On the Connectivity of Julia Sets of Transcendental Entire Functions
Masashi KISAKA

Department of Mathematics, College of Integrated Arts and Science, University of Osaka Prefecture, Gakuen-cho 1-1, Sakai 593, Japan
e-mail: kisaka@mathsun.cias.osakafu-u.ac.jp

Abstract
We have two main purposes in this paper. One is to give some sufficient conditions for the Julia set of a transcendental entire function f to be connected or to be disconnected as a subset of the complex plane \mathbb{C}. The other is to investigate the boundary of an unbounded periodic Fatou component U, which is known to be simply connected. These are related as follows: let $\varphi : \mathbb{D} \rightarrow U$ be a Riemann map of U from a unit disk \mathbb{D}, then under some mild conditions we show the set Θ_∞ of all angles where φ admits the radial limit ∞ are dense in $\partial \mathbb{D}$ if U is an attracting basin, a parabolic basin or a Siegel disk. If U is a Baker domain on which f is not univalent, then Θ_∞ is dense in $\partial \mathbb{D}$ or at least its closure $\overline{\Theta}_\infty$ contains a certain perfect set, which means the boundary ∂U has a very complicated structure. In all cases, this result leads to the disconnectivity of the Julia set J_f in \mathbb{C}. We also consider the connectivity of the set $J_f \cup \{\infty\}$ in the Riemann sphere $\hat{\mathbb{C}}$ and show that $J_f \cup \{\infty\}$ is connected if and only if f has no multiply-connected wandering domains.

1 Definitions and Results
Let f be a transcendental entire function and f^n denote the n-th iterate of f. Recall that the Fatou set F_f and the Julia set J_f of f are defined as follows:

$$F_f := \{ z \in \mathbb{C} \mid \{f^n\}_{n=1}^{\infty} \text{ is a normal family in a neighborhood of } z \},$$

$$J_f := \mathbb{C} \setminus F_f.$$

It is possible to consider the Julia set to be a subset of the Riemann sphere $\hat{\mathbb{C}} := \mathbb{C} \cup \{\infty\}$ by adding the point of infinity ∞ to it. This definition is mainly adopted in the case of meromorphic functions (for example, see [Ber]) and also there are some researches on convergence phenomena of Julia sets as subsets of $\hat{\mathbb{C}}$ ([Ki], [Kr], [KrK]). In this setting, J_f is compact in $\hat{\mathbb{C}}$ and hence J_f is rather easy to handle. But for a transcendental entire function the suitable phase space as a dynamical system is the complex plane \mathbb{C}, not the Riemann sphere $\hat{\mathbb{C}}$, because ∞ is an essential singularity of f and there seems to be no
reasonable way to define the value at \(\infty \). So it is more natural to regard \(J_f \) as a subset of \(\hat{\mathbb{C}} \) rather than of \(\mathbb{C} \) and hence we define \(J_f \) as above and write \(J_f \cup \{ \infty \} \) when we consider \(J_f \) to be a subset of \(\hat{\mathbb{C}} \).

A connected component \(U \) of \(F_f \) is called a Fatou component. A Fatou component is called a wandering domain if \(f^m(U) \cap f^n(U) = \emptyset \) for every \(m, n \in \mathbb{N} \) (\(m \neq n \)). If there exists an \(n_0 \in \mathbb{N} \) with \(f^{n_0}(U) \subseteq U \), \(U \) is called a periodic component and it is well known that there are following four possibilities:

1. There exists a point \(z_0 \in U \) with \(f^{n_0}(z_0) = z_0 \) and \(|(f^{n_0})'(z_0)| < 1 \) and every point \(z \in U \) satisfies \(f^{n_0k}(z) \to z_0 \) as \(k \to \infty \). The point \(z_0 \) is called an attracting periodic point and the domain \(U \) is called an attracting basin.

2. There exists a point \(z_0 \in \partial U \) with \(f^{n_0}(z_0) = z_0 \) and \((f^{n_0})'(z_0) = e^{2\pi i\theta} \) (\(\theta \in \mathbb{Q} \)) and every point \(z \in U \) satisfies \(f^{n_0k}(z) \to z_0 \) as \(k \to \infty \). The point \(z_0 \) is called a parabolic periodic point and the domain \(U \) is called a parabolic basin.

3. There exists a point \(z_0 \in U \) with \(f^{n_0}(z_0) = z_0 \) and \((f^{n_0})'(z_0) = e^{2\pi i\theta} \) (\(\theta \in \mathbb{R} \setminus \mathbb{Q} \)) and \(f^{n_0k}(U) \) is conjugate to an irrational rotation of a unit disk. The domain \(U \) is called a Siegel disk.

