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0. Introduction

It was shown by Stasheff([13]) and MacLane([7]) that monoidal categories give rise to
loop spaces. A recognition principle specifies an internal structure such that a space X has
such a structure if and only if X is of the weak homotopy type of n-fold loop space. It
has been known for years that there is a relation between coherence problems in homotopy
theory and in categories. May’s recognition theorem([9]) states that for little n-cube operad
Cn, n ≥ 2, every n-fold loop space is a Cn-space and every connected Cn-space has the weak
homotopy type of an n-fold loop space.

E. Miller([9]) observed that there is an action of the little square operad on the disjoint
union of BDiff+(Sg,1)’s extending the F -product which is induced by a kind of connected
sum of surfaces. We hence have that the group completion of qg≥0BDiff+ (Sg,1) is a double
loop space up to homotopy. Miller applied this result to the calculation of the homology
groups of mapping class groups. However his description of the action of the little square
operad is somewhat obscure. On the other hand the first author proved([4]) that the group
completion of the nerve of a braided monoidal category is the homotopy type of a double loop
space. This result implies that there exists a strong connection between braided monoidal
category and the mapping class groups Γg,1 in view of Miller’s result.

We, in this paper, show that the disjoint union of Γg,1’s is a braided monoidal category
with the product induced by the connected sum. Hence the group completion of qg≥0BΓg,1

is the homotopy type of a double loop space. We explicitly describe the braid structure
of qg≥0Γg,1, regarding Γg,1 as the subgroup of the automorphism group of π1Sg,1 that
consists of the automorphisms fixing the fundamental relator. We provide the formula for
the braiding (Lemma 2.1) which is useful in dealing with the related problems. Using this
braiding formula (2.2), we can make a correction on Cohen’s diagram. We also show that the
double loop space structure of the disjoint union of classifying spaces of mapping class groups
cannot be extended to the triple loop space structure (Theorem 2.5). It seems important
to note the relation between the braid structure and the double loop space structure in an
explicit way.

Turaev and Reshetikhin introduced an invariant of ribbon graphs which is derived from
the theory of quantum groups and is a generalization of Jones polynomial. This invariant was
extended to those of 3-manifolds and of mapping class groups(cf.[11],[12],[6]). The definitions
are abstract and a little complicated since they are defined through quantum groups. G.
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Wright([16]) computed the Reshetikhin-Turaev invariant of mapping class group explicitly
in the case r = 4, that is, at the sixteenth root of unity. For each h ∈ Γg,0 we can find
the corresponding (colored) ribbon graph, whose Reshetikhin-Turaev invariant turns out to
be an automorphism of the 1-dimensional summand of V k1⊗V k1

∗⊗ · · ·⊗V kg⊗V kg
∗

which
we denote by Vr,g . We get this ribbon graph using the Heegaard splitting and the surgery
theory of 3-manifolds. Wright showed as a result of her calculation that the restriction
of this invariant to the Torelli subgroup of Γg,0 is equal to the sum of the Birman-Craggs
homomorphisms. dim(V4,g) = 2g−1(2g +1), so the Reshetikhin-Turaev invariant of h ∈ Γg,0,
when r = 4, is a 2g−1(2g +1)×2g−1(2g +1) matrix with entries of complex numbers. Wright
proved a very interesting lemma that there is a natural one-to-one correspondence between
the basis vectors of V4,g and the Z/2-quadratic forms of Arf invariant zero. It would be
interesting to check if the Reshetikhin-Turaev representation preserves the braid structure.

1. Mapping class groups and monoidal structure

Let Sg,k be an orientable surface of genus g obtained from a closed surface by removing
k open disks. The mapping class group Γg,k is the group of isotopy classes of orientation
preserving self-diffeomorphisms of Sg,k fixing the boundary of Sg,k that consists of k disjoint
circles. Let Diff+(Sg,k) be the group of orientation preserving self-diffeomorphisms of Sg,k.
We also have the following alternative definition :

Γg,k = πoDiff+(Sg,k)

We will mainly deal with the case k = 1 and k = 0. Γg,1 and Γg,0 are generated by 2g+1
Dehn twists(cf.[14]). There is a surjective map Γg,1 → Γg,0.

