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Chapter 1. Characterization of (s, S1, · · · , Sl)-manifolds

The purpose of this article is to survey tuples of infinite-dimensional topological
manifolds and their application to the homeomorphism groups of manifolds.

1. (s, S1, · · · , Sl)-manifolds

A topological E-manifold is a space which is locally homeomorphic to a space E.
In this article all spaces are assumed to be separable and metrizable. In infinite-
dimensional topological manifold theory, we are mainly concerned with the following
model spaces E:
(i) (the compact model) the Hilbert cube: Q = [−∞,∞]∞.
(ii) (the complete linear model) the Hilbert space: `2.

The Hilbert space `2, or more generally any separable Frechet space is homeo-
morphic to s ≡ (−∞,∞)∞ ([1]). If we regard s as a linear space of sequences of
real numbers, then it contains several natural (incomplete) linear subspaces:
(iii) the big sigma: Σ = {(xn) ∈ s : supn |xn| < ∞} (the subspace of bounded
sequences).
(iv) the small sigma: σ = {(xn) ∈ s : xn = 0 for almost all n} (the subspace of
finite sequences).

The main sources of infinite-dimensional manifolds are various spaces of func-
tions, embeddings and homeomorphisms. In Chapter 2 we shall consider the group
of homeomorphisms of a manifold. When M is a PL-manifold, the homeomorphism
group H(M ) contains the subgroup HPL(M ) consisting of PL-homeomorphisms of
M , and we can ask the natural question: How is HPL(M ) sited in the ambient
group H(M )? This sort of question leads to the following general definition. An
(l+1)-tuple of spaces means a tuple (X, X1, · · · , Xl) consisting of an ambient space
X and l subspaces X1 ⊃ · · · ⊃ Xl.
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Definition. A tuple (X, X1, · · · , Xl) is said to be an (E, E1, · · · , El)-manifold if
for every point x ∈ X there exist an open neighborhood U of x in X and an open
set V of E such that (U, U ∩X1, · · · , U ∩ Xl) ∼= (V, V ∩ E1, · · · , V ∩ El).

In this article we shall consider the general model tuple of the form: (s, S1, · · · , Sl),
where S1 ⊃ · · · ⊃ Sl are linear subspaces of s. Some typical examples are:
(v) the pairs: (s, Σ), (s, σ),
(vi) the triples: (s, Σ, σ), (s2 , s × σ, σ2), (s∞, Σ∞, Σ∞

f ), and (s∞, σ∞, σ∞
f ).

where (a) s∞, Σ∞, σ∞ are the countable product of s, Σ and σ respectively,
(b) Σ∞

f = {(xn) ∈ Σ∞ : xn = 0 for almost all n}, σ∞
f = {(xn) ∈ σ∞ : xn = 0 for

almost all n}.
Note that (1) (s∞, σ∞

f ) ∼= (s, σ), (2) (s∞, Σ∞
f , σ∞

f ) ∼= (s, Σ, σ) and (3) (s∞, Σ∞, σ∞
f )

∼= (s∞, σ∞, σ∞
f ). The statements (2) and (3) follow from the characterizations of

manifolds modeled on these triples (§4.2.2, Theorems 3.11 - 3.14). In Section 4.2.1
we shall give a general characterization of (s, S1, · · · , Sl)-manifold under some nat-
ural conditions on the model (s, S1, · · · , Sl).

2. Basic properties of infinite-dimensional manifolds

In this section we will list up some fundamental properties of infinite-dimensional
manifolds. We refer to [10, 11, 24] for general references in infinite-dimensional
manifold theory.

2.1. Stability.

Since s is a countable product of the interval (−∞,∞), it is directly seen that
s2 ∼= s. Applying this argument locally, it follows that X × s ∼= X for every s-
manifold X (cf.[25]). More generally, it has been shown that if (X, X1, X2) is an
(s, Σ, σ)-manifold, then (X × s, X1 × Σ, X2 × σ) ∼= (X, X1, X2) [27]. This property
is one of characteristic properties of infinite-dimensional manifolds. To simplify the
notation we shall use the following terminology:

Definition. We say that (X, X1, · · · , Xl) is (E, E1, · · · , El)-stable if (X ×E, X1 ×
E1, · · · , Xl × El) ∼= (X, X1, · · · , Xl).

