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Abstract

In this note, a bifurcation phenomenon along arcs in the dynam-
ics of a family of antiholomorphic maps is considered. By explicitly
calculating the multipliers of 2-periodic points, we can describe the
exact subarcs of the boundary of the hyperbolic component of period
one of the the multicorn, along which bifurcation occurs.

1 Introduction

In this paper, we consider the dynamics of a family of antiholomorphic poly-
nomials of degree d > 2 of the form : f.(z) =2%+¢, c &€ C. Though f. itself
is not holomorphic, its second iterate f°2(z) = (2% + €)? + ¢ is holomorphic.
So, we can define its filled-in Julia set K, = K(f.) and Julia set J. = J(f.)

analogously as in the polynomial case :

K. = {z € C;its forward orbit {f"(2)}22, is bounded},
J. = 0K,

We are mainly concerned with the connectedness locus of this family :
M; = {c € C; J, is connected}.

We call it the multicorn. The case d = 2 has been investigated by several
authors. Milnor [Mil] called M3 the tricorn and Rippon et.al. [Rip] called it
the Mandelbar set. It is characterized also by

M; ={ceC;0 € K.}.
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Note that 0 is the unique critical point of this family.

It can be regarded as an analogy with the (generalized) Mandelbrot set
M, for the polynomial family : P.(z) = z¢ 4+ ¢, ¢ € C. In fact, they share
same properties to a certain extent. For example, Nakane [Nakl] showed
that the tricorn M; is connected. His proof works also for any d > 2 and we
can say M} is connected for any d.

But there are some differences between My and M. In [Rip] they showed,
for d = 2, that a bifurcation of attracting fixed points into attracting 2-cycles
occurs across an arc and not at a single point. This never happens for the
quadratic family {P.} since it depends holomorphically on the parameter c.
The boundaries of two hyperbolic components must meet only at a single
point.

This paper 1s an attempt to investigate such a bifurcation on the boundary
of any hyperbolic component of odd period k. Especially in case k = 1, we
give a complete description of the bifurcation by explicitly calculating the
multiplier of the 2-periodic point.

Let W be a hyperbolic component of odd period k& of M] and W be
its boundary. Suppose ¢ € OW. Then, there exists an indifferent k-periodic
point z, of f. satisfying (8f°%/8z)(z.) = 1. Note that, for any periodic point
z. of f,. of odd period k,

(0f2%/02)(ze) = (0281 0Z)(ze)|* 2 0.

Hence, an indifferent k-periodic point of f. must always be a rationally in-
different k-periodic point of f°? with multiplier 1.

Thus OW 1s a real algebraic set and is real-analytically parametrized at
least locally, which we denote by ¢ = ¢(t). Let z; be a rationally indifferent
k-periodic point of f ). Actually, in Nakane and Schleicher [NS], we show
that each connected component of W — {cusp points} is real analytically
parametrized by the Fcalle height of the critical value.

Lemma 1.1 If (0* c"(%’)‘/@zz)(zt) =0, then (03ff(2t§°/023)(21) # 0.

PROOF. Since the combinatorial rotation number is one at 2z, and the number
of critical orbits of f2? is two, the multiplicity of z. as a k-periodic point of
f&? is at most three. From the assumption, it is not two. So it is three. This
completes the proof. ]
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Definition 1.2 (Parabolic arcs and cusps) We call ¢ = ¢(t) € OW a
cusp point if (0° ffy/02*)(2) = 0. Otherwise, we call it a non-cusp point.
We call each connected component of OW — {cusp points} a parabolic arc.

For example, in case k = 1, its boundary 0W is parametrized by
c(t) =z —%% 2 =d Vet 0 <t <2 (1)
Here i1s our main theorem of this paper.

Theorem 1.3 In case k =1, bifurcation occurs on ¢ = ¢(t) in (1) with

45+ 1 45 +3 |
Bt e T L g<i<a
A+ Py VST

REMARK. The value t/27 above corresponds to the internal angle of the
hyperbolic component of period one. The above theorem implies that bifur-
cation occurs just on one half of the boundary in the sense of internal angles.
Cusp points correspond to t = %W, 0<y<d.

The author would like to express his hearty gratitude to Prof. D. Schle-
icher. This is a part of the joint work with him starting while the author
stayed at the Institut des Hautes Etudes Scientifiques at Bures-sur-Yvette,

France. The author thanks ITHES for its hospitality.

