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Abstract

We have two main purposes in this paper. One is to give some sufficient conditions
for the Julia set of a transcendental entire function f to be connected or to be
disconnected as a subset of the complex plane C. The other is to investigate the
boundary of an unbounded periodic Fatou component U, which is known to be simply
connected. These are related as follows: let ¢ : [ — U be a Riemann map of U from
a unit disk D, then under some mild conditions we show the set O of all angles
where ¢ admits the radial limit co are dense in 9D if U is an attracting basin, a
parabolic basin or a Siegel disk. If U is a Baker domain on which f is not univalent,
then G is dense in JID or at least its closure © contains a certain perfect set,
which means the boundary 0U has a very complicated structure. In all cases, this
result leads to the disconnectivity of the Julia set J; in €. We also consider the

connectivity of the set Jy U {co} in the Riemann sphere C and show that Jr U {oo}
is connected if and only if f has no multiply-connected wandering domains.

1 Definitions and Results

Let f be a transcendental entire function and f™ denote the n-th iterate of f. Recall
that the Fatou set Fy and the Julia set J; of f are defined as follows:

Fr = {zeC|{f*}, is a normal family in a neighborhood of z},
Jf = (C\ Ff.

It is possible to consider the Julia set to be a subset of the Riemann sphere C := CU {0}
by adding the point of infinity co to it. This definition is mainly adopted in the case
of meromorphic functions (for example, see [Ber]) and also there are some researches on
convergence phenomena. of Julia sets as subsets of C ([Ki], [Kr], [KrK]). In this setting,
Jy is compact in C and hence J ¢ is rather easy to handle. But for a transcendental entire
function the suitable phase space as a dynamical system is the complex plane C, not the
Riemann sphere @, because oo is an essential singularity of f and there seems to be no
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reasonable way to define the value at co. So it is more natural to regard J; as a subset of
C rather than of C and hence we define J; as above and write J; U {co} when we consider
Jr to be a subset of C.

A connected component U of Fy is called a Fatou component. A Fatou component
is called a wandering domain if f™(U) N f*(U) = @ for every m,n € N (m # n). If there
exists an ng € N with f™(U) C U, U is called a periodic component and it is well known
that there are following four possibilities:

1. There exists a point zy € U with f™(z5) = zg and |(f™)'(2)| < 1 and every point
z € U satisfies f™*(2) — 2y as k — co. The point zp is called an attracting periodic
point and the domain U is called an attracting basin.

2. There exists a point 2y € OU with f™(z) = 29 and (f™)(2) = €*? (8 € Q) and
every point z € U satisfies f™*(z) — zy as k — co. The point 2y is called a parabolic
periodic point and the domain U is called a parabolic basir.

3. There exists a point 2y € U with f™(z) = 2 and (f™)/(20) = €™ (§ € R\ Q) and
f™|U is conjugate to an irrational rotation of a unit disk. The domain U is called a
Siegel disk.

4. For every z € U, f™*(z) — oo as k — co. The domain U is called a Baker domain.

In particular, if ng = 1, U is called an tnvariant component. U is called completely tnvariant
if U satisfies f~Y(U) C U. U is called a preperiodic component if f™(U) is a periodic
component for an m > 1. U is called eventually periodic if U is periodic or preperiodic.
It is known that eventually periodic components of a transcendental entire function are
simply connected ([Ber|, [EL1]) while a wandering domain can be multiply-connected
([Bal], [Ba2], [Ba5)).

The boundary of unbounded periodic Fatou component can be extremely complicated.
For example, consider the exponential family £,(z) := Ae®. If X satisfles 0 < A < 5, E\(2)
has a unique attracting fixed point p, with an unbounded simply connected completely
invariant basin Q(p,) and the Fatou set Fig, is equal to this basin ([DG]). Let ¢ : D —
Qp,) be a Riemann map of (p,) from a unit disk D, then the radial limit lim, ~ p(re®)
exists for all e € D and moreover the set

O = {6 | 0(e?) = limp(re”) = o}

is dense in 0D ([DG]). This implies that the Riemann map is highly discontinuous and
hence the boundary of §2(p,), which is equal to Jg,, is extremely complicated. From this
fact, it follows that Jg, is disconnected in C, since ¢ is conformal the set

QO({T'eiol I 0 S r < 1} U {T@isz | 0 S r < ].}) C U (01,92 S 600, 91 # 02)
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is a Jordan arc in C and this separates Jg, into two disjoint relatively open subsets.