Figure 1. Dehn twists

Many topologists are interested in the homology of mapping class groups. An interesting
observation is that there is a product on the disjoint union of Diff+(Sg,1)’s. It is known by
Stasheff([13]) and MacLane([7]) that if a category C has a monoidal structure then its clas-
sifying space gives rise to a space which has the homotopy type of a loop space. Fiedorowicz
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showed([4]) that a braid structure gives rise to a double loop space structure. We now recall
the definition of (strict) braided monoidal category.

Definition 1.1. A (strict) monoidal (or tensor) category (C, ⊗, E) is a category C together
with a functor ⊗ : C × C → C (called the product) and an object E (called the unit object)
satisfying

(a) ⊗ is strictly associative
(b) E is a strict 2-sided unit for ⊗

Definition 1.2. A monoidal category (C, ⊗, E) is called a (strict) braided monoidal category
if there exists a natural commutativity isomorphism CA,B: A⊗B → B⊗A satisfying

(c) CA,E = CE,A = 1A

(d) The following diagrams commute:

A⊗B⊗C
CA⊗B,C−−−−−→ C⊗A⊗B

1A⊗CB,C ↘ ↗ CA,C⊗1B

A⊗C⊗B

A⊗B⊗C
CA,B⊗C−−−−−→ B⊗C⊗A

CA,B⊗1C ↘ ↗ 1B⊗CA,C

B⊗A⊗C

The first author recently gave a proof of the following lemma([4]).

Lemma 1.3. The group completion of the nerve of a braided monoidal category is the
homotopy type of a double loop space. The converse is true.

Miller claimed in [10] that there is an action of the little square operad of disjoint squares
in D2 on the disjoint union of the BΓg,1’s extending the F -product that is induced by the
connected sum. Here the F -product Γg,1×Γh,1 −→ Γg+h,1 is obtained by attaching a pair of
pants (a surfaces obtained from a sphere by removing three open disks) to the surfaces Sg,1

and Sh,1 along the fixed boundary circles and extending the identity map on the boundary
to the whole pants. Hence, according to May’s recognition theorem on the loop spaces([9]),
the group completion of qg≥0BΓg,1 is homotopy equivalent to a double loop space. Miller’s
proposition seems correct, although the details are not so transparent. In view of lemma
1.3, the disjoint union of Γg,1’s should be related to a braided monoidal category. Here we
regard qg≥0Γg,1 as a category whose objects are [g], g ∈ Z+ and morphisms satisfy

Hom([g], [h]) =
{

Γg,1 if g = h

∅ if g 6= h
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Without speaking of the action of little square operad, we are going to show that the
group completion of qg≥0BΓg,1 is homotopy equivalent to a double loop space by showing
that the disjoint union of Γg,1’s is a braiding monoidal category.

Lemma 1.4. The disjoint union of Γg,1’s is a braided monoidal category with the product
induced by the F -product.

Proof. Let x1, y1, . . . , xg, yg be generators of the fundamental group of Sg,1 which are induced
by the Dehn twists a1, b1, · · · , ag, bg, respectively. The mapping class group Γg,1 can be iden-
tified with the subgroup of the automorphism group of the free group on x1, y1, · · · , xg, yg

that consists of the automorphisms fixing the fundamental relator R = [x1, y1][x2, y2] · · · [xg, yg].
The binary operation on qg≥1Γg,1 induced by the F -product can be identified with the op-
eration taking the free product of the automorphisms. The (r, s)-braiding on the free group
on x1, y1, · · · , xg, yg can be expressed by:

x1 7−→ xs+1

y1 7−→ ys+1

...
xr 7−→ xs+r

yr 7−→ ys+r

xr+1 7−→ S−1x1S

yr+1 7−→ S−1y1S

...

xr+s 7−→ S−1xsS

yr+s 7−→ S−1ysS

where S = [xs+1, ys+1][xs+2, ys+2] · · · [xs+r, ys+r].
It is easy to see that the (r, s)-braiding fixes the fundamental relator R
Moreover, the (r, s)-braiding makes the diagrams in (d) of Definition 1.2 commute. �

Lemma 1.4 explains the pseudo double loop space structure on the union of the classifying
spaces of the mapping class groups observed by E. Miller. Lemma 1.3 and Lemma 1.4 imply
the following:

Theorem 1.5. The group completion of qg≥0BΓg,1 is the homotopy type of a double loop
space.

