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The famous Hirzebruch signature theorem asserts that the signature of a closed
oriented manifold is equal to the integral of the so called L-genus. An immediate
corollary of this is the homotopy invariance of < L(M ), [M ] >. The L-genus is a
characteristic class of tangent bundles, so the above remark is a non-trivial fact.
The problem of higher signatures is a generalization of the above consideration.
Namely we investigate whether the higher signatures are homotopy invariants or
not. The problem is called the Novikov conjecture. The characteristic numbers are
closely related to the fundamental groups of manifolds.

There are at least two proofs of the signature theorem. One is to use the cobor-
dism ring. The other is to use the Atiyah-Singer index theorem. Recall that the
signature is equal to the index of the signature operators. The higher signatures
are formulated as homotopy invariants of bordism groups of BΓ. The problem was
solved using the Atiyah-Singer index theorem in many partial solutions. Here we
have the index-theoretic approach in mind when considering the higher signatures.
Roughly speaking, a higher signature is an index for a signature operator with
some coefficients. To interpret the number as a generalized signature, one consid-
ers homology groups with rational group ring coefficients. By doing surgery on the
homology groups, we obtain non degenerate symmetric form σ ∈ L(Γ) over the
group ring. It is called the Mishchenko-Ranicki symmetric signature. This element
is a homotopy invariant of manifolds. Mishchenko introduced Fredholm represen-
tations, obtaining a number σ(F) from a Fredholm representation F and σ. On
the other hand, one can construct a virtual bundle over K(Γ, 1) from a Fredholm
representation. By pulling back the bundle through maps from the base mani-
folds to K(Γ, 1), we can make a signature operator with coefficients. Mishchenko
discovered the generalized signature theorem which asserts the coincidence of the
index of the operators and σ(F). Thus a higher signature coming from a Fredholm
representation is an oriented homotopy invariant.

In [CGM] the authors showed that all higher signatures come from Fredholm
representations for large class of discrete groups, including word hyperbolic groups.
They formulated the notion of a proper Lipschitz cohomology class in group coho-
mology. It corresponds to a Fredholm representation in K-theory. In fact for many
discrete groups, any class of group cohomology can be represented by a proper
Lipschitz cohomology class. Their method depends on the existence of finite di-
mensional spaces of Q type K(Γ, 1).

On the other hand for larger classes of discrete groups, we cannot expect existence
of such good spaces. In [G], Gromov introduced a very large class of discrete groups,
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the quasi geodesic bicombing groups. This class is characterized by convexity of the
Cayley graph. Hyperbolic groups are contained in the class. For the class we cannot
ensure the existence of good spaces as above. Moreover it is unknown whether
Hn(Γ; Q) is zero for sufficiently large n. To overcome this difficulty, the following is
shown in [K]. We realize K(Γ, 1) by infinite dimensional space and approximate it
by a family of finite dimensional spaces. By applying the method of [CGM] for finite
dimensional spaces iteratively, it turns out that any cohomology class comes from
a Fredholm representation asymptotically. It suffices for the Novikov conjecture
because of finite dimensionality of manifolds.

§1 Geometric interpretation

To indicate the geometric features of higher signatures, let us consider signatures
of submanifolds(see[G2]). Let Γ be a discrete group, M be a closed manifold and
f : M → K(Γ, 1) be a smooth map. Let us assume that K(Γ, 1) is realized by
a closed manifold V ( dimM ≥ dimV ). Then for a regular value m ∈ V , the
cobordism class of W = f−1(m) is defined uniquely up to homotopy class of f .
Moreover the Poincaré dual class of [W ] ∈ H∗(M ) is f∗([V ]) where [V ] ∈ HdimV (V )
is the fundamental cohomology class. Notice that the normal bundle of W is trivial.
Thus

σ(W ) = < L(W ), [W ] > = < L(M ), [W ] > = < L(M )f∗([V ]), [M ] > .

