
On the COnneCtivity Of JUlia Sets of 

TransCendental Entire FunCtiOnS 

Masashi KISAK_~ 

Department of Mathematics, College of Integrated Arts and Science, 

University of Osaka Prefecture, Gakuen-cho 1-1, Sakai 593, Japan 

e-mail : kisaka@mathsun.cias.osakaftl-u.ac.jp 

Abstract 

We have two main purposes in this paper. One is to give sorc~e sufncient conditions 

for the Juha set of a transcendental entire function f to be connected or to be 
disconnected as a subset of the complex pla,ne C. The other is to investigate the 

boundary of an unbounded periodic Fatou component U, ¥vhich is kno¥vn to be simply 

connected. These are related as follows: Iet <p : E) --~ U be a Rjemann map of U from 

a unit disk JD), then und~er some mild conditions we show the set eoo Of all angles 

where ~, admits the radial limit oo are dense in aE) if U is an attracting basin, a 

parabolic basin or a Siegel disk. If U is a Baker domain on which f is not univalent, 

then eoo is dense in an) or at least its closure eoo contains a certain perfect set, 

which means the boundary aU has a very complicated structure. In all cases, this 
result leads to the disconnectivity of the Julia set Jf in C. We also consider the 

connectivity of the set Jf U {oo} in the Riemann sphere C and show that Jf U {oo} 

is connected if and only if f has no multiply-connected wandering domains. 

l Defirutrons and Results 

Let f be a transcendental entire function and fn denote th~ n-th iterate of f. PLecall 

that the Fatou set Ff and the Julia set Jf of f are defined as follows: 

Ff {z ~ C [ {fn}nOO=1 rs a normal family in a neighborhood of z}, 

Jf := C¥Ff' 

It is possible to consider the Julia set t,o be a subset of the Riemann sphere C := C U {oo} 

by adding the point of inflnity oo to it. This definition is mainly adopted in the case 

of meromorphic ftmctions (for example, see [Ber]) and also there are some researches on 

convergence phenomena of Julia sets as subsets of C: ([Ki], [Krj, [KrK]). In this setting, 

Jf is compact in C and hence Jf is rather easy to handle. But for a transcendental entire 

function the suitable phase space as a dynamical system is the complex plane C, not the 

Riemann sphere C, because oo is an essential singularity of f and there seems to be no 
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reasonable weLy to define the value at oo. So it is more natural to regard Jf as a subset of 

C rather than of C and hence we define Jf as above and write Jf U {oo} when we consider 

Jf to be a subset of C. 

A connected component U of Ff is called a Fatou component. A Fatou component 

is called a wandering domain if f~(U) n f"(U) = ~ for every m, n ~ I~: (m ~ n). If there 

exists an no ~ N with f""(C/) ~ Lf, U is called a periodic component and it is well known 

that there are following four possibilities: 

l. There exists a point zo ~ U with fno(zo) = zo and l(fno)!(zo)1 < I and every point 

_' ~ C/ satisfles f~ok(z) -~ zo as h -~ oo. The point zo is called an attracting periodic 

point and the domain U is called an attracting basin. 

e2lrio 2. There exists a point zo C aU with f~o(zo) = zo and (fno)/(zo) = (O ~ ~]) and 

every point z e U satisfies f~ok(z) -~ zo as k H, oo. The point zo is called a parabolic 

periodic point and the domain U is called a parabolic basill;. 

3. There exists a point zc ~ C/ ¥vith f~o(zo) = zo and (f"~))/(zo) = e2*ie (e e I~ ¥ (Q) and 

f~o IU is conjugate to an irrational rotation of a unit disk. The domain Lf is called a 

Siegel disk. 

4. For every z ~ Cf, f"ok(z) -> oo as h -~ oo. The domain U is called a Baker domain. 

In particular, if no = l, U is called an invariant component. U is called completely invariaT~t 

if Cr satisfies f (Cf) C U C/ Is called a preper~odic componeTht if f"(U) is a periodic 

component for an m ~ l. U is called eventualty periodic if U is periodic or preperiodic. 