Taking these facts into account, we shall investigate the set O for a genetal un-
bounded periodic component U and also consider the following problem

Problem : When is the Julia set of a transcendental entire function f connected or
disconnected as a subset of C7

If f is a polynomial, the following criterion is well known. (For example, see [Bea] or [M]).

Proposition A Let f be a polynomial of degree d > 2. Then the Julia set J; is connected
if and only if no finite critical values of f tend to co by the iterates of f.

Here, a critical value is a point p := f(c) for a point ¢ with f/(c) = 0. This is a singularity
of f='. For polynomials we have only to consider this type of singularities but there can
be another type of singularities called an asymptotic value for the transcendental case. A
point p is called an asymptotic value if there exists a continuous curve L(t) (0 <t < 1)
called an asymptotic path with

lim L(t) = o0 and lzr%f(L(t)) =p.

t—1

A point p is called a singular value if it is either a critical or an asymptotic value and we
denote the set of all singular values as sing(f™?).

If f is transcendental, however, the above criterion does not hold. For example, let
us consider the exponential family F(z) := Ae” again. If ) satisfies 0 < A < 2, the unique
singular value z = 0 (this is an asymptotic value) is attracted to the fixed point py and
hence does not tend to co but the Julia set Jg, is disconnected as we mentioned above.

For other values of A, for example A > %, the singular value z = 0 may tend to co.
If f is a polynomial all of whose critical values tend to co, then J; is a Cantor set and
especially disconnected. But on the other hand in this case J; is equal to the entire plain
C (|D]) and hence connected.

Before considering the connectivity of Jy in C, we investigate the connectivity of
JrU{co} in C. In this situation compactness of J; U {co} in C makes the problem easier.
Actually we can prove the following:

Theorem 1 Let f be a transcendental entire function. Then the set J; U {co} in C is
connected if and only if Fy has no multiply-connected wandering domains.

Corollary 1 Under one of the following conditions, Js U {co} in C is connected.
(1) f e B:={f|sing(f™!) is bounded}.
(2) Fy has an unbounded component.

(3) There exists a curve I'(t) (0 <t < 1) with lim,_,; I'(t) = co such that f|I' is bounded.
Especially f has a finite asymptotic value.
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Then how about J; in C itself? The results depend on whether F'; admits an un-
bounded component or not. In the case when F; admits no unbounded components, we

obtain the following:

Theorem 2 Let f be a transcendental entire function. If all the components of Fy are
bounded and simply connected, then Jy is connected.

The following is an easy consequence from Theorem 1 and 2.

Corollary 2 Let f be a transcendental entire function. If all the components of F'y are
bounded, then J; is connected in C if and only if J; U{oo} is connected in C.

As we mentioned before, for the unbounded component Q(py) of Fg, the set of all
angles where the Riemann map ¢ : D — Q(p,) admits the radial limit co is dense in
0D and this leads to the disconnectivity of Jgz,. The Main result of this paper is the
generalization of this fact. Under some conditions this result holds for various kinds of
unbounded periodic Fatou components. Here, a point p € OU is accessible if there exists a
continuous curve L(¢) (0 <t < 1) in U with lm,; L(f) = p.