σ(W ) is a higher signature of M which we now define as follows.

Definition 1-1. Let M be a closed manifold and Γ be a discrete group. Then a
higher signature of M is a characteristic number

< L(M )f∗(x), [M ] >

where f : M → K(Γ, 1) is a continuous map and x ∈ H∗(Γ; Q).

It is conjectured that these characteristic numbers are all homotopy invariants.
Let us see another geometric interpretation. Let F → X → M be a smooth fiber

bundle over M and assume F is 4k dimensional. Then the flat bundle induced from
the fibration H → M has a natural involution ∗. Thus H splits as H = H+ ⊕ H−
and by the index theorem for families, it follows

σ(X) = < L(M )ch(H+ − H−), [M ] > .

As a corollary, we see that the right hand side is a homotopy invariant of fiber
bundles over M (see[At]).

It is not necessary to construct a fiber bundle corresponding to each higher
signature. To induce the homotopy invariance, we only need a flat bundle and
an involution over M . From the point of view, Lusztig succeeded in verifying
Novikov conjecture for free abelian groups by the analytic method ([L]). Let Y
be a compact topological space and X be 2k dimensional compact manifold. Let
ρ : Y × π1(X) → U (p, q) be a family of U (p, q) representations of the fundamental
group of X. Then one can construct a vector bundle E over Y ×X which is flat in
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the X direction. E is admitted a non degenerate hermitian form <, > and E splits
as E = E+ ⊕ E−. Using the splitting, we obtain a family of quadratic forms

σy : Hk(X; E) × Hk(X; E) → C.

Naturally there corresponds σ(X, ρ) ∈ K(Y ) which is homotopy invariant of X.
Lusztig discovered the index theorem as follows. Let π : Y × X → Y be the
projection. Then

π∗(L(X)ch(E+ − E−)) = ch(σ(X, ρ)).

In particular we can take as Y the representation space of the fundamental group of
X. In the special case of the free abelian group Zn, U (1) the representation space
is the dual torus which is topologically isomorphic to the torus T n. In the case of
a single U (1) representation, one can only obtain the signature. However Lusztig
found the following. There exist bases {ai} and {bi} of H2∗(Tn; Z) and H2n(T̂n; Z)
such that

ch(σ(X, L)) =
∑
i

< L(X)f∗(ai), [X] > bi

where f : X → Tn induces an isomorphism of the fundamental groups. This is
enough to verify the Novikov conjecture for free abelian groups. In the case of
general noncommutative discrete groups, the representation space will be too com-
plicated and it will be very difficult to apply this method to general noncommutative
discrete groups.

§2 Fredholm representation

Mishchenko discovered the infinite dimensional version of the method of flat
vector bundles.

Definition 2-1. Let Γ be a discrete group. Then a Fredholm representation of Γ
is a set (H1, H2, ρ1, ρ2, F ) where

(1) H1, H2 are Hilbert spaces,
(2) F : H1 → H2 is a Fredholm map,
(3) ρi : Γ → U (Hi, Hi) is a unitary representation such that ρ2(γ)F −Fρ1(γ) is

a compact operator for any γ ∈ Γ.

Using a Fredholm representation, we can construct a virtual bundle over K(Γ, 1)
as follows. From the condition (3), we can construct an equivariant continuous map
f : EΓ → B(H1, H2) which satisfies

(1) for some point x ∈ EΓ, f(x) = F ,
(2) for any points x, y ∈ EΓ, f(x) − f(y) is a compact operator.

Notice that f is unique up to homotopy. Then the virtual bundle is (f : EΓ ×Γ

H1 → EΓ ×Γ H2) and we write

µ : { Fredholm representations }/ homotopy → Virtual bundles over BΓ.
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Theorem 2-2 (Mishchenko). Let f : M → BΓ be a continuous map. Then

< L(M )f∗(ch(µ(F ))), [M ] >

is an oriented homotopy invariant of M .