2.2. Homotopy negligibility.

Definition. A subset B of Y is said to be homotopy negligible (h.n.) in Y if there
exists a homotopy φt : Y → Y such that φ0 = id and φt(Y ) ⊂ Y \ B (0 < t ≤ 1).
In this case, we say that Y \ B has the homotopy negligible (h.n.) complement in
Y .

When Y is an ANR, B is homotopy negligible in Y iff for every open set U

of Y , the inclusion U \ B ⊂ U is a weak homotopy equivalence. Again using the
infinite coordinates of s, we can easily verify that σ has the h.n. complement in
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s. Therefore, it follows that if (X, X1) is an (s, σ)-manifold, then X1 has the h.n.
complement in X.

2.3. General position property – Strong universality.

2.3.1. Z-embedding approximation in s-manifolds.

The most basic notion in infinite-dimensional manifolds is the notion of Z-sets:

Definition. A closed set Z of X is said to be a Z-set (a strong Z-set) of X if
for every open cover U of X there is a map f : X → X such that f(X) ∩ Z = ∅
(cl f(X) ∩ Z = ∅) and (f, idX) ≤ U .

Here, for an open cover V of Y , two map f , g : X → Y are said to be V-close
and written as (f, g) ≤ V if for every x ∈ X there exists a V ∈ V with f(x),
g(x) ∈ V . Using the infinite coordinates of s, we can show the following general
position property of s-manifolds:

Facts 2.1. Suppose Y is an s-manifold. Then for every map f : X → Y from a
separable completely metrizable space X and for every open cover U of Y , there
exists a Z-embedding g : X → Y with (f, g) ≤ U . Furthermore, if K is a closed
subset of X and f |K : K → Y is a Z-embedding, then we can take g so that
g|K = f |K .

2.3.2. Strong universality.

To treat various incomplete submanifolds of s-manifolds (σ-manifolds, Σ-mani-
folds, etc.), we need to restrict the class of domain X in the above statement. Let
C be a class of spaces.

Definition. (M. Bestvina - J. Mogilski [5], et. al.)
A space Y is said to be strongly C-universal if for every X ∈ C, every closed subset
K of X, every map f : X → Y such that f |K : K → Y is a Z-embedding and
for every open cover U of Y , there exists a Z-embedding g : X → Y such that
g|K = f |K and (f, g) ≤ U .

In some cases, the above embedding approximation conditions can be replaced
by the following disjoint approximation conditions.

Definition. We say that a space X has the strong discrete approximation property
(or the disjoint discrete cells property) if for every map f : ⊕i≥1 Qi → X of a
countable disjoint union of Hilbert cubes into X and for every open cover U of X

there exists a map g : ⊕i≥1 Qi → X such that (f, g) ≤ U and {g(Qi)}i is discrete
in X.
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2.3.3. Strong universality of tuples. (R. Cauty [6], J. Baars-H. Gladdines-J. van
Mill [3], et. al.)

A map of tuples f : (X, X1, · · · , Xl) → (Y, Y1, · · · , Yl) is said to be layer preserv-
ing if f(Xi−1 \Xi) ⊂ Yi−1 \Yi for every i = 1, · · · , l + 1, where X0 = X, Xl+1 = ∅.
Let M be a class of (l + 1)-tuples of spaces.

Definition. An (l + 1)-tuple (Y, Y1, · · · , Yl) is said to be strongly M-universal if
it satisfies the following condition:

(∗) for every tuple (X, X1, · · ·Xl) ∈ M, every closed subset K of X, every
map f : X → Y such that f |K : (K, K ∩ X1 , · · ·K ∩ Xl) → (Y, Y1, · · · , Yl) is a
layer preserving Z-embedding, and every open cover U of Y , there exists a layer
preserving Z-embedding g : (X, X1, · · ·Xl) → (Y, Y1, · · · , Yl) such that g|K = f |K
and (f, g) ≤ U .

In Section 4.2.1 we shall see that the stability + h.n. complement implies the
strong universality.