Main Theorem Let U be an unbounded periodic Fatou component of a transcendental
entire function f, ¢ : D — U be a Riemann map of U from a unit disk D, and

Pipno = Uo(fnﬂ)"(sing((fnv)—l)).
We assume one of the following four conditions:
(1) U is an attracting basin of period ng and co € OU 1is accessible. There exists a finite
point ¢ € OU with ¢ ¢ Ppo, mg € N and a continuous curve C(t) C U (0 <t < 1) with
C(1) = q and satisfies f™(C) D C.
(2) U is a parabolic basin of period nyg and oo € OU is accessible. There exists a finite
point g € OU with g ¢ Psro, mo € N and a continuous curve C(t) C U (0 £t < 1) with
C(1) = q and satisfies f™(C) D C.
(3) U s a Siegel disk of period ng and co € U 1is accessible.
(4) U is a Baker domain of period ng and f™|U is not univalent. There exists a finite
point q € 8U with q ¢ Pgo, mg € N and a continuous curve C(t) C U (0 <t < 1) with
C(1) = q and satisfies f™(C) D C.
Then the set

Oeo = {” | p(e”) = limp(re”) = co}

is dense in 0D in the case of (1), (2) or (3). In the case of (4), the closure Oy contains
a certain perfect set in OD. In particular, J; is disconnected in all cases.

In the case of the exponential family, Devaney and Goldberg ([DG]) obtained the explicit
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expression
/J+/lz>

; €{z|Imz2>0
) Helel }

for a suitable Riemann map ¢ which was crucial to show the density of O, in 0D. In

o Eyop(z) = expi(

general, of course, we cannot obtain the explicit form of ¢! o f™ o (z) so instead of it we
take advantage of a property of inner functions. In general analytic function ¢ : D — D
is called an inner function if the radial limit g{e®) := lim, 1 g(re’) exists for almost every
e € 9D and satisfies [g(e?)| = 1. It is easy to see that p~! o f™ o ¢ is an inner function.
It is known that an inner function g has a unique fixed point p € D called a Denjoy- Wolff
point and g"(z) tends to p locally uniformly on D ([DM]). The following is an important
lemma for the proof of the Main Theorem.

Lemma 1 Let g : D — D be an inner function which is not a Mébius transformation and
p its Denjoy- Wolff point.

(1) Ifp €D, then U, g (20) D 0D holds for every zo € D\ E where E is a certain
exceptional set of logarithmic capacity zero.

(2) Ifp € ID, then U2, 9 ™(20) D K holds for every zo € D\ E where E is a certain
exceptional set of logarithmic capacity zero and K s a certain perfect set in OD.

If U is either an attracting basin or a parabolic basin and g = ¢~ o f™ o ¢, we can say
more about the set US>, g7™(2).

Lemma 2 Let U be either an attracting basin or a parabolic basin (not necessardy un-
bounded) and g = p~ o f™ 0. Then there exists a set E C D of logarithmic capacity zero

such that
on(29, A) measA

on(2g, OD) T Ton

holds for every zo € D\ E and every arc A in 0D, where 0,(z0, A) = » (1 — IC|?) and sum
C .

(n — o)

is. taken over all ¢ = |(|e® with g™(¢) = zp and e? € A.

We omit the proofs of Lemma 1 and Lemma 2.

In §2 we prove Theorem 1 and Corollary 1. §3 consists of two subsections. In §3.1
we prove Theorem 2 and make some remarks on the sufficient conditions for f to admit
no unbounded Fatou components. In §3.2 we prove the Main Theorem by using Lemma 1
and Lemma 2.

2 Connectivity of J; U {co} in C

(Proof of Theorem 1): The following criterion is well known. (See for example [Bea],
p.81, Proposition 5.1.5).
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Proposition B Let K be a compact subset in C. Then K is connected if and only if each
component of the complement K¢ is sitmply connected.