It is known that eventually periodic components of a transcendental entire function are 

simply connected ([Ber], [ELl]) while a wandering domain can be multiply-connected 

([Bal], [Ba2], [Ba5]). 

The boundary of unbounded periodic Fatou component can be extremely complicated. 

For example, consider the exponential faroily EA(_･) := Ae'. If ~ satisfies O < ~ < -le ' E;L(z) 

has a unique attracting fixed point pA with an unbounded simply connected completely 

invariant basin ~(pA) and the Fatou set FEA Is equal to this basin ([DG]). Let Y2 : n) -H' 

~(pA) be a Riemann map of ~(pA) from a unit disk E), then the radial limit lim./1 ~'(reie) 

exists for all eie e aE) and moreover the set 

e~ := {e'o I ~(eie) := Iim~'(re"e) = oo} 
'/l 

is dense in al) ( [DG]). This implies that the Riemann map is highly discontinuous and 

hence the boundary of ~~)A), which is equal to JE~ , is extremely complicated. From this 

fact, it follows that JEA Is disconnected in C, since ~ is conformal the set 

~)({reio* j O ~ r < l}U{re'e. O ~ r < 1}) C Cf (al'a2 ~ e-, el ~ e ) 
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is a Jordan arc in C and this separates JEA into two disjoint relatively open subsets. 

Taking these facts into account, we shall investigate the set e_ for a genetal un-

bounded periodic component U and also consider the following problem 

Problem : When is the Julia set of a transcendental entire function f connected or 

disconnected as a subset of C? 

If f is a polynomial, the following criterion is well known. (For example) see [Bea] or [Mj). 

Proposition A Let f be a potynomial of degree d ~ 2. Then the J~dia set Jf is connected 

if and ordy if no finite critical values of f tend to oo by the iterates of f. 

Here, a critical value is a point p := f(c) for a point c with f!(c) = O. This is a singularity 

of f-1. For pclynomials we have only to consider this type of singularities but there can 

be another type of singularities called an asymptotic ~)alue for the transcendental case. A 

point p is called an asymptotic value if there exists a continuous curve L(t) (O ~ t < 1) 

called an asymptotic path with 

Iti_.+mlL(t) = oo and limf(L(t)) = p. 
t~l 

A point p is called a singulaT value if it is either a critical or an asymptotic value and we 

denote the set of all singular values as sing(f-1). 

If f is transcendental, however, the above criterion does not hold. For example, Iet 

us consider the exponential family EA(z) := ~e' again. If ~ satisfies O < A < ~, the unique 

O (this is an asymptotic value) is attracted to the fixed point pA and singular value z = 

hence does not tend to oo but the Julia set JEA rs disconnected as we mentioned above. 

For other values of ~, for example A > 1_e ' the singular value -' = O may tend to oo. 

If f is a polynomial all of whose critical values tend to oo, then Jf is a Cantor set and 

especially disconnected. But on the other hand in this case Jf is equal to the entire plain 

C ([D]) and hence connected. 

Before considering the connectivity of Jf in C, we investigate the connectivity of 

Jf U {oo} in C. In this situation compactness of Jf U {oo} in C makes the problem easier. 

Actually we can prove the following: 

Theorem I Let f be a tTaT2~5cendental entire function. Then the set Jf U {oo} in C is 

connected if and only if Ff has no multiply-connected wandering domains. 

Corollary I Under one of the following conditi012s, Jf U {oo} in C is connected. 

(1) f ~ ~ := {f I sing(f-1) is bounded}. 

(2) Ff has an u72.bounded component. 

(3) There exists a curve r(t) (o ~ t < 1) with limt_1r(t) = oo such that flr is bounded. 