2 Multipliers of 2k-periodic points

In this section, we investigate the bifurcation along arcs by a precise estimate
of the multipliers of the bifurcating 2k-cycles.

Though in [Rip], they have shown such a bifurcation only in a small
neighborhood of a cusp point of the hyperbolic component of period one, we
get a general result for any period. Especially, in case of period one, we get
an exact subarc of the boundary across which bifurcation occurs.

Let W be a hyperbolic component of odd period k of M;. We use the
same notation as in the introduction. First, we will show the following.
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Lemma 2.1 Suppose k is odd. Let zo be a 2k-periodic point of f. and put
wo = f2*(20). Then

(0% /0z)(wo) = (0f¢**[0z)(=o0)-
Furthermore, if zo s a k-periodic point of f.,

(0£2%/02)(20) = (812" /97)(20)|* 2 0.

PROOF. Let z; = f%(z0). Then w; = z4;. By the chain rule, we have
(017 )02)(wo) = (0f2"/02)(f* (wo))(Df*/07)(wo)
= (042"/07)(20)(0507) (wo)
= (0f2%]0z)(20).

Especially, if z; is k-periodic, then wg = 2. Hence
(0£2%02)(20) = |(0£"/0%)(20)|* 2 0.

This completes the proof. | O

We will estimate the multiplier of the 2k-cycle of f. near 0W. To do so,
we calculate its 2k-periodic point asymptotically. Though the main theorem
states only for the case k£ = 1, we can calculate them in a general form for

any odd k. .
We use the following notations :
F(z,c,e) = f*(2),
G(z3c>6) = f:%(z),
T = p(z) =2 — z,
c = ct)+s, s=rw, >0, w=c¢e"

H(z) = G(z+ z,c(t)+ s,¢(t) +3) — 2.
Then, we have a Taylor expansion of H with respect to z:
H(z) = Ges + G5 + (G + Gaes + GoS)z + Guaz? /24 Good®[6 + .

Here G, = Ge(z1,c(t),c(t)) etc. are partial derivatives of G. Note that
G, = 1. '
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We find a Puiseux expansion of the fixed point z of H (which corresponds
to the 2k-periodic point of f.;)) with respect to r of the form :

z=ar’? +br + O(r?’/z).
By subordinating this in H, we have
0 = H(z)—z
= (Gw + G@)r + (Grew + Goe@)r(ar/? + br + ...)
+G,.(a?r 4+ 2abr¥? 4+ ) /24 G...a®r? 6 + ..

3/2

Comparing the coefficients of r and r°/%, it follows

Gcw + Ggw + Gzza'Q/2 = 07
(Grew + Gozw)a + G, ab + Gzzza3/6 = 0.
Hence we have,
a = a(t) = +/-2(Gw + G®)/GC..,
b = b(t) = —(Grew + G + G12.0°/6)/ G,

Let p = p(t) be the multiplier of the fixed point z of H, i.e., the multiplier
of the 2k-periodic point of f).

Lemma 2.2 We have

p=1+4iAr'/? 4 Br + O(r*?), . (2)

where

A = Alt)=+/26..(Gw + G:),
B = B(t) = —2G.,,(Gw + Gzw) /3G, .

ProOOF. By a direct calculation, it follows
p = H(z)
= 14 (G.ew + Ge@0)r + Gz + G,oz? /2 + ...
= 14 (Grew + Ge0)r + Gzz(arl/2 +br) + Gzzza2r/2 + ...
= 14 Gooar'? 4+ (Goew + Goe® + Gozb + Gaad®/2)r + ..
= 1+iAr'? 4+ Br 4+ O(r*/?).

This completes the proof. 0
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Proposition 2.3 A = A(t) and B = B(t) are real-valued outside W for
any odd k.

PROOF. We calculate A and B. Since G = F(F,c¢,¢), we have

Gz = E(F) )
G,: = ng—(-ﬁ)?? +Fz(f)Fzz,

Gzzz = Fzz‘(—F)EB + 3FEE(_F—)F§2FE + FEFEZE-

T

By putting z = z;, ¢ = ¢(t), we have
Gz = IFEIZ = 1,
Gzz =V EQRe(FfiF_ZB/Z)>
G = E@[Fzzlg + QRG(F225E2)),
Gc - Fc + FZ?—;’
G: = F:i+ F:F, = FiG..