Let us interpret this theorem as an infinite version of the one of Lusztig. By
doing surgery on the homology groups with local coefficient, we have the resulting
homology only on the middle dimension. Poincaré duality on the homology gives a
symmetric form σ. This is an element of the Wall L-group L(Γ) of the fundamen-
tal group Γ, represented by a group ring valued nondegenerate symmetric matrix.
If there is a unitary representation of Γ, then the matrix can be regarded as an
invertible self adjoint operator on an infinite dimensional Hilbert space. The Fred-
holm operator F of a Fredholm representation decomposes into an operator valued
2 by 2 matrix {Fi,j}i,j=1,2 corresponding to the decomposition of the Hilbert space
into positive and negative parts of the self adjoint operators. It turns out that the
diagonal parts F11 and F22 are also Fredholm operators and F12, F21 are compact
operators. This follows essentially from the almost commutativity of the unitary
representations and the Fredholm operator in the definition of Fredholm represen-
tation. Thus we obtain a number indexF11 − indexF22. Mishchenko discovered the
generalized signature theorem which asserts the coincidence of this number and the
characteristic number of the above theorem. The process is parallel to the signature
theorem in the case of the simply connected spaces.

§3 Novikov conjecture for word hyperbolic groups

It is natural to ask how large ch∗(µ( Fredholm representations )) is in H2∗(Γ; Q).
By a celebrated work by A.Connes, M.Gromov and H.Moscovici, it is shown that
if Γ is hyperbolic, then they occupy in H2∗(Γ; Q).

In some cases of discrete groups, Eilenberg-Maclane spaces are realized by (com-
pact) smooth manifolds. In particular compact negatively curved manifolds them-
selves are Eilenberg-Maclane spaces. Hyperbolic groups are introduced by Gromov.
The class is characterized by the essential properties which are possessed by the
fundamental groups of compact negatively curved manifolds. Though the class is
very large, they have reasonable classifying spaces which are enough to work instead
of Eilenberg-Maclane spaces, at least for the Novikov conjecture. The spaces are
called Rips complexes.

Fact 3-1. Let Γ be a discrete group. Then there exists a family of finite dimensional
simplicial complexes {Pn(Γ)}1≤n. They satisfy the following:

(1) Γ acts on each Pn(Γ) proper discontinuously with compact quotient,
(2) if Γ is torsion free, then the action is also free,
(3) P1(Γ) ⊂ · · · ⊂ Pn(Γ) ⊂ Pn+1(Γ) . . . ,
(4) if Γ is hyperbolic, then Pn(Γ) is contractible for sufficiently large n.

In particular, torsion free hyperbolic groups have BΓ represented by finite di-
mensional simplicial complexes. In the following, we shall write P̃n/Γ as a tubular
neighborhood in an embedding Pn(Γ)/Γ → RN . P̃n/Γ is an open manifold with
the induced metric from RN . In the following, Γ is a hyperbolic group.
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Kasparov KK-groups.

Before explaining the method of [CGM], we shall quickly review Kasparov’s KK-
theory. The KK-groups are used effectively to prove Novikov conjecture. KK is a
bifunctor from a pair of distinct spaces (X, Y ) to abelian groups which is covariant
on X and contravariant on Y . The KK-groups include both K-cohomology and
K-homology.

Roughly speaking K-homology consists of the set of Dirac operators on spaces.
Precisely an element of K0(X) is represented by (M, E, ϕ) where

(1) M is an even dimensional spinc manifold which need not be compact or
connected,

(2) E is a complex vector bundle over M ,
(3) ϕ is a proper map from M to X.
K0(X) is the set of the above triples quotiented by a certain equivalence relation.

It is dual to K-cohomology and the pairing is to take the index on twisted vector
bundles. Let S be the spinc vector bundle over M and DE : S+ ⊗ E → S− ⊗ E
be the Dirac operator on M . Then the pairing of K theory is < F, (M, E, ϕ) >=
indexDE⊗F .