Especially f has a finite asymptotic value. 
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Then how about Jf in C itself? The results depend on whether Ff admits an un-

bounded component or not. In the case when Ff admits no unbounded components, we 

obtain the following: 

Theorem 2 Let f be a tral~5cendental entiTe function. If all the components of Ff are 

bounded aud simpty connected, then Jf is connected. 

The following is an easy consequence from Theorem I and 2 . 

Corollary 2 Let f be a transcendental entire function. If all the components of Ff aTe 

bounded, then Jf Ls connected in C if and udy if Jf U {oo} is connected in C. 

As we mentioned before, for the unbounded component ~~2A) of FEA the set of all 

angles where the Riemann map Y' : E) --~ ~(pA) admits the radial limit oo is dense in 

aE) and this leads to the disconnectivity of JEA . The Main result of this paper is the 

generalization of this fact. Under some conditions this result holds for various kinds of 

unbounded periodic Fatou components. Here, a point p ~ aU is accessible if there exists a 

continuous curve L(t) (O ~ t < 1) in U with limt_1 L(t) = p. 

Main Theorem Let C/ be an unbounded periodic Fatou component of a tTanscendental 

entire function f, ~) : ID) -~ U be a Riemann map of U from a unit disk D), aud 

~ : U Pf~o = (f"o)"(sing((f~o)-1)). 

~=0 

We assume one of the following fouT couditions' 

(1) U is an attracting basin of period no and oo e aCf is accessible. There exists a finite 

point q e aU with q ~ Pf"o, mo e N and a continuous curve C(t) C U (O ~ t ~ l) with 

C(1) = q and satisfies f"o(C) [) C. 

(2) U is a parabolic basin of period no and oo e aC/ is accessible. TheTe exists a finite 

point q e acr with q ~ Pf"o, mo e I~:J aud a continuous curve C(t) C U' (o ~ t ~ 1) with 

C(1) = q and satisfies fmo(C) D C. 

(3) U is a Siegel disk ofperiod no and oo ~ aU is accessible. 

(4) U is a ~aker domain of period no and f~o c/ is not univalent. TheTe exists a finite 

point q e aU with q ~ Pf"o , mo e N and a continuou5 curve C(t) C U (o ~ t ~ 1) with 

C(1) = q and satisfies f~o(C) D C. 

Then the set 

eoo := {e'e j (p(eie) := Iim(p(re'e) = oo} 

r/1 

is dense in aE) in the case of (1), (2j or (3). In the case of (A), the closuTe eoo contazTzs 

a certain perfect set in aE). In particular, Jf is disconnected in all cases. 

In the case of the exponential family, Devaney and Goldberg ([DG]) obtained the explicit 
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expression 
~)~1 o E)¥ o ~)(z) = expi ~t+ p. , ,L ~ {z I Im z > O} ( ~) 

1+z 
for a suitable Rj:emann map Y' which was crucial to show the density of Ooo in aE~). In 

general, of course, we cannot obtain the explicit form of Y2~1 o f"o o ~(z) so instead of it we 

take advantage of a property of inner functions. In general analytic function g : E) -=> D 

is called an inner function if the radial limit g(e'e) := Iim./1 g(reie) exists for almost every 

ete ~ al) and satisfies lg(e'e)1 1 It rs easy to see that ~~1 o fno o ~) Is an mner functlon 

It is known that an inner function g has a unique fixed point p ~ E~ called a Den3'oy- Wolff 

point and gn(z) tends to p locally uniformly on E) ([DMj). The following is an important 

lemma for the proof of the Main Theorem. 

Lemma I Let g : E) ･-> ID) be an inner function which is not a Mdbius transformation and 

p its Denjoy- Wolff point. 

(1) Ifp e E), then Un*'--lg~n(zo) D aE) holds for every zo ~ E)¥ E where E is a certain 

exceptional set of logarithmic capacity zero. 