Since J; U {oo} is compact in C, we can apply Proposition B. As we mentioned in §1,
eventually periodic components are simply connected. So if a Fatou component U is not
simply connected, then U is necessarily a wandering domain which is not simply connected.
This completes the proof. O

(Proof of Corollary 1): Under the condition (1), f™ cannot tend to co through Fy
([EL2]). On the other hand, f™ tends to co on any multiply-connected wandering domains
([Ba4], [EL1}). So all the Fatou components are simply connected in this case. Under the
condition (2) or (3), it is known that all the Fatou components must be simply connected
([Bad], [EL1], p.620 Corollary 1, 2). a

Remark 1 (1) Let S:= {f | #sing(f~!) < co} C B. Then there is even no wandering
domain in Fy for f € S ((GK]). For f € B, Fy may admit a wandering domain U but U
must be simply connected as we mentioned above. Under an additional condition

JeN (deri_ved set of | J f"(sing(f_l))> =0,
n=0
f € B has also no wandering domain ((BHKMT]).
(2) We can conclude that in general if J;U{co} is disconnected, all the Fatou components
are bounded and some of which are multiply-connected wandering domains.

3 Connectivity of Jy in C

3.1 The case when all the Fatou components are bounded

Suppose that a closed connected subset K in C is bounded. Then all the compo-
nents of the complement K¢ other than the unique unbounded component V' are simply
connceted. (Of course, V U {co0} C C is simply connected). If K is unbounded, then
all the components of K¢ are simply connected, but the converse is false as the example
Jg,(0 < X < 1) shows. (Compare with the Proposition B). But note that Jg, U {co} is
connected in C. For the connectivity of a closed subset in C, the following criterion holds.

Proposition 1 Let K be a closed subset of C. Then K is connected if and only if the
boundary of each component U of the complement K¢ is connected.

(Proof): For the ‘only if’ part, see [New]. Suppose that K is disconnected. Then there
exist two closed sets K and K, with K = K; UK, and K; N K, = 0. Take a point 2y with
d(zg, K1) = d(2g, K2) where d denotes the Euclid distance in €. Then z; € K¢ and so let Ug
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be the connected component of K¢ containing z;. Since 80Uy is connected by the assumption,
either OU, C K or U, C K,. Without loss of generality we can assume 0U; C K;. On
the other hand denote rq := d(2g, K1) = d(20, K2) and let Dy (z) := {2z | |z — zp] < 7o}.
Then D,,(z0) C Uy and there exists a point w € K, with w € Up. Since w € K» C K, we
have w € 89U, but this is a contradiction since Uy C K and K1NK, = @. This completes
the proof. O

(Proof of Theorem 2): By Proposition 1, it is sufficient to to show that the boundary
0U is connected for each Fatou component U. Since U is bounded, the boundary of U as
a subset of C and the one as the subset of C coincide. Hence U is simply connected if and
only if OU is connected ([Bea], p.81, Proposition 5.1.4). This completes the proof. O

Remark 2 (1) Since a non-simply connected Fatou component is necessarily a wandering
domain, the assumption of Theorem 2 is equivalent to that all the components of Fy are
bounded and Fy admits no multiply-connected wandering domains.

(2) Several sufficient conditions are known for a transcendental entire function f to admit
no unbounded Fatou components as follows:

(i) ([Ba3])log M(r) = O((logr)?) (as T — co) where M(r) = sup |f(2)| and 1 <p < 3.

|zl=r

(i) ([S]) There exists € € (0,1) such that loglog M(r) < _(logr)® for large 7.
(loglogr)e
M
%% — ¢ (finite constant) as r — co.

Note that the condition (ii) includes the condition (i).

(iii) ([S])) The order of f is less than % and

3.2 In the case when Fy admits an unbounded component

(Proof of Main Theorem): In what follows we assume that ng = 1 (that is, U is an
invariant component) and mg = 1 for simplicity. This causes no loss of generality, because
we have only to consider f™ instead of f in general cases.

Case (1) Since co is accessible, there exists a continuous curve L(¢t) (0 <t < 1) in U with
lim,;_,; L(t) = co. By deforming L(t) slightly, we construct a new curve L(t) satisfying the
following condition.

Lemma 3 There exists a curve L£(t) (0 <t < 1) with limy_1 £(t) = co such that every
branch of f~™ can be analytically continued along it for everyn € N.

