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1. Introduction

Coxeter groups are familiar objects in many branches of mathematics. The
connections with semisimple Lie theory have been a major motivation for the study
of Coxeter groups. (Crystallographic) Coxeter groups are involved in Kac-Moody
Lie algebras, which generalize the entire theory of semisimple Lie algebras. Coxeter
groups of finite order are known to be finite reflection groups, which appear in
invariant theory. Coxeter groups also arise as the transformation groups generated
by reflections on manifolds (in a suitable sense). Finally, Coxeter groups are classical
objects in combinatorial group theory.

In this paper, we discuss the cohomology and the Euler characteristics of (finitely
generated) Coxeter groups. Our emphasis is on the rôle of the parabolic subgroups
of finite order in both the Euler characteristics and the cohomology of Coxeter
groups.

The Euler characteristic is defined for groups satisfying a suitable cohomological
finiteness condition. The definition is motivated by topology, but it has applications
to group theory as well. The study of Euler characteristics of Coxeter groups was
initiated by J.-P. Serre [22], who obtained the formulae for the Euler characteristics
of Coxeter groups, as well as the relation between the Euler characteristics and the
Poincaré series of Coxeter groups. The formulae for the Euler characteristics of
Coxeter groups were simplified by I. M. Chiswell [7]. From his result, one knows
that the Euler characteristics of Coxeter groups can be computed in terms of the
orders of parabolic subgroups of finite order.

On the other hand, for a Coxeter group W , the family of parabolic subgroups of
finite order forms a finite simplicial complex F(W ). In general, given a simplicial
complex K, the Euler characteristics of Coxeter groups W with F(W ) = K are
bounded, but are not unique. However, it follows from the result of M. W. Davis
that e(W ) = 0 if F(W ) is a generalized homology 2n-sphere (Theorem 4). Inspired
by this result, the author investigated the relation between the Euler characteris-
tics of Coxeter groups W and the simplicial complexes F(W ), and obtained the
following results:

1. If F(W ) is a PL-triangulation of some closed 2n-manifold M , then

e(W ) = 1− χ(M )
2

.

2. If F(W ) is a connected graph, then e(W ) ≥ γ(F(W )), where γ(−) denotes
the genus of the graph.

3
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See Theorem 5 and 7. Conversely, given a PL-triangulation K of a closed 2n-
manifold M , we obtain an equation for the number of i-simplices of K (0 ≤ i ≤ 2n)
by considering a Coxeter group W with K = F(W ) (Theorem 6 and its corollary).

The family of parabolic subgroups of finite order is also important in understand-
ing the cohomology of a Coxeter group W . For instance, let k be a commutative
ring with unity, ρ a ring homomorphism

ρ : H∗(W, k)→
∏
WF

H∗(WF , k).

induced by restriction maps, where WF ranges all the parabolic subgroups of finite
order. Then u ∈ ker ρ is nilpotent and cannot be detected by any finite subgroup
of W . And we can say more about the homomorphism ρ.

We remark that, according to the results of D. Quillen [19] and K. S. Brown
[5], the family of elementary abelian p-subgroups also plays an important rôle.
However, it is p-local. The rôle of the parabolic subgroups of finite order is not
p-local, a phenomenon in which I am very interested.

Notation 1. For a finite set X, the cardinality of X is denoted by |X|. In partic-
ular, for a finite group G, the order of G is denoted by |G|.

2. Definitions and Examples

In this section, we give the definition and elementary examples of Coxeter groups.

Definition 2.1. Let S be a finite set. Let m : S×S → N∪{∞} be a map satisfying
the following three conditions:

1. m(s, t) = m(t, s) for all s, t ∈ S,
2. m(s, s) = 1 for all s ∈ S,
3. 2 ≤ m(s, t) ≤ ∞ for all distinct s, t ∈ S.

The group W defined by the set of generators S and the fundamental relation
(s · t)m(s,t) = 1 (m(s, t) 6=∞) is called a Coxeter group. Some authors permit S to
be an infinite set.

Remark 1. We frequently write (W, S) or (W, S, m) instead of W to emphasize S
and m. The pair (W, S) is sometimes called a Coxeter system in the literature.

Remark 2. Each generator s ∈ S is an element of order 2 in W . Hence W is
generated by involutions.