(2) Ifp ~ aE), then U*oo__lg~n(zo) D K holds for every zo ~ ID) ¥ E where E is a certain 

exceptional set of logarithmic capacity zero and K is a certain peTfect set in a~~). 

If U is either an attracting basin or a parabolic basin and g = ~)~1 f"o fP we can say 

more about the set UnoQ__1 g~~(zo)' 

Lemma 2 Let V~ be either an attracting basin or a parabolic basin (not necessar~y un-

bounded) and g = ~)~1 o fno o ~o. Then there exists a set E C E~) of logarithmic capacity zero 

such that 
(7~ (zo, '4) measA 

(n -> oo) -> (Tn (zo, aED)) 9-7r 

holds for every zo ~ E)¥ E and every arc A in aE), wheTe cr~(zo, A) = ~(1 - 1~12) and stLm 

(
 is.taken over all ( = l~leie with gn(~) = zo and e'a e A. 

We omit the proofs of Lemma I and Lemrna 2. 

In S9- we prove Theorem I and Corollary l. S3 consists of two subsections. In S3.l 

we prove Theorem 2 and make some remarks on the sufiicient conditions for f to admit 

no unbounded Fatou components. In S3.9- we prove the Main Theorem by using Lemma l 

and Lemma 2. 

2 ConnectiVity Of Jf U {oO} in ~C 

(Proof of Theorem 1): The followmg cntenon Is well kno¥vn (See for example [Bea] 

p.81, Proposition 5.1.5) . 
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Proposition B Let K be a compact subset in C. Then K is connected if and ordy 'if each 

component of the complelrT~ent Kc is simply connected. 

Since Jf U {oo} is compact in C, we can apply Proposition B. As we mentioned in S1, 

eventually periodic components are simply connected. So if a Fatou component U~ is not 

simply connected, then U is necessarily a wandering domain which is not simply connected. 

This completes the proof. C] 
(Proof of Corollary l): Under the condition (1), fn cannot tend to oo through Ff 

([EL2]). On the other hand, fn tends to oo on any multiply-connected wandering domains 

([Ba4], [ELl]). So all the Fatou components are simply connected in this case. Under the 

condition (2) or (3), it is known that all the Fatou components must be simply connected 

([Ba4], [ELl], p.69-0 Corollary l, 2). [
]
 

Remark I (1) Let S := {f I #sing(f-1) < oo} C B. Then there is even no wandering 

domain in Ff for f ~ S ([GK]). For f ~ B, Ff may admit a wandering domain Cr but U 

must be simply connected as we mentioned above, Under an additional condition 

~ )
 

Jf n (derived set of U f"(sing(f~1)) = , ~
 

n=0 

f ~E B has also no wandering domain ([BHKMT]). 

(2) We can conclude that in general if Jf U {oo} is disconnected, all the Fatou components 

are bounded and some of which are multiply-connected wandering domains. 

3 Connectivity of Jf in ~r_. 

3 1 The case when all the Fatou components are bounded 

Suppose that a closed connected subset K in C is bounded. Then all the compo-

nents of the complement K' other than the unique unbounded component V are simply 

connceted. (Of course, V U {oo} C C is simply connected) . If K is unbounded, then 

all the components of K' are simpLy connected, but the converse is false as the example 

JEA(O < ~ < 1_..) shows. (Compare with the Proposition B). But note that JEA U {oo} is 

connected in C. For the connectivity of a closed subset in C, the following criterion holds. 

Proposition I Let K be a closed subset of C. Then K is connected if al7,d only if the 

boundaTy of each component U of the complement K' is c07~'T~ected. 