(Proof): We may assume that L(0) ¢ Py, since ¢ ¢ Py we have U ¢ Ps. Let py :=
L(0),p1,p2,- - - be points on L such that all the piecewise linear line segments connecting
Do, P1, D2, - - lie in U. Let FV F®  Fm  be all the branches of f~™ which take
-values on U. The range of the suffix m may be finite or infinite. Define

0™ (py) := {e® | F{™can be analytically continued along the ray

33



| from pg in the direction §} (n=1,2,...).

Then by the next Gross’s Star Theorem ([Nev]), it follows that ©™ (po) has full measure
in oD.

Lemma C (Gross’s Star Theorem) Let f be an entire function and F a branch of f~!
defined in the neighborhood of py € C. Then F' can be analytically continued along almost
all rays from py in the direction 8.

Then the set

Opo) == [ O (wo)

n>1,m>1
has also full measure in dD. Hence by changing p; slightly to a point p}, the segments pop}
and pip, lie in U and all the branches F{™ (n > 1, m > 1) can be analytically continued
along pop;. By the same method, we can find a point p} close to p, such that the segment
7,7 lies in U and has the same property as above. By repeating this argument, we can
prove the Lemma 3. : 0

Let {{™(¢) := F{™(L(t)) then we have lim,_; I{™ (¢) = co. For suppose this is false,
then there exist an increasing sequence of parameter values {; <1 <--- < <---and a
finite point & with limy_,o, I{™ (#) = a # co. Then it follows that limy e £(t) = f™(a) #
oo and this contradicts the fact limg_.oo L{tx) = c0.

Let ¢ : D+ U be a Riemann map of U. Then

D) = ¢ L)) and (1) = ¢ (I()

are curves in D landing at a point in 0. This fact is not so trivial but follows from the
proposition in [P](p.29, Proposition 2.14). We may assume that I'(¢) lands at z =1 € dD
for simplicity. If limg.; ™) (t) = ™, then since limy_.1 @(7{7)(t)) = limy_y 1) (1) = oo,
it follows that there exists the radial limit lim,_; ¢(re®®) and this is equal to co. This fact
follows from the theorem in [P] (p.34, Theorem 2.16). Therefore it is sufficient to show
that the set of all the landing points of ¥{™(t) (n > 1,m > 1) is dense in JD.
Let g .= ¢7*o fop : D — . Then by Fatou’s theorem ¢ has radial limit
p(e?) = lim, »; p(re?) € 8U and non-constant for almost every e? € dD. Hence fop(re®)
“is a curve landing at a point in AU \ {co} for almost every e? € 8. Therefore it follows
that lim, -1 ="' o f o p(re?) € 8D a.e. and thus g is an inner function. Let C := ¢~1(C)
then by the same reason for T'(t), C is a curve in D with an end point § € U satisfying
o
g(C) > C. From the dynamics of g : D — D, it follows that the set | ] g (C) KB, a}is

n=0
compact in D where p = ¢~*(p) and 7 is an attracting fixed point of g and the distance
between this set and z = 1 is positive. Hence there exists 9 > 0 such that

vN{ U @UE 3} =0 )



Since I'(¢) lands at z = 1, there exists t; € [0,1) such that I'|[ts, 1) C Ug(l). So by
rewriting ['|[ty, 1) to I'(¢) (0 <t < 1) we may assume that I'(t) C U, (1) for 0 <t < 1).
Let K := {2z ] |z] £ 1 — &0} then since every point in I tends to p under g" and K is
compact, there exists n; € N such that for every N > n; we have ¢g"(K) C U.(p). Then we
have Y{ (¢) C K© for every N > ny. For suppose that 7 (£) N K # 0, then by operating
Y we have I'(t) N K # @ which contradicts I'(t) C Uy (1).

Now suppose that the conclusion does not hold. Then there exists
(01,82) == {e? | 01 <0 < 6} CID with Oy N (61,6) =0.