Example 2.1. Let (W, S) be a Coxeter group with S = {s, t}. If m(s, t) <∞, then
W is isomorphic to D2m(s,t), the dihedral group of order 2m(s, t). If m(s, t) = ∞,
then W is isomorphic to Z/2Z ∗ Z/2Z, the free product of two copies of the cyclic
group of order 2.

Example 2.2. A finite reflection group is a finite subgroup of the orthogonal group
O(n) (for some n) generated by orthogonal reflections in the Euclidean space. A
finite reflection group is known to be a Coxeter group, i.e., it admits a presentation
of Coxeter groups. Conversely, any Coxeter group of finite order can be realized as
a finite reflection group. Hence one can identify Coxeter groups of finite order with
finite reflection groups in this way.

For example, an elementary abelian 2-group (Z/2Z)n and a symmetric group
Σn can be regarded as Coxeter groups. Finite reflection groups are completely
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classified and their list is short. By using the list, it is easy to determine if a given
Coxeter group is of finite order. See [4], [15] for details.

Example 2.3. Coxeter groups are closed under free products and direct products.

Example 2.4 (Full triangular group). Let p, q, r be integers greater than 1. The
group T ∗(p, q, r) defined by the presentation

T ∗(p, q, r) =< s1, s2, s3|s2
i = (s1s2)p = (s2s3)q = (s3s1)r = 1 >

is called the full triangular group. It is obvious from the presentation that T ∗(p, q, r)
is a Coxeter group. The group T ∗(p, q, r) is known to be of finite order if and only
if

1
p

+
1
q

+
1
r

> 1.

The triangular group

T (p, q, r) =< u, v|up = vq = (uv)r = 1 >

is a subgroup of T ∗(p, q, r) of index 2 (via u = s1s2 and v = s2s3).
The full triangular group T ∗(p, q, r) can be realized as a planar discontinuous

group acting on a sphere S2 (if 1/p + 1/q + 1/r > 1), on the Euclidean plane E2

(if 1/p + 1/q + 1/r = 1), or on the hyperbolic plane H 2 (if 1/p + 1/q + 1/r < 1).
The orbit space of the action of T ∗(p, q, r) on S2, E2, or H2 is homeomorphic to a
disk D2.

Example 2.5. Given integers p, q, r greater than 1, let O(p, q, r) be the orbifold
defined as follows. (See [21] for the notion of orbifolds.) The underlying space of
O is a standard 2-simplex ∆2. Vertices v0, v1, and v2 of ∆2 are corner reflection
points of order 2p, 2q, and 2r. The points in the interior of edges are reflection
points, while the points in the interior of the whole ∆2 are manifold points.

The orbifold O(p, q, r) is uniformable (i.e., it has a manifold cover). Indeed, the
orbifold O(p, q, r) comes from the orbit space of the action of the full triangular
group T ∗(p, q, r) on one of S2, E2, or H2 mentioned in the bottom of Example 2.4.
The orbifold fundamental group πorb

1 (O(p, q, r)) is isomorphic to T ∗(p, q, r).
Let O′(p, q, r) be the orbifold, whose underlying space is a 2-sphere S2 , with

three cone points of order p, q, and r. Then there is a double orbifold covering

O′(p, q, r)→ O(p, q, r).

The orbifold fundamental group πorb
1 (O′(p, q, r)) is isomorphic to the triangular

group T (p, q, r). See [17] and [21] for the details.

Example 2.6. Example 2.4 and 2.5 are special cases of reflection orbifolds and
groups generated by reflections on a manifold, both of which are closely related to
Coxeter groups. See [8] and [16] for the general theory.

3. Parabolic Subgroups

Let (W, S, m) be a Coxeter group. For a subset T ⊂ S, define WT to be the
subgroup of W generated by the elements of T (i.e. WT =< T >⊆ W ). In
particular, W∅ = {1} and WS = W . WT is called a parabolic subgroup (or special
subgroup) of W . The subgroup WT is known to be a Coxeter group. Indeed,
(WT , T, m|T × T ) is a Coxeter group. It is obvious from the definition that the
number of parabolic subgroups of a Coxeter group is finite.
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Example 3.1. Parabolic subgroups of the full triangular group T ∗(p, q, r) consist
of 8 subgroups. Namely,

1. The trivial subgroup {1}.
2. Three copies of a cyclic group of order 2 (generated by single element).
3. Dihedral groups of order 2p, 2q, and 2r (generated by two distinct elements).
4. T ∗(p, q, r) itself.