4. For every \(z \in U \), \(f^{n_0k}(z) \to \infty \) as \(k \to \infty \). The domain \(U \) is called a Baker domain.

In particular, if \(n_0 = 1 \), \(U \) is called an invariant component. \(U \) is called completely invariant if \(U \) satisfies \(f^{-1}(U) \subseteq U \). \(U \) is called a preperiodic component if \(f^m(U) \) is a periodic component for an \(m \geq 1 \). \(U \) is called eventually periodic if \(U \) is periodic or preperiodic.

It is known that eventually periodic components of a transcendental entire function are simply connected ([Ber], [EL1]) while a wandering domain can be multiply-connected ([Ba1], [Ba2], [Ba5]).

The boundary of unbounded periodic Fatou component can be extremely complicated. For example, consider the exponential family \(E_\lambda(z) := \lambda e^z \). If \(\lambda \) satisfies \(0 < \lambda < \frac{1}{e} \), \(E_\lambda(z) \) has a unique attracting fixed point \(p_\lambda \) with an unbounded simply connected connected invariant basin \(\Omega(p_\lambda) \) and the Fatou set \(F_{E_\lambda} \) is equal to this basin ([DG]). Let \(\varphi : \mathbb{D} \to \Omega(p_\lambda) \) be a Riemann map of \(\Omega(p_\lambda) \) from a unit disk \(\mathbb{D} \), then the radial limit \(\lim_{r \to 1} \varphi(re^{i\theta}) \) exists for all \(e^{i\theta} \in \partial \mathbb{D} \) and moreover the set

\[
\Theta_\infty := \{ e^{i\theta} \mid \varphi(e^{i\theta}) := \lim_{r \to 1} \varphi(re^{i\theta}) = \infty \}
\]

is dense in \(\partial \mathbb{D} \) ([DG]). This implies that the Riemann map is highly discontinuous and hence the boundary of \(\Omega(p_\lambda) \), which is equal to \(J_{E_\lambda} \), is extremely complicated. From this fact, it follows that \(J_{E_\lambda} \) is disconnected in \(\mathbb{C} \), since \(\varphi \) is conformal the set

\[
\varphi(\{ re^{i\theta_1} \mid 0 \leq r < 1 \} \cup \{ re^{i\theta_2} \mid 0 \leq r < 1 \}) \subseteq U \quad (\theta_1, \theta_2 \in \Theta_\infty, \theta_1 \neq \theta_2)
\]
is a Jordan arc in \mathbb{C} and this separates $J_{E_{\lambda}}$ into two disjoint relatively open subsets.

Taking these facts into account, we shall investigate the set Θ_{∞} for a general unbounded periodic component U and also consider the following problem:

Problem: When is the Julia set of a transcendental entire function f connected or disconnected as a subset of \mathbb{C}?

If f is a polynomial, the following criterion is well known. (For example, see [Bea] or [Mj]).

Proposition A: Let f be a polynomial of degree $d \geq 2$. Then the Julia set J_f is connected if and only if no finite critical values of f tend to ∞ by the iterates of f.

Here, a critical value is a point $p := f(c)$ for a point c with $f'(c) = 0$. This is a singularity of f^{-1}. For polynomials we have only to consider this type of singularities but there can be another type of singularities called an asymptotic value for the transcendental case. A point p is called an asymptotic value if there exists a continuous curve $L(t)$ ($0 \leq t < 1$) called an asymptotic path with

$$\lim_{t \to 1} L(t) = \infty \quad \text{and} \quad \lim_{t \to 1} f(L(t)) = p.$$

A point p is called a singular value if it is either a critical or an asymptotic value and we denote the set of all singular values as $\text{sing}(f^{-1})$.

If f is transcendental, however, the above criterion does not hold. For example, let us consider the exponential family $E_\lambda(z) := \lambda e^z$ again. If λ satisfies $0 < \lambda < \frac{1}{e}$, the unique singular value $z = 0$ (this is an asymptotic value) is attracted to the fixed point p_1, and hence does not tend to ∞ but the Julia set $J_{E_{\lambda}}$ is disconnected as we mentioned above.

For other values of λ, for example $\lambda > \frac{1}{e}$, the singular value $z = 0$ may tend to ∞. If f is a polynomial all of whose critical values tend to ∞, then J_f is a Cantor set and especially disconnected. But on the other hand in this case J_f is equal to the entire plain \mathbb{C} ([D]) and hence connected.

