._; a; mod 2 = 0.

Therefore f(z22120) = €zy2244,2+2, Bolds for all zoz120 € X. a

4 Linear rule

In this section, the properties of linear rules are investigated. A rule is linear if
and only if ag = a3 = a5 = ag = ar = 0 in (eq: 2) holds, i.e. one of the following
rules

0,60,90,102,150, 170,204, 240.

Proposition 7 Suppose the rules evolve on lattice with arbitrary initial condition

I[My, Ms].
(i) If R is a rule with ag = 1 in (eq : 2), then i, ., =1 holds for anyt > 1.
(i1) If R be a rule with a1 = 1 in (eq: 2), then xﬁwl_, =1 holds for anyt > 1.

proof (i) Let R be a rule with a4y = 1 in (eq: 2). By induction, we can show

Th,4y = Lforany t > 1.
(ii) It is obtained in the same way as in (3). o

Proposition 8 Let R be a rule with a; +as+aq =1 and ag+az+as+ag+ar =0

in (eq:2).

(i) For an intial condition 1[M;, My]and any ¢ € Z, there exists T(;) € N such
that at = %! holds for t > T(y.

(ii) For an initial condition 1[M;y, M;] and eny t > 0,
xﬁ,,z_,_t =1, :ri;ll_t =1 or 1‘5‘41 =1 holds.
proof Let R be a rule with
5”:_“ =a zﬁ_,,l-i-ag:cf-i—awﬁ_l,

where a; +ag + a4 = 1.
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(i) Let R be arule witha; = 1. By 2{*! ==z{,,, 2%, ,,_, =0foranyi,t € N .So
"cﬁ\’,gj]l = xg',;zf; and 5”3\/12-{-;‘ = 0 for j,t € N . Therefore there exists
Ty € N such that zt = .’L‘E_H for t > T;. For a rule R with a4 =1 or

ay = 1, the conclusion will be obtained similarly.

(ii) Let R be a rule with a; = 1] resp. a4 = 1]. By Proposition 7z}, ., = 1 holds
for any t € N [resp. z},, _, = 1].

Let R be a rule with a; = 1. By z!*! =i, ¢}y, = 1 holds for any t € N .00
Remark Rules 170,204 and 240 satisfy the condition of Proposition 8.

Proposition 9 Let R be a rule with ay = 1,a1+ay = 1,ap+as+as+ag+ar =0
in (eg : 2). Then every temporal sequence W; generated by the rule with an initial
condition 1[My, Ms] on an infinite lattice 1s either I periodic or 2m periodic (m is

a natural number ).
proof Let R be a rule with a; = 1. Then z!{t! = zf_, 4zt

(1) For i < My, if t=1, then z} = 2?_,+2? = 040 = 0. We assume z! = 0 for
any t < k with some ¥k € N. Fort =k +1, :cf"'l =zf f2F=0+0=0
by assumption. Since z! = 0 for any ¢ > 1, any temporal sequence W; is 1

periodic .

(2) Fori =M and t = 1, z}, = 2%, _,+2z%, = 0+1 = 1 by assumption.

We assume that 2! = 1 for any t < k withk € N. For t = k + 1, zﬁzl =
xﬁ,ll_l—'%xlj/[l = 0+1 = 1 by assumption. Since T’f\/ll =1lforanyt > 1, a

temporal sequence Wyy, is 1 periodic.

(3) For i > M, we assume that a temporal sequence W; is 1 periodic 2m periodic

for any ¢ < iy with 55 > M;. Let W;, be of p periodic with p € {1,2m} and

k> p. Then mfo_l—'kxfo_z—f-n-‘i-:cf;” = a with a € {0,1} holds for k¥ > p.
So
k k-1 k-1 k=13 k=2 k-2
Tioqpr = Ty T =tz w0
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:Bk_l

k-2 k-3 k-3
i TTip T, T4

k=1 k=2 © k—p: k—p
Tio R e

= LpkP
= a+z; 5.

Therefore if a = 1, a temporal sequence W;, 11 is 2p periodic, since :vfo—fl =

k+p _ . . . . k—p _ .k
z; ¢ If a =0, a temporal sequence W, 4, is p periodic, since T = T4

Therefore every temporal sequences W; is either 1 periodic or 2m periodic (m
is a natural number).