The following observation asserts that the parabolic subgroups of finite order are
maximal among the subgroups of finite order in a Coxeter group.

Proposition 1 ([9, Lemma 1.3]). Let W be a Coxeter group and H its finite sub-
group. Then there is a parabolic subgroup WF of finite order and an element w ∈W
such that H ⊂ wWw−1.

4. Euler characteristics

In this section, we introduce the Euler characteristics of groups. First we intro-
duce the class of groups for which the Euler characteristic is defined.

Notation 2. Let Γ be a group. Then ZΓ is the integral group ring of Γ. We regard
Z as a ZΓ-module with trivial Γ-action.

Definition 4.1. A group Γ is said to be of type FL if Z admits a free resolution
(over ZΓ) of finite type. In other words, there is an exact sequence

0→ Fn → Fn−1 → · · · → F1 → F0 → Z→ 0.

of finite length such that each Fi is a finitely generated free ZΓ-module.

Remark 3. If Γ is a group of type FL, then cd Γ <∞ and hence Γ is torsion-free.

Definition 4.2. A group Γ is said to be of type VFL if some subgroup of finite
index is of type FL.

Now we define the Euler characteristic of a group. Let Γ be a group of type FL,
and let

0→ Fn → Fn−1 → · · · → F1 → F0 → Z→ 0.

b a free resolution of finite length. The Euler characteristic e(Γ) of Γ is defined by

e(Γ) =
∑

i

(−1)irankZΓFi.

Let Γ be a group of type VFL. Then its Euler characteristic e(Γ) is defined by

e(Γ) =
e(Γ′)

(Γ : Γ′)
∈ Q,

where Γ′ is a subgroup of finite index which is of type FL. The rational number
e(Γ) is independent of the choice of a subgroup Γ′, and we have

Proposition 2. Let Γ be a group and Γ′ a subgroup of finite index. Then Γ is of
type VFL if and only if Γ′ is of type VFL. If Γ is of type VFL, then

e(Γ′) = (Γ : Γ′) · e(Γ).

We give some examples of groups of type VFL and their Euler characteristics.
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Example 4.1. Any finite group Γ is of type VFL. Its Euler characteristic is given
by

e(Γ) =
1
|Γ| .

(Take Γ′ to be a trivial group {1}.)
Example 4.2. Let K be a finite aspherical polyhedron. Then its fundamental
group π = π1(K) is of type FL, and

e(π) = χ(K),

where χ(K) is the Euler characteristic of K. The fact that the Euler characteristic
of a finite aspherical polyhedron depends only on its fundamental group is the
motivation of the definition of Euler characteristics of groups.

For instance, the circle S1 is aspherical and π1(S1) ∼= Z, hence

e(Z) = χ(S1) = 0.

Let Σg be a closed orientable surface of genus g > 0. Then Σg is aspherical, proving

e(π1(Σg)) = χ(Σg) = 2− 2g.

Example 4.3. If Γ1, Γ2 are groups of type VFL, then their free product Γ1 ∗ Γ2

and their direct product Γ1 × Γ2 are of type VFL, and

e(Γ1 ∗ Γ2) = e(Γ1) + e(Γ2)− 1,

e(Γ1 × Γ2) = e(Γ1) · e(Γ2).

As a consequence, a free group Fn and a free abelian group Zn are of type VFL (in
fact type FL), and we have

e(Fn) = 1− n,

e(Zn) = 0,

where Fn is the free group of rank n.

Example 4.4. The group SL(2, Z) has a subgroup of index 24 which is isomorphic
to the free group of rank 3. Hence SL(2, Z) is of type VFL. Using Example 4.2 and
4.3, one can compute the Euler characteristic of SL(2, Z) as

e(SL(2, Z)) =
e(F3)

24
= − 1

12
.