2.4. Uniqueness properties of absorbing sets.

The notion of h.n. complement can be regarded as a homotopical absorbing
property of a subspace in an ambient space. The notion of strong universality of
tuples also can be regarded as a sort of absorption property combined with the
general position property. Roughly speaking, for a class M, an M-absorbing set of
an s-manifold X is a subspace A of X such that (i) A has an absorption property in
X for the class M, (ii) A has a general position property for M and (iii) A “belongs”
to the class M. The notion of strong universality of tuples realizes the conditions
(i) and (ii) simultaneously. The condition (iii) usually appears in the form: A is a
countable union of Z-sets of A which belong to M. The most important property
of absorbing sets is the uniqueness property. This property will play a key role in
the characterizations of tuples of infinite-dimensional manifolds.

2.4.1. Capsets and fd capsets. (R.D. Anderson and T.A. Chapman [9])

The most basic absorbing sets are capsets and fd capsets. A space is said to be
σ-compact (σ-fd-compact) if it is a countable union of compact (finite-dimensional
compact) subsets.

Definition. Suppose X is a Q-manifold or an s-manifold. A subset A of X is said
to be a (fd) capset of X if A is a union of (fd) compact Z-sets An (n ≥ 1) which
satisfy the following condition: for every ε > 0, every (fd) compact subset K of X

and every n ≥ 1 there exist an m ≥ n and an embedding h : K → Am such that
(i) d(h, idK) < ε and (ii) h = id on An ∩ K.

For example Σ is a capset of s and σ is fd capset of s. The (fd) capsets have the
following uniqueness property:
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Theorem 2.1. If A and B are (fd) capsets of X, then for every open cover U of
X there exists a homeomorphism f : (X, A) → (X, B) with (f, idX) ≤ U .

2.4.2. Absorbing sets in s-manifolds.

The notion of (fd) capsets works only for the class of σ-(fd-)compact subsets. To
treat other classes of subsets we need to extend this notion.

Definition. A class C of spaces is said to be
(i) topological if D ∼= C ∈ C implies D ∈ C.
(ii) additive if C ∈ C whenever C = A ∪ B, A and B are closed subsets of C, and
A, B ∈ C.
(iii) closed hereditary if D ∈ C whenever D is a closed subset of a space C ∈ C.

[1] The non-ambient case: (M. Bestvina - J. Mogilski [5])

Let C be a class of spaces.

Definition. A subset A of an s-manifold X is said to be a C-absorbing set of X if
(i) A has the h.n. complement in X,
(ii) A is strongly C-universal,
(iii) A = ∪∞

n=1 An, where each An is a Z-set of A and An ∈ C.

Theorem 2.2. Suppose a class C is topological, additive and closed hereditary. If
A and B are two C-absorbing sets in an s-manifold X, then every open cover U
of X there exists a homeomorphism h : X → Y which is U-close to the inclusion
A ⊂ X.

In general, h cannot be extended to any ambient homeomorphism of X.

[2] The ambient case: (J. Baars-H. Gladdines-J. van Mill [3], R. Cauty [6], T.
Yagasaki [32], et.al.)

Let M be a class of (l + 1)-tuples. We assume that M is topological, additive
and closed hereditary. We consider the following condition (I):

The condition (I)
(I-1) (X, X1, · · · , Xl) is strongly M-universal,
(I-2) there exist Z-sets Zn (n ≥ 1) of X such that

(i) X1 ⊂ ∪nZn and (ii) (Zn, Zn ∩ X1, · · · , Zn ∩Xl) ∈ M (n ≥ 1).

In this case we have ambient homeomorphisms:

Theorem 2.3. ([6, 32]) Suppose E is an s-manifold and (l +1)-tuples (E, X1, · · · ,

Xl) and (E, Y1, · · · , Yl) satisfy the condition (I). Then for any open cover U of E

there exists a homeomorphism f : (E, X1, · · · , Xl) → (E, Y1, · · · , Yl) with (f, idE) ≤
U .
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2.5. Homotopy invariance.

Classification of infinite-dimensional manifolds is rather simple. Q-manifolds are
classified by simple homotopy equivalence (T.A. Chapman [10]) and s-manifolds
are classified by homotopy equivalence (D. W. Henderson and R. M. Schori [18]).