Fact 3-2. There exists a Chern character isomorphism,

ch∗ : K0(X) ⊗ Q = Hinf
2∗ (X; Q)

by ϕ∗(ch∗(E)∪ td(M )∩ [M ]) where H inf∗ is the homology with locally finite infinite
support.

Roughly speaking KK(X, Y ) is the set of sections over a family of elements of
K0(X) over Y . Thus if Y is a point,

KK∗(X, pt) = K∗(X).

There is an analytical interpretation of topological K-homology. Let C0(X) be the
set of the continuous functions on X vanishing at infinity. C0(X) is C∗ algebra
whose C∗ norm is to take pointwise supremum. The analytical K-homology K̂(X)
is the set (H0 ⊕ H1, ρ0, ρ1, T ) quotiented by an equivalence relation, where

(1) Hi is a Hilbert space,
(2) ρi : C0(X) → B(Hi) is a ∗−homomorphism,
(3) T : H0 → H1 is a bounded operator such that I − T∗T , I − TT ∗, ρ1(a)T −

Tρ0(a), are all compact operators.
The explicit map K0(X) → K̂0(X) is to take L2 sections of twisted spinc vector

bundles, (L2(M, S⊗̂E), DE , ϕ). Though DE is an unbounded operator, by making
pseudo differential calculus, we can construct a bounded operator. If M is compact,
then it is DE(I + D∗

EDE)−
1
2 . As ϕ is a proper map, it pulls back C0(X) to C0(M )

and the ∗−homomorphism is the multiplication by ϕ∗(a), a ∈ C0(X). If X is
a point, then an element of K̂0(X) is represented by a Fredholm operator over
Hilbert spaces. K0( pt ) is naturally isomorphic to Z by taking Fredholm indices.
KK( pt , Y ) is a family of Fredholm operators over Y . Thus

KK∗(pt, Y ) = K∗(Y ).
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Now let us define the KK-groups. First, let us recall the definition of the analytical
K homology (1), (2), (3) and consider the family version. (1) The set of sections over
the family of Hilbert spaces over Y admits a natural C0(Y )-module structure. (2)
As the ∗−homomorphism ρi action is fiberwise, it commutes with that of C0(Y ).
(3) A family of compact operators will be formulated as an element of a norm
closure of finite rank projections in the set of endomorphisms of the C0(Y )-module.
Soon we define this precisely.

Let us consider the triple (E, φ, F ) where
(1) E is a Z2-graded right C0(Y )-module with a C0(Y ) valued inner product. It

is complete with respect to C∗ norm of C0(Y ). E is called a Hilbert module over
C0(Y ).

(2) φ is a degree 0 ∗−homomorphism from C0(X) to B(E) where B(E) is the
set of C0(Y )-module endomorphisms. C0(X) acts on E from the left.

(3) F ∈ B(E) is of degree 1 such that [F − F ∗]φ(a), [φ(a), F ] and (F 2 − 1)φ(a)
are all compact endomorphisms. A compact endomorphism is an element of B(E)
which lies in the closure of linear span of the rank one projections θx,y ∈ B(E),
θx,y(z) = x < y, z >. We denote the set of compact endomorphisms by K(E)

If C0(Y ) itself is considered as C0(Y )-module, then B(C0(Y )) is the set of
bounded continuous functions on Y . K(C0(Y )) is also C0(Y ).

Let us denote the set of the above triples (E, φ, F ) by E(X, Y ). Notice that we
can replace C0(X) and C0(Y ) by any C∗-algebras A, B and write E(A, B) for the
set of triples which satisfy the above (1), (2), (3) replacing C0(X) by A and C0(Y )
by B.