Example 4.5. The Euler characteristics of groups are closely related to the Euler
characteristics of orbifolds. (See [24] or [21] for the definition of the orbifold Euler
characteristics.) Namely, let O be an orbifold such that

1. O has a finite manifold covering M → O for which M has the homotopy type
of a finite complex.

2. The universal cover of O is contractible.
Then the orbifold fundamental group π = πorb

1 (O) of O is of type VFL and one has

e(π) = χorb(O),

where χorb(O) is the orbifold Euler characteristic of O.



8 TOSHIYUKI AKITA

Example 4.6. Let Γ be a full triangular group T ∗(p, q, r) of infinite order. Then,
as in Example 2.4, Γ is isomorphic to the orbifold fundamental group of the orbifold
O(p, q, r). The orbifold O(p, q, r) satisfies the conditions 1 and 2 in Example 4.5.
Hence the Euler characteristic of Γ is identified with the orbifold Euler characteristic
of O(p, q, r). Using this, one has

e(Γ) =
1
2

(
1
p

+
1
q

+
1
r
− 1

)
.

Finally, we mention two properties of Euler characteristics of groups. Let G be
a group of type VFL.

Theorem 1 (Gottlieb-Stallings [12], [23]). If e(G) 6= 0, then the center of G is a
finite subgroup.

Theorem 2 (Brown [5]). Let p be a prime. If pn divides the denominator of e(G),
then G has a subgroup of order pn.

In view of Example 4.1, Theorem 2 is a generalization of (a part of) Sylow’s theorem.

5. Euler characteristics of Coxeter groups (I)

J.-P. Serre [22] proved that Coxeter groups are of finite homological type. In
fact he proved that Coxeter groups satisfy a much stronger finiteness condition
than finite homological type, called type WFL. He also provided the formulae for
the Euler characteristics of Coxeter groups.

The formulae of Euler characteristics of Coxeter groups were simplified by I. M.
Chiswell [7], which we now quote. Before doing this, we remark that, if a Coxeter
group W is of finite order, then its Euler characteristic is given by e(W ) = 1/|W |
(Example 4.1). Hence we may assume a Coxeter group W to be of infinite order.

Theorem 3 (Chiswell [7]). The Euler characteristic e(W ) of a Coxeter group W
of infinite order is given by

e(W ) =
∑
T⊂S

|WT |<∞

(−1)|T |e(WT ) =
∑
T⊂S

|WT |<∞

(−1)|T | 1
|WT | .(1)

Thus the Euler characteristics of Coxeter groups are completely determined their
parabolic subgroups of finite order. Since the order of a finite reflection group is
easy to compute, so is the Euler characteristic of a Coxeter group.

Serre also obtained in [22] the relation between the Euler characteristic of a
Coxeter group and the Poincaré series. Namely, for a Coxeter group (W, S), define

g(t) =
∑

w∈W

tl(w),

where l(w) is the minimum of the length of reduced words in S representing w.
The function g(t) is known to be a rational function and is called Poincaré series
of (W, S). Serre proved

e(W ) =
1

g(1)
.

In general, Poincaré series of arbitrary finitely presented groups may not satisfy
this property. See [11].



COXETER GROUPS 9

6. Poset of Parabolic Subgroups of Finite Order

Before continuing the discussion of the Euler characteristics of Coxeter groups,
we introduce the simplicial complexes associated with Coxeter groups. Given a
Coxeter group (W, S), define F(W ) to be the poset of nontrivial subsets F ⊆ S
such that the order of the corresponding parabolic subgroup WF is of finite order.
If there is no ambiguity we write F instead of F(W ). The poset F(W ) can be
regarded as an (abstract) simplicial complex with the set of vertices S.

Example 6.1. If (W, S) is a finite reflection group with |S| = n, then any nontrivial
subset F ⊂ S belongs to F(W ) and hence

F = ∆n−1,

the standard (n− 1)-simplex.

Example 6.2. If (W, S) is a full triangular group of infinite order, then

F = ∂∆2,

the boundary of the standard 2-simplex (i.e. a triangle).

Example 6.3. The list of Coxeter groups with F(W ) = ∂∆3 can be found in [24].