Theorem 2.4. Suppose X and Y are s-manifolds. Then X ∼= Y iff X ' Y (ho-
motopy equivalence).

3. Characterization of infinite-dimensional manifolds in term of

general position property and stability

3.1. Edwards’ program.

There is a general method, called as Edwards’ program, of detecting topological
E-manifolds. For infinite-dimensional topological manifolds, it takes the following
form: Let X be an ANR.

(i) Construct a fine homotopy equivalence from an E-manifold to the target X.

(ii) Show that f can be approximated by homeomorphisms under some general
position property of X.

This program yields basic characterizations of Q-manifolds, s-manifolds and
other incomplete manifolds.

3.2. The complete cases:

(1) Q-manifolds:

Theorem 3.1. ([10]) A space X is an Q-manifold iff
(i) X is a locally compact separable metrizable ANR
(ii) X has the disjoint cells property.

(2) s-manifolds:

Theorem 3.2. ([30]) A space X is an s-manifold iff
(i) X is a separable completely metrizable ANR
(ii) X has the strong discrete approximation property.

Since the Q-stability implies the disjoint cells property and the s-stability implies
the strong discrete approximation property, we can replace the condition (ii) by

(ii′) X is Q-stable (respectively s-stable)

3.3. The incomplete cases:

M. Bestvina-J. Mogilski [5] has shown that in the incomplete case the above
program is formulated in the following form:
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Theorem 3.3. (M. Bestvina-J. Mogilski [5])
Suppose C is a class of spaces which is topological, additive and closed hereditary.
(i) For every ANR X there exists an s-manifold M such that for every C-absorbing
set Ω in M there exists a fine homotopy equivalence f : Ω → X.
(ii) Suppose (a) X is a strongly C-universal ANR and (b) X = ∪∞

i=1 Xi, where
each Xi is a strong Z-set in X and Xi ∈ C. Then every fine homotopy equivalence
f : Ω → X from any C-absorbing set Ω in an s-manifold can be approximated by
homeomorphisms.

Example: Σ-manifolds and σ-manifolds

Let Cc (Cfdc) denote the class of all (finite dimensional) compacta.

Theorem 3.4. (M. Bestvina-J. Mogilski [5, 23])
A space X is a Σ-manifold (σ-manifold) iff
(i) X is a separable ANR and σ-compact (σ-fd compact),
(ii) X is strongly Cc-universal (strongly Cfdc-universal),
(iii) X = ∪∞

n=1 Xn, where each Xn is a strong Z-set in X.

The condition (iii) can be replaced by

(iii′) X satisfies the strong discrete approximation property.

In [28] H. Toruńczyk has obtained a characterization of σ-manifolds in term of
stability.

Theorem 3.5. ([29])

X is a σ-manifold iff X is (i) a separable ANR, (ii) σ-fd-compact and (iii) σ-
stable.

4. Characterizations of (s, S1, · · · , Sl)-manifolds

In this section we will investigate the problem of detecting (s, S1, · · · , Sl)-mani-
folds. Since we have obtained a characterization of s-manifolds (Theorem 3.2),
the remaining problem is how to compare a tuple (X, X1, · · · , Xl) locally with
(s, S1, · · · , Sl) when X is an s-manifold. For this purpose we will use the uniqueness
property of absorbing sets in s-manifolds (§2.4). Since s-manifolds are homotopy
invariant (Theorem 2.4), at the same time we can show the homotopy invariance
of (s, S1, · · · , Sl)-manifolds.

4.1. Characterizations of manifold tuples in term of the absorbing sets.

4.1.1. Characterizations in term of capsets and fd-capsets.

Theorem 4.1. (T.A. Chapman [9])
(1) (X, X1) is an (s, Σ)-manifold ((s, σ)-manifold) iff
(i) X is an s-manifold,
(ii) X1 is a capset (a fd capset).
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(2) Suppose (X, X1) and (Y, Y1) are (s, Σ)-manifolds ( (s, σ)-manifolds ). Then
(X, X1) ∼= (Y, Y1) iff X ' Y .