2. Braid structure

Let Bn denote Artin’s braid group. Bn has n−1 generators σ1, · · · , σn−1 and is specified
by the following presentation:

σiσj =σjσj if |i − j| ≥ 2
σiσi+1σi =σi+1σiσi+1 for i = 1, · · · , n− 2
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It has been observed for many years that there are certain connections between the braid
groups and the mapping class groups. In this section we introduce a new kind of braid
structure in the mapping class groups Γg,1’s in an explicit form. This explicit expression
enables us to deal with a kind of Dyer-Lashof operation (or Browder operation) in an explicit
form. It seems possible for us to get further applications of the formula of the braid structure
in the future. First let us express explicitly the (1,1)-braiding on genus 2 surface. Γ2,1 is
generated by the Dehn twists a1, b1, a2, b2, ω1. Let x1, y1, x2, y2 be generators of π1Sg,1

which are induced by a1, b1, a2, b2, respectively. Regard a1, b1, a2, b2, ω1 as automorphisms
on F{x1,y1,x2,y2}. Then we have

a1 : y1 7−→ y1x
−1
1

b1 : x1 7−→ x1y1

a2 : y2 7−→ y2x
−1
2

b2 : x2 7−→ x2y2

ω1 : x1 7−→ x1[x2, y2]x−1
2 x1x2[y2, x2]x−1

1

y1 7−→ x1[x2, y2]x−1
2 x−1

1 x2[y2, x2]y1x2[y2, x2]x−1
1

y2 7−→ x−1
2 x1x2y2x

−1
2

These automorphisms fix the generators that do not appear in the above list.
The (1,1)-braiding in genus 2 should be expressed in terms of the elements a1, b1, a2, b2, ω1

and should be specified on the generators of π1Sg,1 by the formulas:

x1 7−→ x2

y1 7−→ y2

x2 7−→ [y2, x2]x1[x2, y2]

y2 7−→ [y2, x2]y1[x2, y2]

We need a hard calculation to get such a braiding. By using a computer program, we could
get the following explicit formula for the braid structure.

Lemma 2.1. The (1,1)-braiding for the monoidal structure in genus 2 is given by

β1 = (b1a1a1b1a1ω1(a1b1a1)−1b2a2)−3(a1b1a1)4 (2.2)

The braid group of all braidings in the mapping class group of genus g is generated by

βi = (biaiaibiaiωi(aibiai)−1bi+1ai+1)−3(aibiai)4 (2.3)

for i = 1, 2, · · · , g − 1. We can obtain the following formula for the (r, s)-braiding in terms
of the braiding generators:

(βrβr+1 · · ·βr+s−1)(βr−1βr · · ·βr+s−2) · · · (β1β2 · · ·βs)
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or alternatively as

(βrβr−1 · · ·β1)(βr+1βr · · ·β2) · · · (βr+s−1βr+s−2 · · ·βs)

Remark 2.4 The braid structure gives rise to the double loop space structure, so it is
supposed to be related to the Dyer-Lashof operation. Let D : B2g −→ Γg,1 be the obvious
map given by

D(σi) =

{
b i+1

2
if i is odd

ω i
2

if i is even

F. Cohen in [3] dealt with this map D. He said that the homology homomorphism D∗
induced by D is trivial, because D preserves the Dyer-Lashof operation. Precisely speaking,
he made a commutative diagram

Bp

∫
B2g

θ′
−−−−→ B2pg

Bp

R
D

y yD

Bp

∫
Γg,1

θ−−−−→ Γpg,1

where θ is the analogue of the Dyer-Lashof operation (it should be rather Browder operation).
According to his definition, (σ; 1, 1) ∈ B2