By changing the starting point I'(0) slightly, if necessary, we may assume that the points
Y™ () (n,m = 1,2,---) accumulate to all over 8D by Lemma 1 (1) while the end points
A (1) = limy_ 'y(m)( ) (n,m =1,2,--) are not in (61, #2). Therefore there exists v{™)(t)
such that ¥{™)(t) C K and v{™)(1) € D\ (61, 62)

On the other hand there exist inverse images g~*(C) which have limit points on
(64, 62) densely. The reason is as follows: Since g ¢ Py, there exists a neighborhood V
of q such that all the branches F{V, F® .. F(m can be defined. Let V5 C V is a
neighborhood of q Wlth Vo C V. We may assume that C C Vj. Define

C""’( t) = EV(C), () =7 (™ (1)

Then c{™(t) is a curve in U landing at a point in U and &™) (t) is a curve in D landing at
a point in 0D by the same reason as before. Let (83,84) C (81, 82) be any subarc of (64, 62).
By changing the starting point C/(0) slightly, if necessary, we may assume that the points
™ (0) (n,m = 1,2,---) accumulate to (8s,84) by Lemma 1 (1). Since radial limits of ¢
exist and non-constant almost everywhere, by changing 05 and 6, slightly if necessary, we
may assume that there exist the finite values @(e®) and () with @(e®) # p(e?).
Then ¢{™(0) accumulate on U N({re? | 83 < § < 8;, 0 < r < 1}). In general the
family of single-valued analytic branch of f~™ (n = 1,2,...) on a domain U, is normal
and furthermore if Uy J + # 0, any local uniform limit of a subsequence in the family is
constant ([Bea), p.193, Theorem 9.2.1, Lemma 9.2.2). So the family {F{™|V;} is normal
and all its limit functions are constant and hence for a suitable subsequence the diameter
of c™)(t) tends to zero, that is, c{™)(¢) must land at a point in U N ({re? | ; < § <
04, 0 < r < 1}) if the constant limit is finite. Therefore Eg’:")(t) must land at a point in
(63,64). If the constant limit is co, for large enough ny the curves c{™) cannot intersect
both {p(re®) | 0 < r < 1} and {p(re?) | 0 < r < 1} which are bounded set, since the
convergence is uniform on V5. Hence again we can conclude that ¢{™)(t) must land at a
point in 8U Ne({re® | 6; < 6 < 65, 0 < r < 1}) and therefore (™) (t) must land at a
point in (@3, ;). This proves the assertion.

Then there exists Ef\, Y such that 'y("”) Ncy Ml) # . We may assume that n, > Nj.
Let u € y{™ Ne o 11) then since u € ¥{TV, we have 9™ (u) € Ug(1). On the other hand

since u € E(NI and ny > Ny, we have g™ (u) € U2, g"(C) which contradicts (1). Therefore
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O is dense in dD. Disconnectivity of Jy easily follows by the same argument as in the
case of E, in §1. This completes the proof in the case of (1). O

Case (2) The proof is quite parallel to the case (1). Note that by Lemma 2, 32, g7™(20) D
ID (zp € D\ E) holds for g = p~! o f o ¢ in this case. a

Case (8) Since g(z) = > with 6, € R\ Q, the inverse image of I'(t) by ¢™™ is unique
and denote it by v,(¢). Then it is obvious that the end points of 4, (t) are dense in 6 and
@ attains radial limit co there, since g(z) is an irrational rotation and

limo(3n (1)) = ling £ (((2))) = oo. 0

Case (4) In this case we need not assume the accessibility of co, because this condition
is automatically satisfied ([Ba86]). The set U, f™(C) is a curve which may have self-
intersections and tends to co. It is not difficult to take L satisfying L N (U, f*(C)) = 0.
Hence we have £ N (U, f*(C)) = 0. The rest of the proof is quite parallel to the case
(1) if the conclusion of Lemma 2 (1) holds for g. If we have only the conclusion of Lemma
2 (2), then we can prove that for every arc A C 9D with ANK # 0, AN O # @ holds by

the similar argument. O
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