Theorem 4.2. (K. Sakai-R.Y. Wong [27])
(1) (X, X1, X2) is an (s, Σ, σ)-manifold iff
(i) X is an s-manifold,
(ii) (X1, X2) is a (cap, fd cap)-pair in X.
(2) Suppose (X, X1, X2) and (Y, Y1, Y2) are (s, Σ, σ)-manifolds. Then (X, X1, X2) ∼=
(Y, Y1, Y2) iff X ' Y .

4.1.2. Characterizations in term of strong universality.

We assume that (s, S1 , · · · , Sl) satisfies the condition (I) in Section 2.4.2.[2].

Theorem 4.3. (1) (X, X1, · · · , Xl) is an (s, S1, · · · , Sl)-manifold iff
(i) X is an s-manifold,
(ii) (X, X1, · · · , Xl) satisfies the condition (I).
(2) Suppose (X, X1, · · · , Xl) and (Y, Y1, · · · , Yl) are (s, S1, · · · , Sl)-manifolds. Then
(X, X1, · · · , Xl) ∼= (Y, Y1, · · · , Yl) iff X ' Y .

4.2. Characterization in term of stability and homotopy negligible com-
plement.

4.2.1. General characterization theorem.

We can show that the stability + h.n. complement implies the strong univer-
sality. This leads to a characterization based upon the stability condition. We
consider the following condition (II).

The condition (II):
(II-1) S1 is contained in a countable union of Z-sets of s,
(II-2) Sl has the h.n. complement in s,
(II-3) (Infinite coordinates) There exists a sequence of disjoint infinite subsets An ⊂
N (n ≥ 1) such that for each i = 1, · · · , l and n ≥ 1, (a) Si = πAn(Si) × πN\An

(Si)
and (b) (πAn(s), πAn(S1), · · · , πAn(Sl)) ∼= (s, S1, · · · , Sl).

Here for a subset A of N, πA : s → ∏
k∈A (−∞,∞) denotes the projection onto the

A-factor of s.

Assumption. We assume that (s, S1 , · · · , Sl) satisfies the condition (II):

Notation. Let M ≡ M(s, S1, · · · , Sl) denote the class of (l+1)-tuples (X, X1, · · · ,

Xl) which admits a layer preserving closed embedding h : (X, X1, · · · , Xl) →
(s, S1, · · · , Sl)

Theorem 4.4. (T.Yagasaki [32], R.Cauty, et. al.)
Suppose (Y, Y1, · · · , Yl) satisfies the following conditions:
(i) Y is a completely metrizable ANR,
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(ii) Yl has the h.n. complement in Y

(iii) (Y, Y1, · · · , Yl) is (s, S1, · · · , Sl)-stable.
Then (Y, Y1, · · · , Yl) is strongly M(s, S1, · · · , Sl)-universal.

From Theorems 4.3, 4.4 we have:

Theorem 4.5. (1) (X, X1, · · · , Xl) is an (s, S1, · · · , Sl)-manifold iff

(i) X is a completely metrizable ANR,
(ii) (X, X1, · · · , Xl) ∈ M(s, S1, · · · , Sl),
(iii) Xl has the h.n. complement in X,
(iv) (X, X1, · · · , Xl) is (s, S1 , · · · , Sl)-stable.

(2) Suppose (X, X1, · · · , Xl) and (Y, Y1, · · · , Yl) are (s, S1, · · · , Sl)-manifolds. Then
(X, X1, · · · , Xl) ∼= (Y, Y1, · · · , Yl) iff X ' Y .

4.2.2. Examples.

To apply Theorem 4.5 we must distinguish the class M(s, S1, · · · , Sl). This can
be done for the triples: (s, Σ, σ), (s2, s × σ, σ2), (s∞, σ∞, σ∞

f ), and (s∞, Σ∞, Σ∞
f ).

This leads to the practical characterizations of manifolds modeled on these triples.

[1] (s, Σ, σ):

M(s, Σ, σ) = the class of triples (X, X1, X2) such that

(a) X is completely metrizable, (b) X1 is σ-compact, and (c) X2 is σ-fd-compact.