∫
Γ1,1 is mapped by θ to ω1b2b1ω1. His definition

of θ, however, is not well-defined. This can be detected by mapping Γ2,1 to Sp(4; Z). Here
Sp(4; Z) is the automorphism group of H1(Sg,1; Z). The map φ : Γ2,1 → Sp(4; Z) is described
as follows:

a1 →




1 -1 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 b1 →




1 0 0 0
1 1 0 0
0 0 1 0
0 0 0 1




a2 →




1 0 0 0
0 1 0 0
0 0 1 -1
0 0 0 1


 b2 →




1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 1




ω1 →




1 -1 0 1
0 1 0 0
0 1 1 -1
0 0 0 1




The map φ sends ω1b2b1ω1 to




0 0 1 0
1 0 0 1
1 0 0 0
0 1 1 0


 .

We have

(σ1; 1, 1)−1(1; a1, 1)(σ1; 1, 1) = (1; 1, a1) = (σ1; 1, 1)(1; a1, 1)(σ1; 1, 1)−1
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This element must commute with (1; a1, 1). (σ1; 1, 1)−1(1; a1, 1)(σ1; 1, 1) is mapped to


1 0 0 0
1 1 0 1

-1 0 1 -1
0 0 0 1


 and (σ1; 1, 1)(1; a1, 1)(σ1; 1, 1)−1 is mapped to




1 0 0 0
1 1 0 -1
1 0 1 -1
0 0 0 1


 . How-

ever neither of these two matrices commutes with




1 -1 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 which corresponds to

a1.

The braiding structure (2.2) plays a key role in the correct formula for θ which should be
the following:

(σ1; 1, 1) θ7−→ (b1a1a1b1a1ω1(a1b1a1)−1b2a2)−3(a1b1a1)4

Let Cn be the little n-cube operad. Let Y be an n-fold loop space. Then Y is a Cn-space,
so there is a map

Cn(2) × Y 2 −→ Y

It is known that Cn(2) has the same homotopy type as Sn−1. Hence the above map induces
a homology operation

Hi(Y ) ⊗ Hj(Y ) −→ Hi+j+n−1(Y )

which is called the Browder operation. It is easy to see that if Y is a Cn+1-space, then the
Browder operation equals zero.

Let X be the group completion of qg≥0BΓg,1. Since X is homotopy equivalent to a
Ω2-space, it is, up to homotopy, a C2-space. It is natural to raise the question whether X is
a C3-space, or not. The answer is negative. In the proof of the following theorem the braid
formula (2.2) again plays a key role.

Theorem 2.5. Let X be the group completion of qg≥0BΓg,1. The double loop space
structure cannot be extended to the triple loop space structure.

Proof. We show that the Browder operation

θ∗ : Hi(X) ⊗ Hj(X) −→ Hi+j+1(X)

is nonzero for X. We have the map

φ : C2(2) × X2 −→ X

Note that C2(2) has the same homotopy type as S1. By restricting the map φ to each
connected component we get

S1 × BΓg,1 × BΓg,1 −→ BΓ2g,1
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This map is, in the group level, denoted by the map

θ : B2

∫
Γg,1 −→ Γ2g,1

which is same as described in Remark 2.4. In order to show that θ∗ is nonzero it suffices to
show that

θ̃∗ : H0(BΓ1,1) ⊗ H0(BΓ1,1) −→ H1(BΓ2,1)

is nonzero. The image of the map θ̃∗ equals the image of the homology homomorphism
α : H1(S1) → H1(BΓ2,1) induced by the map S1 → BΓ2,1 which is the restriction of
the map S1 × BΓ1,1 × BΓ1,1 → BΓ2,1. The map α sends the generator of H1(S1) to the
abelianization class of

(b1a1a1b1a1ω1(a1b1a1)−1b2a2)−3(a1b1a1)4

which is nonzero, since the isomorphism H1( ) ∼= ( )ab is natural. �
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