(Proof): For the 'only if' part, see [New]. Suppose that K is disconnected. Then there 

exist twc closed sets K1 and K2 with K = K1 U K2 and Kl n K2 = ~. Take a point zo with 

d(zo, K1) = d(zo, K2) where d denotes the Euclid distance in C. Then zo C K' and so let Uo 
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be the connected component of Kc containing zo' Since aUO Is connected by the assumption, 

either aUO C Kl or aUO C K2' Without loss of generality we can assume aUO C K1' On 

the other hand denote ro := d(.-o,K1) = d(.-c,K2) and let D.o(zo) := {z I Iz - zol < To}' 

Then D.o(zo) C Uc and there exists a point w e K2 with w ~ V'o' Since w ~ K2 C K, we 

have w e aUO but this is a contradiction since aUO C K1 and K1 n K2 = ~. This completes 

(Proof of Theorem 2): By Proposition l, it is suf~cient to to show that the boundary 

aU is connected for each Fatou component C/. Since U is bounded, the boundary of U as 

a subset of C and the one as the subset of C coincide. Hence Lf is simply connected if and 

only if aU is connected ([Bea], p-81, Proposition 5.1.4) . This completes the proof. C
I
 

Remark 2 (1) Since a non-simply connected Fatou component is necessarily a, wandering 

domain, the assumption of Theorem 2 is equivalent to that all the components of Ff are 

bounded and Ff admits no multiply-connected wandering domains. 

(2) Several suf~cient conditions are known for a transcendental entire function f to admit 

no unbounded Fatou components as follows: 

(i) ([Ba3]) IogM(r) = O((logr)P) (as r -+ oo) where JI~1(r) = sup If(z)1 and I < p < 3. 
'i=' 

(ii) ([S]) There exists c ~ (O l) such that loglog A/1(r) < (logr) ~ for large r 

' (10g log r)c (iii) ([S]) The order of f is less than ; and log J~lf(9r) _> c (flnite constant) as T -> oo 

log -~r(r) 

Note that the condition (ii) includes the condition (i). 

3.2 In the case when Ff admits an unbounded component 

(Proof of Main Theorem): In what follows we assume that no = I (that is, Cf is an 

invariant component) and mo = I for simplicity. This causes no loss of generality, because 

we have only to consider fmo instead of f in general cases. 

Case (1) Since oo is accessible, there exists a continuous cur¥'e L(t) (O ~ t < l) in U with 

limt_1 L(t) = oo. By deforming L(t) slightly, we construct a new curve L(t) satisfying the 

following condition. 

Lemma 3 TheTe exists a curve L(t) (O ~ t < l) with limt_lL(t) = oo such that every 

bTanch of f-n can be analyticalty continued along it for eveTy n e N. 

(Proof): We may assume that L(O) ~ Pf' since q ~ Pf we have C/ ~ Pf' Let po := 

L(O),pl'p2, ' ' ' be points on L such that all the piecewise linear line segments connecting 

po,P1'P2, ' ' ' Iie in U. Let F~(1), Fn(2),. . . , Fn(m), . . . be all the branches of f-n which take 

values on C/. The range of the su~x m may be finite or infinite. Define 

e(nm)~)o) := {eie I F(m)can be analytically continued along the ray 
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l from po in the'direction e} (n = 1,2, . . .). 

Then by the next Gross's Star Theorem ([Nev]), it follows t,hat e(~m) Cpo) has full measure 

in aE). 

Lemma C (Gross's Star Theorem) Let f be an entire function and F a bTanch of f-1 

defined in the neighboThood ofpo ~ C. Then F can be anatytically continued along almost 

all rays from po in the direction e. 

Then the set 

e(po) := n o(""')~2 ) 
n>_1,m>_l 

has also full measure in e~). Hence by changing pl slightly to a point pl , the segnents popl 

and p/1p2 Iie in U and all the branches F"(~) (n ~ I , m ~ 1) can be analytically continued 

along poPil' By the same method) we can find a point p~ close to p2 such that the segment 

pip~ Iies in U and has the same property as above. By repeating this argument, ¥ve can 

Let l(~m) (t) := F"(m) ()C(t)) then we have limt_1 Z("m) (t) = oo. For suppose this is false, 

then there exist an increasing sequence of parameter values tl < t2 < . . . < tk < . . . and a 

finite point ct with limk_") l(nm) (tk) = oi ~ oo. Then it follows that limk_= L(tk) = fn(a) ~ 

oo and this contradicts the fact limk_= L(tk) = oo. 