Now let us introduce a homotopy equivalence relation as follows. (E1, φ1, F1)
is equivalent to (E2, φ2, F2) if there exists (E, φ, F ) ∈ E(A, C([0, 1], B)) such that
(E⊗̂fiB, fi ◦ φ, (fi)∗F ) is isomorphic to (Ei, φi, Fi) where fi : C([0, 1], B) → B is
the evaluation maps.

Definition 3-3. KK(X, Y ) = E(X, Y )/ homotopy .

It turns out that KK(X, Y ) is a group. KK(A, B) is defined similarly.
Notice that KK( pt , Rn) is isomorphic to the K-homology of Rn with compact

support which is isomorphic to Z. The generator of KK( pt , Rn) is expressed using
Clifford algebra. Let n = 2k be even. Then by identifying Rn with Ck, any vector
in Rn acts on ∧Ck by Clifford multiplication. Then the generator is

{C0(Rn,∧Ck), F (x) =
x

1 + |x|}

in KK( pt , Rn).
There is also equivariant KK-theory. Let A and B admit automorphisms of

Γ. If X and Y are Γ spaces, then C0(X) and C0(Y ) have natural Γ actions. Let
EΓ(A, B) be the set of triples (E, φ, F ) ∈ E(A, B) such that there exists an action
of Γ on E which satisfy

(1) g(aζb) = (ga)(gζ)(gb), < gζ, gζ ′ >= g < ζ, ζ′ >
(2) φ(a)(gFg−1 − F ) is a compact endomorphism of E.

Homotopy equivalence is defined similarly.
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Definition 3-4. KKΓ(X, Y ) = EΓ(X, Y )/ homotopy .

Notice that KKΓ(pt, pt) is the set of Fredholm representations quotiented by
homotopy equivalence.

There is a very important operation in KK-theory, called the intersection prod-
uct pairing (see [Bl])

KKΓ(X, Y ) × KKΓ(Y, Z) → KKΓ(X, Z).

Lipschitz geometry.

In the essential step, [CGM] constructs an element ϕ ∈ KKΓ(pt, P̃n). Roughly
speaking, the construction is as follows.

First of all, using the contractibility of P̃n, one constructs a map which induces
Poincaré duality,

α : P̃n ×Γ P̃n → T P̃n/Γ.

Namely for β ∈ H∗(P̃n/Γ; Q), z ∈ H inf∗ (P̃n/Γ; Q),

α∩ : H inf(P̃n/Γ; Q) → H∗(Pn/Γ; Q)

α ∩ (z) =
∫
z̃×Γβ̃

α.

Proposition 3-5[CGM]. If α is fiberwise proper Lipschitz, then one can construct
ϕ.

Let α : P̃n×Γ P̃n → T P̃n/Γ = P̃n/Γ×RN be the fiberwise proper Lipschitz map
which induces Poincaré duality. Let us take e ∈ P̃n and restrict α on P̃n× e. Then

ϕ = {C0(P̃n,∧CK),
α(x)

1 + |α(x)| }

in KKΓ( pt , P̃n) is the desired one. If α is not fiberwise Lipschitz, then the above
ϕ does not define an element of the equivariant KK-group. To ensure γFγ−1−F is
a compact endomorphism, it is enough to see that |γF (x)γ−1 − F (x)| goes to zero
when x goes to infinity. This follows, by simple calculation, from the Lipschitzness
of α.

A priori, we only have a fiberwise proper map which induces Poincaré duality.
It is natural to try to deform the map so that it becomes fiberwise proper Lipschitz
by a proper homotopy. To do so, first using the hyperbolicity, we have the following
map.

Proposition 3-6. Let us take a sufficiently large n > 0 and a sufficiently small
constant 0 < µ < 1. The there exists a map

F : P̃n ×Γ P̃n → P̃n ×Γ P̃n

such that
(1) F is fiberwise µ Lipschitz,
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(2) there exists a fiberwise proper homotopy Ft which connects F to the identity.

Remark 3-7. The existence of such F implies that P̃n must be contractible.