Example 6.4. Let K be a finite simplicial complex. A finite simplicial complex
K is called a flag complex if K satisfies the following condition: For any subset
V = {v0, · · · , vn} of vertices of K, if any two element subset {vi, vj} of V form an
edge of K, then V = {v0, · · · , vn} spans an n-simplex. A barycentric subdivision
Sd K of a finite simplicial complex K is an example of a flag complex.

If K is a flag complex, then there is a Coxeter group W for which F(W ) = K.
Namely, let S be the set of vertices of K. Define m : S × S → N ∪ {∞} by

m(s1 , s2) =




1 s1 = s2

2 {s1, s2} forms a 1-simplex
∞ otherwise.

The resulting Coxeter group (W, S) satisfies F(W ) = K. In particular, given a
finite simplicial complex K, there is a Coxeter group W with F(W ) = Sd K.

Definition 6.1. A Coxeter group (W, S) with all m(s, t) = 2 or ∞ for distinct
s, t ∈ S is called right-angled Coxeter group.

Coxeter groups constructed in Example 6.4 are examples of right-angled Coxeter
groups. Conversely, if W is a right-angled Coxeter group, then F(W ) is a flag
complex.

Remark 4. It is not known if there is a Coxeter group W for which F(W ) = K for
a given finite simplicial complex K.

7. Euler characteristics of Coxeter groups (II)

Now let us consider the Euler characteristic of W in terms of the structure of
F(W ). Proofs of statements of the following three sections will appear in [3]. If
(W, S) is a finite reflection group, then

|W | ≥ 2|S|.(2)
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The equality holds if and only if W is isomorphic to the elementary abelian 2-group
(Z/2Z)|S| of rank |S|. Now let K be a finite simplicial complex. Then the Euler
characteristic of any Coxeter group W with K = F(W ) must satisfy

1−
∑

i:even

fi(K)
2i+1

≤ e(W ) ≤ 1 +
∑
i:odd

fi(K)
2i+1

,(3)

where fi(K) is the number of i-simplices of K. This follows from Theorem 3 and the
equation (2). As in the following example, the inequality (3) is not best possible.

Example 7.1. Suppose K = ∂∆3. Then Coxeter groups W with F(W ) = K are
precisely full triangular groups of infinite order. The inequality (3) implies

−1
2
≤ e(W ) ≤ 7

4
.

On the other hand, from the formula in Example 4.6 one has

−1
2

< e(W ) ≤ 0,

which is best possible.

Example 7.1 shows that, for a fixed finite simplicial complex K, Euler characteristics
of Coxeter groups with F(W ) = K can vary. However, from the result of M. W.
Davis [8], one has:

Theorem 4. Let W be a Coxeter group such that F(W ) is a generalized homology
2n-sphere, then

e(W ) = 0.

Here a generalized homology 2n-sphere is a simplicial complex K satisfying
1. K has the homology of a 2n-sphere.
2. The link of an i-simplex of K has the homology of a (2n− i − 1)-sphere.

A simplicial complex satisfying the condition 1 and 2 is also called a Cohen-
Macaulay complex. A triangulation of a homology sphere is an example of a gener-
alized homology sphere.

Note that Davis actually proved that, if W is a Coxeter group such that F(W )
is a generalized homology 2n-sphere, then, for each torsion free subgroup Γ of finite
index in W , there is a closed aspherical (2n + 1)-manifold M with π1(M ) ∼= Γ [8,
Theorem 10.1]. It follows that

e(W ) =
e(Γ)

(W : Γ)
=

χ(M )
(W : Γ)

= 0,

since M is odd dimensional and has homotopy type of a finite simplicial complex.
We (partially) generalize Theorem 4. A finite simplicial complex K is a PL-

triangulation of a closed M if, for each simplex T of K, the link of T in K is
a triangulation of (dimM − dim T − 1)-sphere. If K is a PL-triangulation of a
homology sphere, then K is a generalized homology sphere.

Theorem 5 (T. Akita). Let W be a Coxeter group such that F(W ) is a PL-
triangulation of a closed 2n-manifold, then

e(W ) = 1− χ(F(W ))
2

,

where χ(F(W )) is the Euler characteristic of the simplicial complex F(W ).



COXETER GROUPS 11

Remark 5. Given a simplicial complex K, there is a Coxeter group W such that
F(W ) agrees with the barycentric subdivision of K (Example 6.4). Hence there
are Coxeter groups for which Theorem 5 and Theorem 5 can be applied.