Before considering the connectivity of J_f in \mathbb{C}, we investigate the connectivity of $J_f \cup \{\infty\}$ in $\hat{\mathbb{C}}$. In this situation compactness of $J_f \cup \{\infty\}$ in $\hat{\mathbb{C}}$ makes the problem easier. Actually we can prove the following:

Theorem 1: Let f be a transcendental entire function. Then the set $J_f \cup \{\infty\}$ in $\hat{\mathbb{C}}$ is connected if and only if F_f has no multiply-connected wandering domains.

Corollary 1: Under one of the following conditions, $J_f \cup \{\infty\}$ in $\hat{\mathbb{C}}$ is connected.

1. $f \in B := \{f \mid \text{sing}(f^{-1}) \text{ is bounded}\}$.
2. F_f has an unbounded component.
3. There exists a curve $\Gamma(t)$ ($0 \leq t < 1$) with $\lim_{t \to 1} \Gamma(t) = \infty$ such that $f|\Gamma$ is bounded. Especially f has a finite asymptotic value.
Then how about \(J_f \) in \(\mathbb{C} \) itself? The results depend on whether \(F_f \) admits an unbounded component or not. In the case when \(F_f \) admits no unbounded components, we obtain the following:

Theorem 2 Let \(f \) be a transcendental entire function. If all the components of \(F_f \) are bounded and simply connected, then \(J_f \) is connected.

The following is an easy consequence from Theorem 1 and 2.

Corollary 2 Let \(f \) be a transcendental entire function. If all the components of \(F_f \) are bounded, then \(J_f \) is connected in \(\mathbb{C} \) if and only if \(J_f \cup \{\infty\} \) is connected in \(\bar{\mathbb{C}} \).

As we mentioned before, for the unbounded component \(\Omega(p_A) \) of \(F_{E_A} \) the set of all angles where the Riemann map \(\varphi : \mathbb{D} \to \Omega(p_A) \) admits the radial limit \(\infty \) is dense in \(\partial \mathbb{D} \) and this leads to the disconnectivity of \(J_{E_A} \). The main result of this paper is the generalization of this fact. Under some conditions this result holds for various kinds of unbounded periodic Fatou components. Here, a point \(p \in \partial U \) is accessible if there exists a continuous curve \(L(t) \) \((0 \leq t < 1)\) in \(U \) with \(\lim_{t \to 1} L(t) = p \).

Main Theorem Let \(U \) be an unbounded periodic Fatou component of a transcendental entire function \(f, \varphi : \mathbb{D} \to U \) be a Riemann map of \(U \) from a unit disk \(\mathbb{D} \), and

\[
P_{f^{m_0}} := \bigcup_{n=0}^{\infty} (f^{m_0})^n(\text{sing}((f^{m_0})^{-1})).
\]

We assume one of the following four conditions:

1. \(U \) is an attracting basin of period \(n_0 \) and \(\infty \in \partial U \) is accessible. There exists a finite point \(q \in \partial U \) with \(q \notin P_{f^{m_0}}, m_0 \in \mathbb{N} \) and a continuous curve \(C(t) \subset U \) \((0 \leq t \leq 1)\) with \(C(1) = q \) and satisfies \(f^{m_0}(C) \supset C \).

2. \(U \) is a parabolic basin of period \(n_0 \) and \(\infty \in \partial U \) is accessible. There exists a finite point \(q \in \partial U \) with \(q \notin P_{f^{m_0}}, m_0 \in \mathbb{N} \) and a continuous curve \(C(t) \subset U \) \((0 \leq t \leq 1)\) with \(C(1) = q \) and satisfies \(f^{m_0}(C) \supset C \).

3. \(U \) is a Siegel disk of period \(n_0 \) and \(\infty \in \partial U \) is accessible.

4. \(U \) is a Baker domain of period \(n_0 \) and \(f^{m_0} \) is not univalent. There exists a finite point \(q \in \partial U \) with \(q \notin P_{f^{m_0}}, m_0 \in \mathbb{N} \) and a continuous curve \(C(t) \subset U \) \((0 \leq t \leq 1)\) with \(C(1) = q \) and satisfies \(f^{m_0}(C) \supset C \).

Then the set

\[
\Theta_\infty := \{e^{i\theta} \mid \varphi(e^{i\theta}) := \lim_{r \to 1} \varphi(re^{i\theta}) = \infty\}
\]

is dense in \(\partial \mathbb{D} \) in the case of (1), (2) or (3). In the case of (4), the closure \(\overline{\Theta_\infty} \) contains a certain perfect set in \(\partial \mathbb{D} \). In particular, \(J_f \) is disconnected in all cases.