For ay =1, the conclusion will be obtained similarly. O

Proposition 10 [2] Let R be an injective rule in its (¢ + 1)th component with
100 € Xf ( or injective in its (i — 1)th component with 001 € XF). Then with
arbitrary finite initial conditions, there can ezist at most one periodic temporal

sequence.

Remark Rules 90 and 150 satisfy the condition of Proposition 10.

5 Nonlinear rule

In this section, the property of nonlinear rules are investigated by using theorem

Proposition 11 Consider the rule R with ag = 0 end a1 + a3 < 1 in (eq: 2).
Suppose there exist M € N and 19 € N such that $fo = 0 holds for t > M with
an initial condition 1[M;, Ms].

(i) Let R be a rule with a; = 0. If there ezists k > M such that zf ., =0, then
zf .1 =0 holds for any t >k .

(ii) Let R be a rule with ag = 0. If there ezists k > M such that zf_, =0,

19—1

then z} _; =0 holds for any t >k .
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proof (i) As Ris arule witha; =0andz{ =0fort> M ,forany t>M

t+1 ot t
i+l T f(xmmm+1$n+2)

z
= aT g1 asT g Tippatasti Faszi, - 4,
-i—asilif(, : $§g+1+a7$$0 : $§0+1 : a”:.,+2
= a2x§0+1—i-a3:cfo+1 'x§o+2-
Therefore there exists k¥ > M such that xfo 41 = 0 and 2}, = 0 for any

t> k.
(ii) It is obtained in similar way to (7). O

Propositioﬁ 12 Let R be a rule with esther (a) a4 = l,ap = a1y =az = a3 =0
or (b) a1 = 1, ap = az = a4 = ag = 0 in (eq:2). Then for an initial condition

I[My,Ms)and i € Z there ezists T;y € N such that z} = 0 holds for t > Ty;).

proof (a) By assumption and Theorem 6, we have

1 ot 5t ¢ttt bt
T, = T, tasT_y T tae®, T ATy T Ty (*)-

By using (*), we get 2! = f (29_,2%2%,,) = 0 for any ¢ < M; and 2! =0
for any t > 0, ¢ < M;. As it is obvious that if zI_, = 0, then z!™ = 0,
wAtM]_IH = 0 for any ¢ > M;. By Proposition 11(i), ! = 0 for any ¢ > M;,
t>¢—M; +1and any ¢+ € Z , and so there exists T(;y € N such that

zt = z!t! = 0 for any t > T(,.

1

(b) It is obtained in similar way to (a). o

Proposition 13 Let R be a rule with either (a) a3 = a3 = a4 =1, ap = a1 =
as=0o0r(b)ar=ay=das=1, ag=as=as=01n (eq:2). Then for an initial
condition I1[My,Ms)and i € Z there ezists Ty;y € N such that z} = 0 holds for
t> T

proof (a) By assumption,

41 _ t ottt N ottt 3.1 3t t; ot t ¢
Ty = f($i—1xi1’i+1 =TT T T FaeTi Tyt arTi g Ty T
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By using Proposition 11(i) and the above relation, we get the conclusion by

induction.
(b) By assumption,
x§+1 = If+1"}‘$§‘i‘a3$§ : $§+1‘i‘$§—1 -zitarzl_; - o) '$2+1-
The conclusion will be obtained in the same way as in (a). O
Proposition 14 Let R be a rule with either (a) a3 = ay =ag =1, ay = a; =
aa=00r()ay=az=as=1, ag=ay=a4 =0, and a5 +ar = 1 in (eq:2).

Then for an initial condition 1[My,Ms)and i € Z there ezists Ty € N such

that 2t = 0 holds for t > T(;.

proof (a) Now
$3+1 _

1 t . 4 1 t t Lot t t t 1
T Loy FT a5y Tty ATy B Ty,

where as + a7 = 1. By using Proposition 11(i) and the above relation, we

get the conclusion by induction.