Theorem 4.6.
(X, X1, X2) is an (s, Σ, σ)-manifold iff

(i) X is a separable completely metrizable ANR,
(ii) X1 is σ-compact, X2 is σ-fd-compact,
(iii) X2 has the h.n. complement in X,
(iv) (X, X1, X2) is (s, Σ, σ)-stable.

[2] (s2, s × σ, σ2):

M(s2, s × σ, σ2) = the class of triples (X, X1, X2) such that

(a) X is completely metrizable, (b) X1 is Fσ in X, (c) X2 is σ-fd-compact.

Theorem 4.7.
(X, X1, X2) is an (s2, s × σ, σ2)-manifold iff

(i) X is a separable completely metrizable ANR,
(ii) X1 is an Fσ-subset of X, X2 is σ-fd-compact,
(iii) X2 has the h.n. complement in X,
(iv) (X, X1, X2) is (s2, s × σ, σ2)-stable.

[3] (s∞, σ∞, σ∞
f ):
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M(s∞, σ∞, σ∞
f ) = the class of triples (X, X1, X2) such that

(a) X is completely metrizable, (b) X1 is Fσδ in X, (c) X2 is σ-fd-compact.

Theorem 4.8.
(X, X1, X2) is an (s∞, σ∞, σ∞

f )-manifold iff

(i) X is a separable completely metrizable ANR,
(ii) X1 is an Fσδ-subset of X, X2 is σ-fd-compact,
(iii) X2 has the h.n. complement in X

(iv) (X, X1, X2) is (s∞, σ∞, σ∞
f )-stable.

[4] (s∞, Σ∞, Σ∞
f ):

M(s∞, Σ∞, Σ∞
f ) = the class of triples (X, X1, X2) such that

(a) X is completely metrizable, (b) X1 is Fσδ in X, (c) X2 is σ-compact.

Theorem 4.9.
(X, X1, X2) is an (s∞, Σ∞, Σ∞

f )-manifold iff

(i) X is a separable completely metrizable ANR,
(ii) X1 is an Fσδ-subset of X, X2 is σ-compact,
(iii) X2 has the h.n. complement in X,
(iv) (X, X1, X2) is (s∞, Σ∞, Σ∞

f )-stable.

In the next chapter these characterizations will be applied to determine the local
topological types of some triples of homeomorphism groups of manifolds.

Chapter 2. Applications to homeomorphism groups of manifolds

5. Main problems

Notation.
(i) H(X) denotes the homeomorphism group of a space of X with the compact-open
topology.
(ii) When X has a fixed metric, HLIP(X) denotes the subgroup of locally LIP-
homeomorphisms of X.
(iii) When X is a polyhedron, HPL(X) denotes the subgroup of PL-homeomorphisms
of X.

We shall consider the following problem:

Problem.
Determine the local and global topological types of groups: H(M ), HLIP(M ),
HPL(M ), etc. and tuples: (H(M ),HPL(M )), (H(M ),HLIP(M ), HPL(M )), etc.
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In the analogy with diffeomorphism groups, when X is a topological manifold,
we can expect that these groups are topological manifold modeled on some typical
infinite-dimensional spaces. In fact, R.D. Anderson showed that:

Facts 5.1. ([2]) :
(i) H+(R) ∼= s.
(ii) If G is a finite graph, then H(G) is an s-manifold.

After this result it was conjectured that

Conjecture. H(M ) is an s-manifold for any compact manifold M .

This basic conjecture is still open for n ≥ 3 and this imposes a large restriction
to our work since most results in Chapter 1 works only when ambient spaces are
s-manifolds. Thus in the present situation, in order to obtain some results in
dimension n ≥ 3, we must assume that H(M ) is an s-manifold. On the other hand
in dimension 1 or 2 we can obtain concrete results due to the following fact:

Theorem 5.1. (R. Luke - W.K. Mason [22], W. Jakobsche [19])
If X is a 1 or 2-dimensional compact polyhedron, then H(X) is an s-manifold.

