
NOTES ON SURGERY AND C∗-ALGEBRAS

JOHN ROE

1. Introduction

A C∗-algebra is a complex Banach algebra A with an involution ∗, which satisfies
the identity

‖x∗x‖ = ‖x‖2 ∀x ∈ A.
The study of C∗-algebras seems to belong entirely within the realm of functional
analysis, but in the past twenty years they have played an increasing rôle in geo-
metric topology. The reason for this is that C∗-algebra K-theory is a natural
receptacle for ‘higher indices’ of elliptic operators, including the ‘higher signatures’
which feature as surgery obstructions. The ‘big picture’ was originated by Atiyah
[1, 2] and Connes [5, 6]; in these notes, based on my talk at the Josai conference, I
want to explain part of the connection with particular reference to surgery theory.
For more details one could consult [24].

2. About C∗
-algebras

The following are key examples of C∗-algebras
• The algebra C(X) of continuous complex-valued functions on a compact Haus-

dorff space X.
• The algebra B(H) of bounded linear operators on a Hilbert space H.
Gelfand and Naimark (about 1950) proved: Any commutative C ∗-algebra with

unit is of the form C(X); any C∗-algebra is a subalgebra of some B(H).
Let A be a unital C∗-algebra. Let x ∈ A be normal, that is xx∗ = x∗x. Then x

generates a commutative C∗-subalgebra of A which must be of the form C(X). In
fact we can identify X as the spectrum

X = σ(x) = {λ ∈ C : x− λ1 has no inverse}
with x itself corresponding to the canonical X → C.

Hence we get the Spectral Theorem: for any ϕ ∈ C(σ(x)) we can define ϕ(x) ∈ A
so that the assignment ϕ 7→ ϕ(x) is a ring homomorphism.

If x is self adjoint (x = x∗), then σ(x) ⊆ R.
One can define K-theory groups for C∗-algebras. For A unital
• K0(A) = Grothendieck group of f.g. projective A-modules
• K1(A) = π0GL∞(A)

with a simple modification for non-unital A. These groups agree with the ordinary
topologicalK-theory groups of the space X in case A is the commutative C∗-algebra
C(X).

For any integer i define Ki = Ki±2. Then to any short exact sequence of C∗-
algebras
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0 → J → A → A/J → 0

there is a long exact K-theory sequence

. . .Ki(J) → Ki(A) → Ki(A/J) → Ki−1(J) . . .

The 2-periodicity is a version of the Bott periodicity theorem. Notice that algebraic
K-theory does not satisfy Bott periodicity; analysis is essential here.

A good reference for this material is [26].
Classical Fredholm theory provides a useful example of C∗-algebra K-theory at

work. Recall that an operator T on a Hilbert space H is called Fredholm if it has
finite-dimensional kernel and cokernel. Then the index of T is the difference of the
dimensions of the kernel and cokernel.

(2.1) Definition: The algebra of compact operators, K(H), is the C∗-algebra
generated by the operators with finite-dimensional range.

Compact and Fredholm operators are related by Atkinson’s Theorem, which
states that T ∈ B(H) is Fredholm if and only if its image in B(H)/K(H) is
invertible.

Thus a Fredholm operator T defines a class [T ] in K1(B/K). Under the connect-
ing map this passes to ∂[T ] ∈ K0(K) = Z; this is the index.

3. Abstract signatures

Recall that in symmetric L-theory we have isomorphisms L0(Z) → L0(R) → Z.
The second map associates to a nonsingular real symmetric matrix its signature =
(Number of positive eigenvalues) − (Number of negative eigenvalues).

Can we generalize this to other rings?
If M is a nonsingular symmetric matrix over a C∗-algebra A we can use the

spectral theorem to define projections p+ and p− corresponding to the positive and
negative parts of the spectrum. Their difference is a class in K0(A).

This procedure defines a map Lp
0(A) → K0(A) for every C∗-algebra A, and it

can be shown that this map is an isomorphism [25]. There is a similar isomorphism
on the level of L1.