Remark 6. We should point out that the assumptions of Theorem 4 and 5 permit,
for instance, K to be an arbitrary triangulation of 2n-sphere. The significance
becomes clear if we compare with the case that K is a triangulation of a circle S1 .
Indeed, the Euler characteristics of Coxeter groups with F(W ) a triangulation of a
circle S1 can be arbitrary small.

Remark 7. Under the assumption of Theorem 5, 2 · e(W ) is an integer. On the
other hand, given a rational number q, there is a Coxeter group W with e(W ) = q.

8. Application of Theorem 5

Let K be a flag complex. Let (W, S) be a Coxeter group with F(W ) = K as
in Example 6.4. Any parabolic subgroup WF of finite order is isomorphic to the
elementary abelian 2-group (Z/2Z)|F | of rank |F |. Hence the Euler characteristic
of W is determined by the number of simplices of K. Explicitly, let fi(K) be the
number of i-simplices of K. Then

e(W ) = 1 +
∑

i

(
−1

2

)i+1

fi(K),(4)

Using this together with Theorem 5, one obtains

Theorem 6 (T. Akita). Let K be a PL-triangulation of a closed 2n-manifold. As-
sume K is a flag complex. Then

χ(K) =
∑

i

(
−1

2

)i

fi(K).

In particular, the barycentric subdivision of any finite simplicial complex is a flag
complex. Thus

Corollary . Let K be a PL-triangulation of a closed 2n-manifold. Let fi(Sd K) is
the number of i-simplices of the barycentric subdivision Sd K of K. Then

χ(Sd K) =
∑

i

(
−1

2

)i

fi(Sd K).

In general, if K is a triangulation of a closed n-manifold, then

χ(K) =
∑

i

(−1)ifi(K)

fn−1(K) =
n + 1

2
fn(K)

(5)

hold. The equality in Theorem 6 is not the consequence of the equalities (5).
For a triangulation K of a sphere Sn (for arbitrary n), the Dehn-Sommerville

equations give a set of equations for the fi(K)’s. It would be interesting to in-
vestigate the relation between the equation in Theorem 6 and Dehn-Sommerville
equations.
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9. Euler Characteristics of Aspherical Coxeter Groups and the

Genus of a Graph

In this section, we consider the Euler characteristics of Coxeter groups W such
that F(W ) is a graph (1-dimensional simplicial complex).

Definition 9.1. A Coxeter group (W, S) is called aspherical (in [18]) if every three
distinct elements of S generate a parabolic subgroup of infinite order.

In view of Example 2.4, a Coxeter group (W, S) is aspherical if and only if for every
three distinct elements s, t, u ∈ S,

1
mst

+
1

mtu
+

1
mus

≤ 1

holds, where 1/∞ = 0 by the convention. It is easy to see that a Coxeter group W
is aspherical if and only if F(W ) is a graph.

For a graph Γ, let E(Γ) be the set of edges of Γ. When (W, S) is an aspherical
Coxeter group with Γ = F(W ), it follows from Chiswell’s formula (1) that

1− |S|
2

< e(W ) ≤ 1− |S|
2

+
|E(Γ)|

4
.(6)

One has another inequality for e(W ) using the genus of a graph. The genus of a
graph Γ, denoted by γ(Γ), is the smallest number g such that the graph Γ imbeds in
the closed orientable surface of genus g. For instance, a graph Γ is a planar graph
if and only if γ(Γ) = 0.

Theorem 7 (T. Akita). Let (W, S) be a Coxeter group for which F(W ) is a con-
nected finite graph. Then

e(W ) ≥ γ(F).

Example 9.1. For any non-negative integer n, there is a Coxeter group W satis-
fying

1. F(W ) is a graph of genus n.
2. e(W ) = n.

The construction uses the complete bipartite graphs Km,n.
Recall that a graph Γ is a bipartite graph if its vertex set can be partitioned into

two subsets U and V such that the vertices in U are mutually nonadjacent and the
vertices in V are mutually nonadjacent. If every vertex of U is adjacent to every
vertex of V , then the graph is called completely bipartite on the sets U and V . A
complete bipartite graph on sets of m vertices and n vertices is denoted by Km,n.