In the case of the exponential family, Devaney and Goldberg ([DG]) obtained the explicit
expression
\[\varphi^{-1} \circ E_\lambda \circ \varphi(z) = \exp\left(\frac{\mu + \bar{\mu} z}{1 + z} \right), \quad \mu \in \{ z \mid \Im z > 0 \} \]
for a suitable Riemann map \(\varphi \) which was crucial to show the density of \(\Theta_\infty \) in \(\partial \mathbb{D} \). In general, of course, we cannot obtain the explicit form of \(\varphi^{-1} \circ f^{n_0} \circ \varphi(z) \) so instead of it we take advantage of a property of inner functions. In general analytic function \(g : \mathbb{D} \to \mathbb{D} \) is called an inner function if the radial limit \(g(e^{i\theta}) := \lim_{r \to 1} g(re^{i\theta}) \) exists for almost every \(e^{i\theta} \in \partial \mathbb{D} \) and satisfies \(|g(e^{i\theta})| = 1 \). It is easy to see that \(\varphi^{-1} \circ f^{n_0} \circ \varphi \) is an inner function. It is known that an inner function \(g \) has a unique fixed point \(p \in \mathbb{D} \) called a Denjoy-Wolff point and \(g^n(z) \) tends to \(p \) locally uniformly on \(\mathbb{D} \) ([DM]). The following is an important lemma for the proof of the Main Theorem.

Lemma 1 Let \(g : \mathbb{D} \to \mathbb{D} \) be an inner function which is not a Möbius transformation and \(p \) its Denjoy-Wolff point.

1. If \(p \in \mathbb{D} \), then \(\bigcup_{n=1}^{\infty} g^{-n}(z_0) \supset \partial \mathbb{D} \) holds for every \(z_0 \in \mathbb{D} \setminus E \) where \(E \) is a certain exceptional set of logarithmic capacity zero.
2. If \(p \in \partial \mathbb{D} \), then \(\bigcup_{n=1}^{\infty} g^{-n}(z_0) \supset K \) holds for every \(z_0 \in \mathbb{D} \setminus E \) where \(E \) is a certain exceptional set of logarithmic capacity zero and \(K \) is a certain perfect set in \(\partial \mathbb{D} \).

If \(U \) is either an attracting basin or a parabolic basin and \(g = \varphi^{-1} \circ f^{n_0} \circ \varphi \), we can say more about the set \(\bigcup_{n=1}^{\infty} g^{-n}(z_0) \).

Lemma 2 Let \(V \) be either an attracting basin or a parabolic basin (not necessarily unbounded) and \(g = \varphi^{-1} \circ f^{n_0} \circ \varphi \). Then there exists a set \(E \subset \mathbb{D} \) of logarithmic capacity zero such that
\[\frac{\sigma_n(z_0, A)}{\sigma_n(z_0, \partial \mathbb{D})} \to \frac{\text{meas} A}{2\pi} \quad (n \to \infty) \]
holds for every \(z_0 \in \mathbb{D} \setminus E \) and every arc \(A \) in \(\partial \mathbb{D} \), where \(\sigma_n(z_0, A) = \sum_{\zeta}(1 - |\zeta|^2) \) and sum is taken over all \(\zeta = |\zeta|e^{i\theta} \) with \(g^n(\zeta) = z_0 \) and \(e^{i\theta} \in A \).

We omit the proofs of Lemma 1 and Lemma 2.

In §2 we prove Theorem 1 and Corollary 1. §3 consists of two subsections. In §3.1 we prove Theorem 2 and make some remarks on the sufficient conditions for \(f \) to admit no unbounded Fatou components. In §3.2 we prove the Main Theorem by using Lemma 1 and Lemma 2.

2 Connectivity of \(J_f \cup \{ \infty \} \) in \(\overline{\mathbb{C}} \)

(Proof of Theorem 1): The following criterion is well known. (See for example [Bea], p.81, Proposition 5.1.5).
Proposition B Let K be a compact subset in \mathbb{C}. Then K is connected if and only if each component of the complement K^c is simply connected.

Since $J_f \cup \{\infty\}$ is compact in \mathbb{C}, we can apply Proposition B. As we mentioned in §1, eventually periodic components are simply connected. So if a Fatou component U is not simply connected, then U is necessarily a wandering domain which is not simply connected. This completes the proof. \qed

(Proof of Corollary 1): Under the condition (1), f^n cannot tend to ∞ through F_f ([EL2]). On the other hand, f^n tends to ∞ on any multiply-connected wandering domains ([Ba4], [EL1]). So all the Fatou components are simply connected in this case. Under the condition (2) or (3), it is known that all the Fatou components must be simply connected ([Ba4], [EL1], p.620 Corollary 1, 2). \qed

Remark 1 (1) Let $S := \{f \mid \# \text{sing}(f^{-1}) < \infty\} \subset B$. Then there is even no wandering domain in F_f for $f \in S$ ([GK]). For $f \in B$, F_f may admit a wandering domain U but U must be simply connected as we mentioned above. Under an additional condition $J_f \cap (\text{derived set of } \bigcup_{n=0}^{\infty} f^n(\text{sing}(f^{-1}))) = \emptyset, \quad f \in B$ has also no wandering domain ([BHKMT]).