Below we shall follow the next conventions: For a pair (X, A), let H(X, A) = {f ∈
H(X) : f(A) = A}. When (X, A) is a polyhedral pair, let HPL(X, A) = H(X, A)∩
HPL(X) and H(X; PL(A)) = {f ∈ H(X, A) : f is PL on A}. The superscript “c”
denotes “compact supports”, the subscript “+” means “orientation preserving”,
and “0” denotes “the identity connected components” of the corresponding groups.
An Euclidean PL-manifold means a PL-manifold which is a subpolyhedron of some
Euclidean space Rn and has the standard metric induced from Rn.

6. Stability properties of homeomorphism groups of polyhedra

First we shall summarize the stability properties of various triples of homeo-
morphism groups of polyhedra. These properties will be used to determine the
corresponding model spaces.

(1) Basic cases: (R. Geoghegan [14, 15], J. Keesling-D. Wilson [20, 21], K. Sakai-
R.Y. Wong [26])
(i) If X is a topological manifold, then H(X) is s-stable.
(ii) If X is a locally compact polyhedron, then the pair (H(X),HPL(X)) is (s, σ)-
stable.
(iii) If X is a Euclidean polyhedron with the standard metric, then the triple
(H(X),HLIP(X), HPL(X)) is (s, Σ, σ)-stable.
(iv) (T. Yagasaki [32]) If (X, K) is a locally compact polyhedral pair such that
dimK ≥ 1 and dim(X \ K) ≥ 1, then (H(X, K),H(X; PL(K)),HPL(X, K)) is
(s2, s × σ, σ2)-stable.
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(2) Noncompact cases: (T. Yagasaki [32])
(i) If X is a noncompact, locally compact polyhedron, then the triple (H(X),HPL(X),
HPL,c(X)) is (s∞, σ∞, σ∞

f )-stable.
(ii) If X is a noncompact Euclidean polyhedron with the standard metric, then the
triple (H(X),HLIP(X),HLIP,c(X)) is (s∞, Σ∞, Σ∞

f )-stable.

We can also consider the spaces of embeddings. Suppose X and Y are Euclidean
polyhedra. Let E(X, Y ) denote the spaces of embeddings of X into Y with the
compact-open topology, and let ELIP(X, Y ) and EPL(X, Y ) denote the subspaces
of locally Lipschitz embeddings and PL-embeddings respectively.

(3) Embedding case: (K. Sakai-R.Y. Wong [26], cf. [32])

The triple (E(X, Y ), ELIP(X, Y ), EPL(X, Y )) is (s, Σ, σ)-stable.

These stability property are verified by using the Morse length of the image of
a fixed segment under the homeomorphisms.

7. The triple (H(M ), HLIP(X), HPL(X))

[1] H(M )

Suppose Mn is a compact n-dimensional manifold. Since H(M ) is s-stable, by
the characterization of s-manifold (Theorem 3.2), H(M ) is an s-manifold iff it is
an ANR. Here we face with the difficulty of detecting infinite-dimensional ANR’s.
A.V. Černavskǐi [8] and R.D. Edwards - R.C. Kirby [12] have shown:

Theorem 7.1. (Local contractibility): H(M ) is locally contractible.

[2] HPL(M )

Suppose Mn is a compact n-dimensional PL-manifold.

Basic Facts.
(1) (J. Keesling-D. Wilson [21]) (H(M ),HPL(M )) is (s, σ)-stable.
(2) (D. B. Gauld [13]) HPL(M ) is locally contractible.
(3) (R. Geoghegan [15]) HPL(M ) is σ-fd-compact.
(4) (W.E. Haver [17]) A countable dimensional metric space is an ANR iff it is
locally contractible.

From (2),(3),(4) it follows that HPL(M ) is always an ANR. Hence by the char-
acterization of σ-manifold (Theorem 3.5), we have:

Main Theorem. (J. Keesling-D. Wilson [21]) HPL(M ) is an σ-manifold.

Let H(M )∗ = clHPL(M ). Consider the condition:
(∗) n 6= 4 and ∂M = ∅ for n = 5.

Under this condition H(M )∗ is the union of some components of H(M ).
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Theorem 7.2. (R. Geoghegan, W. E. Haver [16])
If H(X) is an s-manifold and M satisfies (∗), then (H(X)∗ ,HPL(X)) is an (s, σ)-
manifold.