Now let Γ be a discrete group. The group ring ZΓ acts faithfully by convolution
on the Hilbert space `2Γ. The C∗-subalgebra of B(`2Γ) generated by ZΓ acting in
this way is called the group C∗-algebra, C∗

r Γ.
We have a map L0(ZΓ) → K0(C∗

r Γ).
Gelfand and Mishchenko [10] observed that this map is a rational isomorphism

for Γ free abelian. (Then C∗
rΓ = C(T k) by Fourier analysis.)

Remark: Our map from L0 toK0 is special to C∗-algebras; if it extended naturally
to a map on all rings, we would have for a free abelian group Γ a diagram

L0(ZΓ) //

��

L0(C∗
rΓ)

��
K0(ZΓ) // K0(C∗

r Γ)
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Going round the diagram via the top right we get Gelfand and Mishchenko’s map, a
rational isomorphism. But the bottom left-hand group is of rank one, by the Bass-
Heller-Swan theorem [4, Chapter XII]. This contradiction shows that the left-hand
vertical map cannot exist.

4. The signature operator

Let M be a complete oriented Riemannian manifold of even dimension (for
simplicity). Define the operator F = D(1 +D2)−

1
2 on L2 differential forms, where

D = d+ d∗, d =exterior derivative, d∗ = its adjoint.
F is graded by an involution ε = i?∗ (here i =

√−1 and the power ? depends
on the dimension and the degree of forms, see [3] for the correct formula). Thus
graded it is called the signature operator.

If M is compact, then F is Fredholm. Moreover the index of F is the signature
of M . This is a simple consequence of Hodge theory [3].

Remark: The choice of normalizing function ϕ(x) = x(1 + x2)−
1
2 in F = ϕ(D)

does not matter as long as it has the right asymptotic behaviour.

Consider now the signature operator on the universal cover M̃ of a compact
manifoldM . F belongs to the algebra A of Γ = π1M equivariant operators. More-
over it is invertible modulo the ideal J of Γ equivariant locally compact operators.
This follows from the theory of elliptic operators.

Thus via the connecting map ∂ : K1(A/J) → K0(J) we get an ‘index’ in K0(J).

(4.1) Lemma: J ≡ C∗
r Γ ⊗ K. Consequently K0(J) = K0(C∗

r Γ).
We have defined the analytic signature of M as an element of K0(C∗

r Γ). In
general it can be defined in Ki(M ) where i is the dimension of M mod 2.

(4.2) Proposition: The analytic signature is the image of the Mishchenko-
Ranicki symmetric signature under the map L0 → K0.

(4.3) Corollary: The analytic signature is invariant under orientation preserv-
ing homotopy equivalence.

Direct proofs of this can be given [13].
We can now define an ‘analytic surgery obstruction’ (= difference of analytic

signatures) for a degree one normal map.
Can we mimic the rest of the surgery exact sequence?

5. K-homology

Let A be a C∗-algebra. A Fredholm module for A is made up of the following
things.

• A representation ρ : A→ B(H) of A on a Hilbert space
• An operator F ∈ B(H) such that for all a ∈ A the operators

Fρ(a) − ρ(a)F, (F 2 − 1)ρ(a), (F − F ∗)ρ(a)

belong to K(H).
The signature operator is an example with A = C0(M ).
One can define both ‘graded’ and ‘ungraded’ Fredholm modules. These objects

can be organized into Grothendieck groups to obtain Kasparov’sK-homology groups
Ki(A) [15]. (i = 0 for graded and i = 1 for ungraded modules). They are
contravariant functors of A.
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Remark: The critical condition in the definition is that [F, ρ(a)] ∈ K for all a. One
should regard this as a continuous control condition. In fact, if A is commutative it
was shown by Kasparov that the condition is equivalent to ρ(f)Fρ(g) ∈ K whenever
f and g have disjoint supports — which is to say that F has ‘only finite rank
propagation’ between open sets with disjoint closures.

Kasparov proved that the name ‘K-homology’ is justified.

(5.1) Theorem: [15, 16] Let A = C(X) be a commutative C∗-algebra. Then
Ki(A) is naturally isomorphic to Hi(X; K(C)), the topological K-homology of X.