(2) We can conclude that in general if $J_f \cup \{\infty\}$ is disconnected, all the Fatou components are bounded and some of which are multiply-connected wandering domains.

3 Connectivity of J_f in \mathbb{C}

3.1 The case when all the Fatou components are bounded

Suppose that a closed connected subset K in \mathbb{C} is bounded. Then all the components of the complement K^c other than the unique unbounded component V are simply connected. (Of course, $V \cup \{\infty\} \subset \mathbb{C}$ is simply connected). If K is unbounded, then all the components of K^c are simply connected, but the converse is false as the example $J_{E_{\lambda}}(0 < \lambda < \frac{1}{2})$ shows. (Compare with the Proposition B). But note that $J_{E_{\lambda}} \cup \{\infty\}$ is connected in \mathbb{C}. For the connectivity of a closed subset in \mathbb{C}, the following criterion holds.

Proposition 1 Let K be a closed subset of \mathbb{C}. Then K is connected if and only if the boundary of each component U of the complement K^c is connected.

(Proof): For the 'only if' part, see [New]. Suppose that K is disconnected. Then there exist two closed sets K_1 and K_2 with $K = K_1 \cup K_2$ and $K_1 \cap K_2 = \emptyset$. Take a point z_0 with $d(z_0, K_1) = d(z_0, K_2)$ where d denotes the Euclid distance in \mathbb{C}. Then $z_0 \in K^c$ and so let U_0
be the connected component of K^2 containing z_0. Since ∂U_0 is connected by the assumption, either $\partial U_0 \subset K_1$ or $\partial U_0 \subset K_2$. Without loss of generality we can assume $\partial U_0 \subset K_1$. On the other hand denote $r_0 := d(z_0, K_1) = d(z_0, K_2)$ and let $D_{r_0}(z_0) := \{z \mid |z - z_0| < r_0\}$. Then $D_{r_0}(z_0) \subset \overline{U_0}$ and there exists a point $w \in K_2$ with $w \in \overline{U_0}$. Since $w \in K_2 \subset K$, we have $w \in \partial U_0$ but this is a contradiction since $\partial U_0 \subset K_1$ and $K_1 \cap K_2 = \emptyset$. This completes the proof.

(Proof of Theorem 2): By Proposition 1, it is sufficient to to show that the boundary ∂U is connected for each Fatou component U. Since U is bounded, the boundary of U as a subset of \mathbb{C} and the one as the subset of $\hat{\mathbb{C}}$ coincide. Hence U is simply connected if and only if ∂U is connected ([Bea], p.81, Proposition 5.1.4). This completes the proof.

Remark 2 (1) Since a non-simply connected Fatou component is necessarily a wandering domain, the assumption of Theorem 2 is equivalent to that all the components of F_f are bounded and F_f admits no multiply-connected wandering domains.

(2) Several sufficient conditions are known for a transcendental entire function f to admit no unbounded Fatou components as follows:

(i) ([Ba3]) $\log M(r) = O((\log r)^p)$ (as $r \to \infty$) where $M(r) = \sup |f(z)|$ and $1 < p < 3$.

(ii) ([S]) There exists $c \in (0, 1)$ such that $\log \log M(r) < (\log r)^c$ for large r.

(iii) ([S]) The order of f is less than $\frac{1}{2}$ and $\frac{\log M(2r)}{\log M(r)} \to c$ (finite constant) as $r \to \infty$.

Note that the condition (ii) includes the condition (i).

3.2 In the case when F_f admits an unbounded component

(Proof of Main Theorem): In what follows we assume that $n_0 = 1$ (that is, U is an invariant component) and $m_0 = 1$ for simplicity. This causes no loss of generality, because we have only to consider f^{m_0} instead of f in general cases.

Case (1) Since ∞ is accessible, there exists a continuous curve $L(t)$ ($0 \leq t < 1$) in U with $\lim_{t \to 1} L(t) = \infty$. By deforming $L(t)$ slightly, we construct a new curve $L(t)$ satisfying the following condition.

Lemma 3 There exists a curve $L(t)$ ($0 \leq t < 1$) with $\lim_{t \to 1} L(t) = \infty$ such that every branch of f^{-n} can be analytically continued along it for every $n \in \mathbb{N}$.