(b)

It is obtained in similar way to (a). O

Proposition 15 Let R be a rule with ap = a1 = ag = 0 in (eq:2). Then for an
initial condition I1[My, Myland t >0, z! = 0 holds for i < M, and i > M,.

proof Now
1 _ ot ot t ot ot ts ¢t .t
;77 = GT+asT T HasTig Ty HaeTi g BT T Tiygge

Let ¢t = 1. Since 2% = 0 for any j < M; and j > Mz, for i < My and i > M,

_ 0} 0.0 I 0o ..03,..0 .0 0
T; = A% Fa3Ty Ty +asTiog c TipHAeTiog T HAIT Ty Tigg

= 0
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When t = k, we assume that :L‘? =0 for any j < M; and j > M;. Then for any
1< My and 1 > M,

E+1 k; ko ko k ko k k k t k&
1','+ = % a3¥y T tesTig  Tip T2y Ty HATT g Ty Ty
= 0.
Then z! = 0 holds for ¢t > 0, : < M and i > M. 0

Proposition 16 Let R be a rule with ap = a) = ag = a4 = 0 and a3 +a¢ < 1
in (eq : 2). Then for an initial condition I1[My,Ms]and My <1 < M, there exists
M € N such that ! = 0 holds for any t > M.

proof Now

41 _ ot Lot ot oot b1ttt
T =037 Ty Ha5Tig  TipHA6Tiy  TiHATT g T Ty,

where a3 + ag < 1. By using Proposition 11(i) and 15, the conclusion will be

obtained by induction. O

6 Classification of some rules

In the previous sections, some propositions have been established. Using them,

we classify some rules of the simplest cellular automata.

Theorem 17 Some rules of the simplest cellular automata are classified as fol-

lows.
L class ] rule |
class T | 0,8, 32,40, 64,96, 128, 136, 160, 168, 102, 224
2,10,16,24, 34, 38,42, 46,48, 52, 56, 60
class 11 | 66,80,98,102,112,116,130,138, 144, 162
166,170,174, 176, 180, 204, 208, 240
class 11T | 18,30, 86,90, 150, 154,210
proof Let

A; = {2,10,16,34,42,48,80,112,130, 138, 144, 162,176,208} ,
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A, = {38,46,52,116,166,174,180,244},

A; = {24,56,66,98},

Ay = {8,32,40,64,96,128,136,160,168,192, 224},
As = {0,170,204,240},

As = {30,86,90,150,154,210},

A7 = {18} ’

Ag = {60,102}.

(i) For a rule R € A;, there exists T(;y € N such that z! = 0 for any ¢t > Tj;
and any : € Z with an initial condition I[M;, M;]by Proposition 12. In
addition, either zj, , = 1 for any t > 1 or 2y, ,, = 1 for any t > 1 by
Proposition 7. Since every temporal sequence W; generated by the rule R

does not satisfy (a) of Definition 4 but satisfy (b), it belongs to Class II.

(ii) For a rule R € A,, by Proposition 13 and Proposition 7, every temporal
sequence W; generated by the rule R does not satisfy (a) of Definition 4but
satisfy (b). Therefore it belongs to Class II.

(iii) For a rule R € Aj, by Proposition 14 and Proposition 7, every temporal
sequence W; generated by the rule R does not satisfy (a) of Definition 4 but
satisfy (b). Therefore it belongs to Class IL

(iv) For arule R € Ay, there exists M € N such that z! = 0 for any ¢t > M and
M; —t < i < My +t for an initial condition I[M;, M;]by Proposition 15
and Proposition 16. Since the rule R satisfies (a) of Definition 4, it belongs
to Class L.

(v) For arule R € As with R #0, then 2}, , =0orz}, ., =0foranyt,ie N.
So the rule R belongs to Class II by Proposition 8 . Rule 0 belongs to Class

I obviously.

(vi) For a rule R € Ag, almost all temporal sequence W; generated by the rule R

is aperiodic for an initial condition I[M;, M;]by Proposition 10. Since the
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rule R satisfies (¢) of Definition 4, it belongs to Class III.

(vii) For arule R € A;, we get the conclusion by the following proposition.

Proposition 18 [2] For arbitrary finite initial conditions of even length on
an infinite lattice, every temporal sequence generated by rule 18 is aperiodic.
For arbitrary finite initial conditions of odd length on an infinite lattice, every
temporal sequence - with the exception of the trivial case - is aperiodic. The
trivial case is the center temporal sequence of all 0’s generated by rule 18
from a finite spatial sequence that is spatially symmetric, with all 0-blocks

of odd length.

(viii) For a rule R € Ag, the conclusion will be obtained by Proposition 9. o
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