[3] HLIP(M ) (K. Sakai-R.Y. Wong [26])

Suppose Mn is a compact n-dimensional Euclidean PL-manifold.

Basic Facts. ([26])
(1) (H(M ),HLIP(M )) is (s, Σ)-stable.
(2) HLIP(M ) is σ-compact.

Theorem 7.3. ([26])
If H(X) is an s-manifold and M satisfies (∗), then (H(X),HLIP(X)) is an (s, Σ)-
manifold.

[4] The triple (H(X),HLIP(X),HLIP(M )) (T. Yagasaki [32])

Suppose Mn is a compact n-dimensional Euclidean PL-manifold.

Basic Facts.
(1) (K. Sakai-R. Y. Wong [26]) (H(M ),HLIP(M ),HPL(M )) is (s, Σ, σ)-stable.

Let HLIP(X)∗ = HLIP(X)∩ clHPL(M ). From Theorem 7.2, Basic Facts and the
characterization of (s, Σ, σ)-manifolds (Theorem 4.6) it follows that:

Theorem 7.4. ([32])
(1) If H(X) is an s-manifold and M satisfies (∗), then (H(X)∗,HLIP(X)∗,HPL(X))
is an (s, Σ, σ)-manifold.
(2) If X is a 1 or 2-dimensional compact Euclidean polyhedron with the standard
metric, then (H(X),HLIP(X),HPL(X)) is (s, Σ, σ)-manifold.

8. Other triples

[1] The triple (H(X, K),H(X; PL(K)),HPL(X, K)) (T. Yagasaki [32])

Theorem 8.1.
(i) Suppose Mn is a compact PL n-manifold with ∂M 6= ∅. If n ≥ 2, n 6= 4, 5
and H(M ) is an s-manifold, then (H(M ),H(M ; PL(∂M )),HPL(M )) is an (s2, s×
σ, σ2)-manifold.
(ii) Suppose (X, K) is a compact polyhedral pair such that dim X = 1, 2, dimK ≥ 1
and dim(X \ K) ≥ 1. Then (H(X, K),H(X; PL(K)),HPL(X, K)) is an (s2 , s ×
σ, σ2)-manifold.

[2] The triples (H(X),HPL(X),HPL,c(X)) and (H(X),HLIP(X),HLIP,c(X)) (T.
Yagasaki [33])

(1) 1-dim. case: (H+(R),HPL
+ (R),HPL,c(R)) ∼= (s∞, σ∞, σ∞

f ).

(2) 2-dim. case:
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Theorem 8.2. If M is a noncompact connected PL 2-manifold, then (H(M )0 ,
HPL(M )0, HPL,c(M )0) is an (s∞, σ∞, σ∞

f )-manifold.

Corollary 8.1.
(i) If M ∼= R2, S1×R, S1× [0, 1), P2R\1pt, then (H(M )0 ,HPL(M )0,HPL,c(M )0) ∼=
S1 × (s∞, σ∞, σ∞

f )
(ii) In the remaining cases, (H(M )0,HPL(M )0,HPL,c(M )0) ∼= (s∞, σ∞, σ∞

f )

(3) There exist a (LIP, Σ)-version of the (PL, σ)-case.

[3] The group of quasiconformal (QC-)homeomorphisms of a Riemann surface (T.
Yagasaki [34])

Suppose M is a connected Riemann surface. Let HQC(M ) denote the subgroup
of QC-homeomorphisms of M .

Theorem 8.3.
(i) If M is compact, then (H+(M ),HQC(M )) is an (s, Σ)-manifold.
(ii) If M is noncompact, then (H(M )0,HQC(M )0) is an (s, Σ)-manifold

[4] The space of embeddings (T. Yagasaki [33])

Suppose M is a Euclidean PL 2-manifold.

Theorem 8.4. If X is a compact subpolyhedron of M , then (E(X, M ), ELIP(X, M ),
EPL(X, M )) is an (s, Σ, σ)-manifold.

Example. The case X = I ≡ [0, 1]:

(E(I, M ), ELIP(I, M ), EPL(I, M )) ∼= S(TM ) × (s, Σ, σ)

where S(TM ) is the sphere bundle of the tangent bundle of M with respect to some
Riemannian metric.
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