(Proof): We may assume that $L(0) \notin P_f$, since $q \notin P_f$ we have $U \subset P_f$. Let $p_0 := L(0), p_1, p_2, \ldots$ be points on L such that all the piecewise linear line segments connecting p_0, p_1, p_2, \ldots lie in U. Let $F_n^{(1)}, F_n^{(2)}, \ldots, F_n^{(m)}, \ldots$ be all the branches of f^{-n} which take values on U. The range of the suffix m may be finite or infinite. Define

$$E_n^{(m)}(p_0) := \{e^{i\theta} \mid F_n^{(m)} \text{can be analytically continued along the ray}$$

83
Then by the next Gross's Star Theorem ([Nev]), it follows that \(\Theta_p^{(m)}(p_0) \) has full measure in \(\partial \mathbb{D} \).

Lemma C (Gross's Star Theorem) Let \(f \) be an entire function and \(F \) a branch of \(f^{-1} \) defined in the neighborhood of \(p_0 \in \mathbb{C} \). Then \(F \) can be analytically continued along almost all rays from \(p_0 \) in the direction \(\theta \).

Then the set

\[
\Theta(p_0) := \bigcap_{n \geq 1, m \geq 1} \Theta_p^{(m)}(p_0)
\]

has also full measure in \(\partial \mathbb{D} \). Hence by changing \(p_1 \) slightly to a point \(p_1' \), the segments \(\overline{p_0p_1} \) and \(\overline{p_1'p_2} \) lie in \(U \) and all the branches \(F^{(m)}(n \geq 1, m \geq 1) \) can be analytically continued along \(\overline{p_0p_1} \). By the same method, we can find a point \(p_2' \) close to \(p_2 \) such that the segment \(\overline{p_1'p_2'} \) lies in \(U \) and has the same property as above. By repeating this argument, we can prove the Lemma 3.

Let \(I_n^{(m)}(t) := F^{(m)}(\mathcal{L}(t)) \) then we have \(\lim_{t \to -1} I_n^{(m)}(t) = \infty \). For suppose this is false, then there exist an increasing sequence of parameter values \(t_1 < t_2 < \cdots < t_k < \cdots \) and a finite point \(\alpha \) with \(\lim_{k \to \infty} I_n^{(m)}(t_k) = \alpha \not= \infty \). Then it follows that \(\lim_{k \to \infty} \mathcal{L}(t_k) = f^n(\alpha) \not= \infty \) and this contradicts the fact \(\lim_{k \to \infty} \mathcal{L}(t_k) = \infty \).

Let \(\varphi : \mathbb{D} \to U \) be a Riemann map of \(U \). Then

\[
\Gamma(t) := \varphi^{-1}(\mathcal{L}(t)) \quad \text{and} \quad I_n^{(m)}(t) := \varphi^{-1}(I_n^{(m)}(t))
\]

are curves in \(\mathbb{D} \) landing at a point in \(\partial \mathbb{D} \). This fact is not so trivial but follows from the proposition in [P] (p.29, Proposition 2.14). We may assume that \(\Gamma(t) \) lands at \(z = 1 \in \partial \mathbb{D} \) for simplicity. If \(\lim_{t \to -1} \gamma_n^{(m)}(t) = e^{i\theta_0} \), then since \(\lim_{t \to -1} \varphi(\gamma_n^{(m)}(t)) = \lim_{t \to -1} I_n^{(m)}(t) = \infty \), it follows that there exists the radial limit \(\lim_{t \to -1} \varphi(re^{i\theta}) \) and this is equal to \(\infty \). This fact follows from the theorem in [P] (p.34, Theorem 2.16). Therefore it is sufficient to show that the set of all the landing points of \(I_n^{(m)}(t) \) \((n \geq 1, m \geq 1)\) is dense in \(\partial \mathbb{D} \).

Let \(g := \varphi^{-1} \circ f \circ \varphi : \mathbb{D} \to \mathbb{D} \). Then by Fatou's theorem \(\varphi \) has radial limit \(\varphi(e^{i\theta}) = \lim_{r \to 1} \varphi(re^{i\theta}) \) is \(\partial U \) and non-constant for almost every \(e^{i\theta} \in \partial \mathbb{D} \). Hence \(f \circ \varphi(re^{i\theta}) \) is a curve landing at a point in \(\partial U \setminus \{\infty\} \) for almost every \(e^{i\theta} \in \partial \mathbb{D} \). Therefore it follows that \(\lim_{r \to 1} \varphi^{-1} \circ f \circ \varphi(re^{i\theta}) \in \partial \mathbb{D} \) a.e. and thus \(g \) is an inner function. Let \(\bar{C} := \varphi^{-1}(C) \) then by the same reason for \(\Gamma(t) \), \(\bar{C} \) is a curve in \(\mathbb{D} \) with an end point \(\bar{q} \in \partial U \) satisfying \(g(\bar{C}) \supset \bar{C} \). From the dynamics of \(g : \mathbb{D} \to \mathbb{D} \), it follows that the set