We assume that X is metrizable here. If X is a ‘bad’ space (not a finite complex)
then H refers to the Steenrod extension of K-homology [14, 9]; if X is only locally
compact and we take A = C0(X) (the continuous functions vanishing at infinity),
then we get locally finite K-homology.

Kasparov’s definition was reformulated in the language of ‘duality’ by Paschke
[20] and Higson. For a C ∗-algebra A and ideal J define the algebra Ψ(A//J) to
consist of those T ∈ B(H) such that

• [T, ρ(a)] ∈ K ∀a ∈ A , and
• Tρ(j) ∈ K ∀j ∈ J

where ρ is a good (i.e. sufficiently large) representation of A on H.

(5.2) Proposition: (Paschke duality theorem) There is an isomorphism

Ki(A) = Ki+1(Ψ(A//0)/Ψ(A//A))

for all separable C∗-algebras A.

Let us introduce some notation. For a locally compact space X, write Ψ0(X)
for Ψ(C0(X)//0) (we call this the algebra of pseudolocal operators), and Ψ−1(X)
for Ψ(C0(X)//C0(X)) (the algebra of locally compact operators).

Now let X = M̃ , the universal cover of a compact manifold M as above, and
consider the exact sequence

0 → Ψ−1(M̃ )Γ → Ψ0(M̃ )Γ → Ψ0(M )/Ψ−1(M ) → 0.

The superscript Γ denotes the Γ-equivariant part of the algebra. We have incor-
porated into the sequence the fundamental isomorphism

Ψ0(M̃ )Γ/Ψ−1(M̃ )Γ = Ψ0(M )/Ψ−1(M )

which exists because both sides consist of local objects — ‘formal symbols’ in some
sense — and there is no difficulty in lifting a local object from a manifold to its
universal cover.

Note that Ψ−1(M̃ ) = locally compact operators. Thus, applying the K-theory
functor, we get a boundary map

A : Ki(M ) = Ki+1(Ψ0(M )/Ψ−1(M )) → Ki(C∗
r Γ).

This analytic assembly map takes the homology class of the signature operator F
to the analytic signature.
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6. On the Novikov conjecture

We use the above machinery to make a standard reduction of the Novikov
conjecture. Assume BΓ is compact and let f : M → BΓ. Consider the diagram

H∗(M ; Q)

��
f∗

K∗(M )oo ch //

��
f∗

K∗(C∗
r Γ)

H∗(BΓ; Q) K∗(BΓ)oo ch

99
r
r
r
r
r
r
r
r
r
r

By the Atiyah-Singer index theorem f∗(ch[F ]) is Novikov’s higher signature (the
push forward of the Poincaré dual of the L-class). So, if A : K∗(BΓ) → K∗(C∗

r Γ)
is injective, the Novikov conjecture is true for Γ.

This has led to a number of partial solutions to the Novikov conjecture using
analysis. Methods used have included

• Cyclic cohomology [8, 7, 19] — pair K∗(C∗
r Γ) with H∗(BΓ; R). Need suitable

dense subalgebras — very delicate.
• Kasparov KK-theory [16, 17] — sometimes allows one to construct an inverse

of the assembly map as an ‘analytic generalized transfer’.
• Controlled C∗-algebra theory [11] — parallel development to controlled topol-

ogy, see later.

7. The analytic structure set

Recall the exact sequence

Ki+1(C∗
r Γ) → Ki(Ψ0(M̃ )Γ) → Ki(M ) → Ki(C∗

r Γ)

The analogy with the surgery exact sequence suggests that we should think of
K∗(Ψ0(M̃ )Γ) as the ‘analytic structure set’ of M .

Example: Suppose M is spin. Then one has the Dirac operator D and one can
normalize as before to get a homology class

[F ], F = ϕ(D).
If M has a metric of positive scalar curvature, then by Lichnerowicz there is a

gap in the spectrum of D near zero. Thus we can choose the normalizing function
ϕ so that F 2 = 1 exactly. Then [F ] ∈ K∗(Ψ0(M̃ )Γ) gives the structure invariant of
the positive scalar curvature metric.

Notice that Lichnerowicz’ vanishing theorem [18] now follows from exactness in
the analytic surgery sequence.