Let ~ : ~) HH. U be a Riemann map of U. Then 

r(t) ~) (L(t)) and n((m)(t) := ~'~1(1(m)(t)) 

are curves in ~) Ianding at a point in a~). This fact is not so trivial but follows from the 

proposition in [P](p.29, Proposition 2.14). ¥Ve may assume that r(t) Iands at _･ = I e alD) 
for simplicity. If limt_1 7"(~o)(t) = eiao, then since limt_1 (p(~("omo)(t)) = Iimt_1 l("omo) (t) = oo, 

it follows that there exists the radial limit lim._1 (p(re'eo) and this is equal to oo. This fact 

follows from the theorem in [P] (p.34, Theorem 2.16). Therefore it is ~ufficient t,o show 

that the set of all the landing points of ~'(nm) (t) (n ~ l, m ~ 1) is dense in a~~). 

Let g := ~~~1 o f o ~) : ~ --~ D). Then by Fatou's theorem ~; has radial limit 

~)(e"a) = Iimr/1 ~o(Tese) ~ aU and non-constant for almost every eie ~ aD. Hence foY2(reie) 

is a curve landing at a point in aCf ¥ {oo} for almost every eio ~ aE). Therefore it follows 

that limr/1 ~~1 o f o ~(reio) e 6E~) a.e. and thus g is an inner function. Let C := ~P~1(C) 

then by the same reason for r(t) , C is a, curve in ID with an end point ~ ~ aU satisfying 
oo 

g(C) ~) C. From the dynamics of g : ID) -~ ~), it follows that the set U gn(d) U{p q} Is 

~=0 
compact in ED) ¥vhere ~ = ~)~1~7) and ~ is an attracting fixed point of g and the chstance 

between this set and z = I is positive. Hence there exists co > o such that 

{ Qo n ~ -, }_ U g (C) U{p q} ~ -~ 
~=0 
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Since r(t) Iands at, z = l, there exists to e [0,1) such that rl[t0,1) C U=0(1). So by 

rewriting rl[to, 1) to r(t) (O ~ t < 1) we may assume that r(t) C U=0(1) for O ~ t < 1). 

Let K := {z I Izl ~ I - co} then since every point in E) tends to ~ under g~ and K is 

compact, there exists nl e N such that for every N ~ nl we have gN(K) C U=a~~. Then we 

have n((N~) (t) C K' for every N > nl. For suppose that 7(N") (t) n K ~ ~, then by operating 

fN we have r(t) n K ~ ~ which contradicts r(t) C U*o(1). 

Now suppose that the conclusion does not hold. Then there exists 

(al e2) {e'o I e < 6 < a } C a~~) wrLth e= n (el 02) = ~. 

By changing the starting point r(O) sLightly, if necessary, we may assume that the points 

~(*) (O) (n,m = 1, 2, . . .) accumulate to all over aJD) by Lemma I (1) while the end points 

~:("~) (1) := Iimt_1 ~/:(") (t) (n, m = 1, 2, . . .) are not in (el' e2)' Therefore there exists 7("I~1) (t) 

such that 7("I~1)(t) C K' and n(("I~1)(1) e aE) ¥ (O1' 02) 

On the other hand there exist inverse images g~~(C) which have limit points on 

(61'e2) densely. The reason is as follows: Since q ~ Pf' there exists a neighborhood V 

of q such that all the branches F"(1), F"(2) , . . . , F~(~), . . . can be defined. Let Vo C V is a 

neighborhood of q with Vo C V. We may assume that C C Vo' Deflne 

c (t) := F~(~)(C(t)), 7(c~~)(t) (p 1(c(*)(t)) (~) 
~ 

Then c(~") (t) is a curve in U Ianding at a point in aU and c7:(*~) (t) is a curve in ~) Ianding at 

a point in aE) by the same reason as before. Let (e3, 64) C (el' 62) be any subarc of (el' 02)' 