\[
\bigcup_{n=0}^{\infty} g^n(\bar{C}) \cup \{\bar{p}, \bar{q}\}
\]

is compact in \(\overline{\mathbb{D}} \) where \(\bar{p} = \varphi^{-1}(p) \) and \(\bar{p} \) is an attracting fixed point of \(g \) and the distance between this set and \(z = 1 \) is positive. Hence there exists \(\varepsilon_0 > 0 \) such that

\[
U_{\varepsilon_0}(1) \cap \left\{ \bigcup_{n=0}^{\infty} g^n(\bar{C}) \cup \{\bar{p}, \bar{q}\} \right\} = \emptyset
\]

(1)
Since \(\Gamma(t) \) lands at \(z = 1 \), there exists \(t_0 \in [0,1) \) such that \(\Gamma(t_0,1) \subset U_{\varepsilon_0}(1) \). So by rewriting \(\Gamma \) to \(\Gamma(t) \) \((0 \le t < 1)\) we may assume that \(\Gamma(t) \subset U_{\varepsilon_0}(1) \) for \(0 \le t < 1 \).

Let \(K := \{ \xi \mid |\xi| \le 1 - \varepsilon_0 \} \) then since every point in \(\mathbb{D} \) tends to \(\bar{\mathbb{D}} \) under \(g^n \) and \(K \) is compact, there exists \(n_1 \in \mathbb{N} \) such that for every \(N \ge n_1 \) we have \(g^N(K) \subset U_{\varepsilon_0}(1) \). Then we have \(\gamma_n^{(m)}(t) \subset K^c \) for every \(N \ge n_1 \). For suppose that \(\gamma_n^{(m)}(t) \cap K \neq \emptyset \), then by operating \(f^N \) we have \(\Gamma(t) \cap K \neq \emptyset \) which contradicts \(\Gamma(t) \subset U_{\varepsilon_0}(1) \).

Now suppose that the conclusion does not hold. Then there exists

\[
(\theta_1, \theta_2) := \{ e^{i\theta} \mid \theta_1 < \theta < \theta_2 \} \subset \partial \mathbb{D} \quad \text{with} \quad \Theta_\infty \cap (\theta_1, \theta_2) = \emptyset.
\]

By changing the starting point \(\gamma(0) \) slightly, if necessary, we may assume that the points \(\gamma_n^{(m)}(0) \) \((n, m = 1, 2, \ldots)\) accumulate to all over \(\partial \mathbb{D} \) by Lemma 1 (1) while the end points \(\gamma_n^{(m)}(1) := \lim_{t \to 1} \gamma_n^{(m)}(t) \) \((n, m = 1, 2, \ldots)\) are not in \((\theta_1, \theta_2)\). Therefore there exists \(\gamma_n^{(m)}(t) \) such that \(\gamma_n^{(m)}(t) \subset K^c \) and \(\gamma_n^{(m)}(1) = \partial \mathbb{D} \setminus (\theta_1, \theta_2) \).

On the other hand there exist inverse images \(g^{-n}(\bar{C}) \) which have limit points on \((\theta_1, \theta_2)\) densely. The reason is as follows: Since \(q \notin P \), there exists a neighborhood \(V \) of \(q \) such that all the branches \(F_n^{(1)}, F_n^{(2)}, \ldots, F_n^{(m)}, \ldots \) can be defined. Let \(V_0 \subset V \) be a neighborhood of \(q \) with \(V_0 \subset V \). We may assume that \(C \subset V_0 \). Define

\[
c_n^{(m)}(t) := F_n^{(m)}(C(t)), \quad \bar{c}_n^{(m)}(t) := \varphi^{-1}(c_n^{(m)}(t)).
\]