Now the genus of the completely bipartite graph Km,n is given by

γ(Km,n) =
⌈

(m− 2)(n− 2)
4

⌉
.

See [13, Theorem 4.5.3]. Now let S = S1 t S2 with |S1| = m, |S2| = n. Define
m : S × S → N ∪ {∞} by

m(s, t) =




1 s = t

2 s ∈ Si, t ∈ Sj , i 6= j

∞ otherwise.
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Then the resulting Coxeter group (W, S) is right-angled and satisfies F(W ) = Km,n.
Its Euler characteristic is given by

e(W ) =
(m − 2)(n− 2)

4
.

Alternatively, one can construct similar examples by using complete graphs.

10. Cohomology of Coxeter Groups

In this section, we are concerned with the cohomology of Coxeter groups. The
content of this section extends the earlier papers [1] and [2]. We restrict our atten-
tion to the relation between the cohomology of Coxeter groups and the cohomology
of parabolic subgroups of finite order. Let (W, S) be a Coxeter group. Let k be
a commutative ring with identity, regarded as a W -module with trivial W -action.
Set

H∗(W, k) = lim←−WF H∗(WF , k),

where WF runs all (possibly trivial) parabolic subgroups of finite order. The inverse
limit is taken with respect to restriction maps H∗(WF ) → H∗(W ′

F ) for F ′ ⊂ F .
Let

ρ : H∗(W, k)→ H∗(W, k)

be the ring homomorphism induced by the restriction maps H∗(W, k)→ H∗(WF , k).
The properties of ρ are the main topic of this section.

D. J. Rusin [20], M. W. Davis and T. Januszkiewicz [10] computed the mod 2
cohomology ring of certain Coxeter groups.

Theorem 8 ([20, Corollary 30]). Let W be a Coxeter group with hyperbolic signa-
ture, with all rank-3 parabolic subgroups hyperbolic, and with even exponents m(s, t).
Then

H∗(W, F2) ∼= F2[ur, ws,t] (r, s, t ∈ S)

with relations urws,t = 0 if r 6= s and r 6= t, wr,swt,u = 0 unless {r, s} = {t, u},
and usut = 0 if 4 divides m(s, t) but usut = ws,t otherwise.

Here we shall not explain the assumptions in Theorem 8. Instead we point out that
if all m(s, t) (with s, t distinct) are large enough (compared with the cardinality S),
then the resulting Coxeter group has hyperbolic signature and its rank 3 parabolic
subgroups are hyperbolic. Such a Coxeter group must be aspherical.

Theorem 9 ([10, Theorem 4.11]). Let W be a right-angled Coxeter group. Then

H∗(W, F2) ∼= F2[v1, · · · , vm]/I,

where I is the ideal generated by all square free monomials of the form vi1 · · ·vin,
where at least two of the vij do not commute when regarded as elements of W .

See Definition 6.1 for the definition of right-angled Coxeter group. From their
results, one can show that ρ induces an isomorphism

H∗(W, F2) ∼= H∗(W, F2).

for a Coxeter group W which satisfies the assumptions in Theorem 8 or 9. Inspired
by this observation, we proved
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Theorem 10. Let W be a Coxeter group and k a commutative ring with identity.
Let ρ : H∗(W, k) → H∗(W, k) be as above. Then the kernel and the cokernel of ρ
consist of nilpotent elements.

A homomorphism satisfying these properties is called an F-isomorphism in [19].
Notice that, unlike the famous result of Quillen [19] concerning of the mod p co-
homology of groups of finite virtual cohomological dimension, the coefficient ring k
can be the ring Z of rational integers.

Example 10.1. Let W be the full triangular group T ∗(3, 3, 3). Its mod 2 coho-
mology ring is given by H ∗(W, F2) ∼= F2[u, v]/(u2), where deg u = 2 and deg v = 1
[20, p.52], while H(W, F2) is isomorphic to F2[w] with deg w = 1. Then ρ(u) = 0
and hence ρ has nontrivial kernel for k = F2. This shows the homomorphism ρ may
not be an isomorphism in general.

Unfortunately, we do not know whether ρ may have a non-trivial cokernel. We
give a sufficient condition for ρ to be surjective.