It is harder to give a map from the usual structure set to the analytic one! In
the same way that the positive scalar curvature invariant gives a ‘reason’ for the
Lichnerowicz vanishing theorem, we want an invariant which gives a ‘reason’ for
the homotopy invariance of the symmetric signature.

Here is one possibility. Recall Pedersen’s description (in these proceedings) of
the structure set STOP (M ), as the L-theory of the category

B(M̃ × I, M̃ × 1; Z)Γ.

Replacing Z by C we have a category

• whose objects can be completed to Hilbert spaces with C0(M̃ )-action
• whose morphisms are pseudolocal
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Using Voiculescu’s theorem (which says that all the objects can be embedded
more or less canonically in a single ‘sufficiently large’ representation of C0(M̃ ))
we should get a map from the structure set to K∗(Ψ0(M̃ )Γ). However, there is
a significant problem: Are the morphisms bounded operators? Similar questions
seem to come up elsewhere if one tries to use analysis to study homeomorphisms,
and one needs some kind of torus trick to resolve them (compare [21]).

8. Controlled C∗
-algebras

A more direct approach can be given [12] to obtaining a map from SDIFF (M ).
LetW be a metric space (noncompact) and suppose ρ : C0(W ) → B(H) as usual.
An operator T on H is boundedly controlled if there is R = R(T ) such that

ρ(ϕ)Tρ(ψ) = 0 whenever distance from Support ϕ to Support ψ is greater than R.

Example: If D is a Dirac-type operator on complete Riemannian M , and ϕ has
compactly supported Fourier transform, then ϕ(D) is boundedly controlled [23].

Define Ψj
bc(W ), j = 0,−1, to be the C∗ subalgebras generated by boundedly

controlled elements. Then from the above one has that a Dirac type operator
on a complete Riemannian manifold W has a ‘boundedly controlled index’ in
K∗(Ψ−1

bc (W )).
In fact all elliptic operators have boundedly controlled indices: in full generality

one has a bounded assembly map A : Klf∗ (W ) → K∗(Ψ−1
bc (W )), and

the assembly of the signature operator is the bounded analytic signature.
This bounded analytic signature can also be defined for suitable (‘bounded,

bounded’) Poincaré complexes (bounded in both the analytic and geometric senses).
If W has a compactification X = W ∪ Y which is ‘small at infinity’, then there

is a close relation between bounded and continuously controlled C∗-algebra theory
[11].

In fact, consider a metrizable pair (X,Y ), let W = X \ Y . We can define
continuously controlled C∗-algebras, Ψj

cc(W ). Then one has

(8.1) Proposition: [11] We have

• Ψ0
cc(W ) = Ψ0(X) = Ψ(C(X)//0)

• Ψ−1
cc (W ) = Ψ(C(X)//C0(W ))

The result for Ψ−1
cc (W ) is an analytic counterpart to the theorem ‘control means

homology at infinity’ (compare [22]).
Now we can define our map from the structure set; for simplicity we work in

the simply connected case. Given a homotopy equivalence f : M ′ → M , form the
‘double trumpet space’ W , consisting of open cones on M and M ′ joined by the
mapping cylinder of f (there is a picture in [24]). This is a ‘bounded, bounded’
Poincaré space with a map to M × R, continuously controlled by M × S0.

Thus we have the analytic signature in K∗(Ψ−1
cc (X × R)). Map this by the

composite
Ψ−1

cc (X × R) → Ψ0
cc(X × R) = Ψ0(X × I) → Ψ0(X)

using the preceding proposition. The image is the desired structure invariant.
The various maps we have defined fit into a diagram relating the geometric and

C∗ surgery exact sequences [12]. The diagram commutes up to some factors of 2,
arising from the difference between the Dirac and signature operators.



NOTES ON SURGERY AND C∗-ALGEBRAS 143

9. Final remarks

• C∗-surgery can produce some information in a wide range of problems.
• Surjectivity of C∗-assembly maps is related to representation theory.
• Some techniques for Novikov are only available in the C ∗-world.
• But We don’t understand well how to do analysis on topological manifolds.
• Topologists construct; analysts only obstruct.
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