Then \(c_n^{(m)}(t) \) is a curve in \(U \) landing at a point in \(\partial U \) and \(\bar{c}_n^{(m)}(t) \) is a curve in \(\bar{D} \) landing at a point in \(\partial \bar{D} \) by the same reason as before. Let \((\theta_3, \theta_4) \subset (\theta_1, \theta_2) \) be any subarc of \((\theta_1, \theta_2)\). By changing the starting point \(C(0) \) slightly, if necessary, we may assume that the points \(c_n^{(m)}(0) \) \((n, m = 1, 2, \ldots)\) accumulate to \((\theta_3, \theta_4)\) by Lemma 1 (1). Since radial limits of \(\varphi \) exist and non-constant almost everywhere, by changing \(\theta_3 \) and \(\theta_4 \) slightly if necessary, we may assume that there exist the finite values \(\varphi(e^{i\theta_3}) \) and \(\varphi(e^{i\theta_4}) \) with \(\varphi(e^{i\theta_3}) \neq \varphi(e^{i\theta_4}) \). Then \(c_n^{(m)}(0) \) accumulate on \(\partial U \cap \varphi\{r e^{i\theta} \mid \theta_3 < \theta < \theta_4, \quad 0 \le r \le 1 \} \). In general the family of single-valued analytic branch of \(F^{(m)} \) \((n = 1, 2, \ldots)\) on a domain \(U_0 \) is normal and furthermore if \(U_0 \cap J \neq \emptyset \), any local uniform limit of a subsequence in the family is constant ([Bea], p.193, Theorem 9.2.1, Lemma 9.2.2). So the family \(\{ F_n^{(m)} | V_0 \} \) is normal and all its limit functions are constant and hence for a suitable subsequence the diameter of \(c_n^{(m)}(t) \) tends to zero, that is, \(c_n^{(m)}(t) \) must land in a point in \((\theta_3, \theta_4) \). If the constant limit is \(\infty \), for large enough \(n \) the curves \(c_n^{(m)} \) cannot intersect both \(\{ \varphi(r e^{i\theta_3}) | 0 \le r \le 1 \} \) and \(\{ \varphi(r e^{i\theta_4}) | 0 \le r \le 1 \} \) which are bounded set, since the convergence is uniform on \(V_0 \). Hence again we can conclude that \(c_n^{(m)}(t) \) must land at a point in \(\partial U \cap \varphi\{r e^{i\theta} \mid \theta_3 < \theta < \theta_4, \quad 0 \le r \le 1 \} \) and therefore \(c_n^{(m)}(t) \) must land at a point in \((\theta_3, \theta_4) \). This proves the assertion.

Then there exists \(\gamma_n^{(M_1)} \) such that \(\gamma_n^{(m)}(1) \cap \gamma_n^{(M_1)} \neq \emptyset \). We may assume that \(n_1 > N_1 \). Let \(u \in \gamma_n^{(m)} \cap \gamma_n^{(M_1)} \) then since \(u \in \gamma_n^{(m)} \), we have \(g^{n_1}(u) \in U_{\varepsilon_0}(1) \). On the other hand since \(u \in \gamma_n^{(M_1)} \) and \(n_1 > N_1 \), we have \(g^{n_1}(u) \in \bigcup_{n=0}^{\infty} g^n(C) \) which contradicts (1). Therefore

85
Θ_∞ is dense in ∂D. Disconnectivity of J_f easily follows by the same argument as in the case of E_λ in §1. This completes the proof in the case of (1).

Case (2) The proof is quite parallel to the case (1). Note that by Lemma 2, $\bigcup_{n=1}^\infty g^{-n}(z_0) \supset \partial D (z_0 \in D \setminus E)$ holds for $g = \varphi^{-1} \circ f \circ \varphi$ in this case.

Case (3) Since $g(z) = e^{2\pi i \theta}$ with $\theta \in \mathbb{R} \setminus \mathbb{Q}$, the inverse image of $\Gamma(t)$ by g^{-n} is unique and denote it by $\gamma_n(t)$. Then it is obvious that the end points of $\gamma_n(t)$ are dense in ∂D and φ attains radial limit ∞ there, since $g(z)$ is an irrational rotation and $\lim_{t \to 1} \varphi(\gamma_n(t)) = \lim_{t \to 1} f^{-1}(\varphi(\Gamma(t))) = \infty$.

Case (4) In this case we need not assume the accessibility of ∞, because this condition is automatically satisfied ([Ba6]). The set $\bigcup_{n=0}^\infty f^n(C)$ is a curve which may have self-intersections and tends to ∞. It is not difficult to take L satisfying $L \cap (\bigcup_{n=0}^\infty f^n(C)) = \emptyset$. Hence we have $L \cap (\bigcup_{n=0}^\infty f^n(C)) = \emptyset$. The rest of the proof is quite parallel to the case (1) if the conclusion of Lemma 2 (1) holds for g. If we have only the conclusion of Lemma 2 (2), then we can prove that for every arc $A \subset \partial D$ with $A \cap K = \emptyset$, $A \cap \Theta_\infty = \emptyset$ holds by the similar argument.

References

[Kr] B. Krauskopf, *Convergence of Julia sets in the approximation of λe^z by $\lambda \left(1 + \frac{z^d}{d}\right)$*, Internat. J. Bif. & Chaos, 3 (1993), 257–270.