Theorem 11. Suppose that W is an aspherical Coxeter group (see Definition 9.1).
Then ρ is surjective for any abelian group A of coefficients (with trivial W -action).

For example, Coxeter groups satisfying the assumptions in Theorem 8 must be
aspherical.

In the case k = F2, there is more to say. By Theorem 10, the homomorphism
ρ induces the homomorphism H∗(W, k)/

√
0 → H∗(W, k)/

√
0, where

√
0 denotes

nilradical. Rusin proved that the mod 2 cohomology ring of any finite Coxeter
group (finite reflection group) has no nilpotent elements [20, Theorem 9]. Hence
the nilradical of H∗(W, F2) is trivial. From this, together with Theorem 10 and 11
we obtain

Corollary . For any Coxeter group W , ρ induces a monomorphism

H∗(W, F2)/
√

0→H∗(W, F2),

which is an isomorphism if W is aspherical.

Remark 8. Another study of the relation between the cohomology of aspherical
Coxeter groups and their parabolic subgroups of finite order can be found in [18].

Now we turn to our attention to detection by finite subgroups. An element
u ∈ H∗(W, k) is said to be detected by finite subgroups if the image of u by the map∏

H

resW
H : H∗(W, k)→

∏
H

H∗(H, k)

is nontrivial, where H runs all the finite subgroups of W . It would be of interest to
know which elements of H∗(W, k) Ĥ∗(W, k) are detected by finite subgroups. One
can reduce this question to the following proposition, which follows from Theorem
10 and Proposition 1.

Proposition 3. An element u ∈ H ∗(W, k) is detected by finite subgroups if and
only if u 6∈ ker ρ.

Finally, we give a example of elements of H ∗(W, k) which cannot be detected by
finite subgroups.
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Example 10.2. Let W be the full triangular group T ∗(3, 3, 3). Its mod 2 coho-
mology ring is given by in Example 10.1. One can check easily that uvn (n ≥ 1)
is contained in ker ρ̂. Thus uvn (n ≥ 1) cannot be detected by finite subgroups as
elements of H2+n(W, F2).

Remark 9. The virtual cohomological dimension of any Coxeter group W is known
to be finite [22, p. 107], and its Farrell-Tate cohomology, written Ĥ∗(W, k), is
defined. For the Farrell-Tate cohomology, the analogues of Theorem 10 and 11 and
Proposition 3 are valid. See [1] and [2] for detail.

11. Outline of Proof

11.1. Actions of Coxeter groups. A suitable complex on which a Coxeter group
acts is used in the proof of Theorem 10. We recall how this goes. Let (W, S) be a
Coxeter group. Let X be a topological space, (Xs)s∈S be a family of closed subsets
of X indexed by S. From these data, one can construct a space on which W acts
as follows. Set

S(x) = {s ∈ S : x ∈ Xs},
and let U = U(X) = W ×X/ ∼, W being discrete, where the equivalence relation
∼ is defined by

(w, x) ∼ (w′, x′)⇐⇒ x = x′&w−1w′ ∈WS(x).

Then W acts on U(X) by w′ · [w, x] = [w ′w, x]. The isotropy subgroup of [w, x] is
wWS(x)w

−1.

11.2. Proof of Theorem 10 (Outline). Given a Coxeter group (W, S), let X
be the barycentric subdivision of c ∗ F(W ), the cone of F(W ) with the cone point
c. Define Xs to be the closed star of s ∈ S (here s ∈ S is regarded as a vertex of
F(W ) and hence a vertex of X). Then one of the main results of M. W. Davis [8,
§13.5] asserts that U(X) is contractible.

Consider the spectral sequence of the form

Epq
1 =

∏
σ∈Σp

Hq(Wσ, k) =⇒ Hp+q(W, k).

In the spectral sequence, one can prove that E0,∗
2 is isomorphic to H∗(W, k) and

the homomorphism ρ is identified with the edge homomorphism H∗(W, k)→ E0,∗
2 .

Observe that
1. Ep,0

2 = 0 if p 6= 0.
2. There is a natural number n > 0 such that n ·Ep,q

r = 0 for all p and q > 0.
Together with these observations, Theorem 10 follows from the formal properties
of the differentials of the spectral sequence.
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