By changing the starting point C(O) slightly, if necessary, we may assume that the points 

F(c ~)(O) (n,m = 1, 2, . . .) accumulate to (03,04) by Lemma I (1). Since radial limits of ~ 

exist and non-constant almost everywhere, by changing e3 and e4 slightly if necessary, we 

may assume that there exist the finite values (p(eia.) and ~)(eio.) with ~)(eie3) ~ (p(e'0.). 

Then c("")(O) accumulate on aC/ n (p({reie I 03 < a < e4, O < r < l}). In general the 

family of single~valued analytic branch of f-~ (7~ = 1,2, . . .) on a domain Uo rs normal 

and ftirthermore if Uo n Jf ~ ~, any local uniform limit of a subsequence in the family is 

constant ([Bea], p.193, Theorem 9.2.1, Lemma 9.2.2). So the family {F"(~)IVo} is normal 

and all its limit functions are constant and hence for a suitable subsequence the diameter 

of c("~.')(t) tends to zero, that is, c("~kk)(t) must land at a point in aU n Y9({reie I 03 < e < 

e4, O < r ~ l}) if the constant limit is finite. Therefore 7(c~~kk)(t) must land at a point in 

(03, g4)' If the constant limit is oo, for large enough nk the curves c(~k~') cannot intersect 

both {Y'(reie3) I O < r ~ l} and {Y2(reia.) I O < r ~ 1} ¥vhich are bounded set, since the 

convergence is uniform on Vo' Hence again we can conclude that c("~k')(t) must land at a 

point in aU n (p({re'g I 03 < e < e4, O < r ~ 1}) and therefore 7~(c~~kk)(t) must land at a 

point in (e3, e4)' This proves t,he assertion. 

Then there exists ~(ct~)/ll) such that 7(nl~1) n ~(c;v~l) ~ ~. We may assume that nl > N1' 

Let u e ~(("I~1) n ~(N~~fl) then smce tL ~ ^/("I"I), we have g"_1(u) e U=0(1) On the other hand 

~ 'MI ) since u ~ CNI and nl > Nl' we ha¥'e g^1 (u) e U~~o g~(C) ¥vhich contrachcts (1) Therefore 
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e~ is dense in aD). Disconnectrntv of Jf easily follows by the same argument as m the 

case of EA in S1. This completes the proof in the case of (1). C] 

Case (2) The proof is quite parallel to the case (1). Note that by Lemma 2, Un"=1 g~~(zo) I) 

aD) (zo ~ ED) ¥ E) holds for g = ~)~1 o f o ~) in this case. CII 

e2*ieo with Oo ~ I~ ¥ ~], the inverse image of r(t) by g~' is unique Case (3) Since g(z) = 

and denote it by If~(t) . Then it is obvious that the end points of ~~(t) are dense in aE) and 

~2 attains radial limit oo there, since g(z) is an irrational rotation and 

lI~Y'(~/: (t)) = !i=.+ml f-1(~'(r(t))) = oo. [] 

Case (4) In this case we need not assume the accessibility of oo, because this condition 

is automatically satisfied ( [Ba6j). The set U"*'=0f" (C) is a curve which may have self-

intersections and tends to oo. It is not diflicult to take L satisfying L n ( U~"__o f~(C)) = ~. 

Hence we have L n ( U""=0 f"(C)) = ~. The rest of the proof is quite parallel to the case 

(1) if the conclusion of Lemma 2 (1) holds for g. If we have only the conclusion of Lemma 

2 (9-), then we ceLn prove that for every arc A c aE) with A n K ~ ~, A n e_ ~ ~ holds by 
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