Hence we can compute A and B as follows :

A = :i:2\/2Re(F:—,5—53/2)Re((ch+F55)\/_F;),
2Re((Fuw + Fuo)\/ F; _
p = el ““L_f/)z ) (31 Feal? + 2Re( FinsTE)).
BRG(Fngg )

Hence, we have shown that B is real. As for A, this calculation shows that
A is real or pure imaginary. By Lemma 2.1 and the following Lemma 2.4, A
must be real outside JW. This completes the proof of Proposition 2.3. []

Lemma 2.4 On OW - {cusp points}, an attracting and repelling k-cycles
collapse and bifurcate into a 2k-cycle outside W.
We omit the proof. The case d = 2,k =1 was shown in [Rip].

REMARK. Proposition 2.3 assures that, if A # 0, we can define and make
use of the Ecalle cylinder in a neighborhood of OW. See Lavaurs [Lav] or
Shishikura [Shi2]. In fact, A # 0 implies a rotation around the bifurcating
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2k-periodic point, which suggests the existence of an eggbeater dynamics.
Ecalle cylinder, the fundamental domain of this eggbeater dynamics, 1s thus
assured to exist. The following calculation implies that, in case k =1, A # 0
is equivalent to the fact that ¢ = ¢(t) is not a cusp point.

Then, the absolute value of p is expressed by :

Ip|? = (1+Br)*+ A% + 0@/
= 1+ 2B+ A%r + O(r*/?).

Hence, for sufficiently small » > 0, z is attracting if and only if 2B + A? < 0.
Here,

2Gw+ Gzw
3 Gzz

Thus we have obtained a preliminary version of Theorem 1.3.

2B + A* = (3G?, — 2G...).

Theorem 2.5 For general odd k, suppose A # 0. Then bifurcation occurs
across the subarcs of OW satisfying

2B+ A* | %G
AT 3G2,

< 0.

REMARK. We can state the above theorem in terms of the holomorphic
index. Let 2o be a fixed point of a holomorphic function f. The holomorphic
index ¢(f, z9) of f at zp is defined by

i(f, 20) _l_fl’ dz

- 21 z—zg|z=e 2 — f(Z)
For example, 7(f,20) = 1/(1 — f'(20)) if 2o is a repelling fixed point, and
i(f,20) = 2f"(20)/3f"(20)* if 2o is a parabolic fixed point with multiplier
one. Thus we have i(ff(%’f,zt) = 2G,,./3G?%,. This was suggested by M.
Shishikura. A detailed discussion will be published elsewhere.

For general k, we cannot calculate A and B. But it is possible for & = 1,
in which case,

G = (%472 +¢,
G. = 1,
Gz = d(z* +7)* 7,
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G, = d2(4 49,
G:. d*d — 1)z (2% + )% 4+ d3(d — 1)22272(2¢ 4 €)¢?
Gare = d2(d—1)[(d—2)2%3(2* + ) +3d(d — 1)22*73(2% 4+ ¢)%?
+d*(d - 2)2%73(2* +2)* 7).

Hence, by putting z = 2z = d"/Ve¥,c = ¢(t) = 2 — 7/, and using
fery(2¢) = 24, we have

GE — d—z—(ti-—l :e—i(d—l)t’
Gzz — d2(d_ 1)(23—2321 1 —+—d22d ‘Z—td 2) (d )dl/ (d-1) ( —it+ idt),
Guwe = P(d=1)[(d— 27 +3d(d = D)2 4 B (d - 9505
(d 1)d2/ (d-1) [(d 2)6—2113 +3(d 1) i(d— 1)t + (d— 2) 21dt]'

Then it follows

(d— 1)t
2

A= :{_—2\/(d — 1)d¥/(@=1) cos (

fort € [ = (—n/(d+1),7/(d+1)) if we take § = 0, and

26 _ 2= 1)d¥@=1{(d — 2) (e~ + %4 4 3(d — 1)@=t}
3GZ, 3{(d — 1)d/(@=1) (e~ 4 eidt)}?
26i(d—1)t{3(d — 1)+ (d- 2)(ei(d+1)t + 6—i(d+1)t)}
B 3(d — 1) (et + eidt)2
2{3(d —1) + 2(d — 2) cos(d + 1)t}
T 3(d—1)(2cos((d + 1)t/2))?
(d+1)cos(d+ 1)t
3(d — 1)(cos(d + 1)t + 1)

1—

From this and the symmetry of M}, we get the conclusion of Theorem 1.3.
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