Let us take sufficiently large r and put D = {(x, y) ∈ P̃n×Γ P̃n; d(x, y) ≤ r}. By
modifying α slightly, we may assume that µ−1α ◦ F |∂F−1(D) = α|∂F−1(D).

Let us put

Bi = {(x, y) ∈ P̃n ×Γ P̃n; F i(x, y) = F ◦ F . . . F (x, y) ∈ D}

Di = Bi − Bi−1.

Let us define
α∞ : P̃n ×Γ P̃n → T P̃n

α∞|Di = µ−i+1α ◦ F i−1.

It is not difficult to see that α∞ is fiberwise proper Lipschitz and it is fiberwise
proper homotopic to α.

Using the Kasparov intersection product, we have a map

ϕ : KKΓ(P̃n, pt ) → KKΓ( pt , pt )

ϕ(x) = ϕ × x.

Theorem 3-8[CGM]. There exists the following commutative diagram.

KKΓ(P̃n(π), Q)
φ◦µ−−−−→ K2∗(BΓ)ych∗

ych∗

Hinf
2∗ (P̃n(Γ)/Γ) PD−−−−→ H2∗(BΓ)

where PD is the Poincare duality.

In the case of cohomology groups of odd degrees, we can reduce to the case of
even ones by considering Z × Γ. Thus

Corollary 3-9. Let Γ be a hyperbolic group and f : M → K(Γ, 1) be a continuous
map. Then < L(M )f∗(x), [M ] > is an oriented homotopy invariant for any x ∈
H∗(Γ; Q). Namely let p : M1 → M2 be an oriented homotopy equivalence. Then

< L(M1)(p ◦ f)∗(x), [M1] >=< L(M2)f∗(x), [M2] > .

Notice that in the case of hyperbolic groups, we have used the fact that K(Γ, 1)
was realized by a finite dimensional simplicial complex over Q. On the other hand,
we cannot expect it on more large classes of discrete groups, in particular quasi
geodesic bicombing groups which we shall treat in the next section. For the class,
we cannot expect even that the ranks of cohomology over Q are finite.
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§4 Quasi geodesic bicombing groups

In [ECHLPT], a very large class of discrete groups is defined. The elements
of the class are called combing groups. It contains hyperbolic groups and quasi
geodesic bicombing groups defined later.

Theorem 4-1[ECHLPT]. If Γ is a combable group, then K(Γ, 1) space can be
realized by a CW complex such that the number of cells in each dimension is finite.

As an immediate corollary of this, we can see that dimHn(Γ; Q) < ∞ for each
n. Using this fact, in the following construction, we shall make an analogy of the
case of hyperbolic groups on spaces which approximates K(Γ, 1).

A set of generators of a discrete group determines a 1 dimensional simplicial
complex called Cayley graph G(Γ). G(Γ) has a natural metric. Notice that the
universal covering spaces of non positively curved manifolds have the convex prop-
erty. With this in mind, we shall define the following.

Definition 4-2[G1]. If Γ has the following properties, we call it a bicombing
group. Let us fix a generating set of Γ. Then there exists a continuous and Γ
equivariant map

S : Γ × Γ × [0, 1] → G(Γ)

such that for some k ≥ 1, C ≥ 0, it satisfies

S(γ1 , γ2, 0) = γ1, S(γ1 , γ2, 1) = γ2,

d(St(γ1 , γ2), St(γ′
1, γ

′
2)) ≤ k(td(γ2, γ

′
2) + (1 − t)d(γ1, γ

′
1)) + C.

Though S(γ1 , γ2, ) : [0, 1] → G(π) connects γ1 and γ2, we shall require bal-
anced curves.

Definition 4-3[G1]. Let Γ be bicombing. We say that Γ is bounded if for some
k ≥ 1, C ≥ 0, it satisfies

d(St(γ1 , γ2), St′(γ1, γ2)) ≤ k|t− t′|d(γ1, γ2) + C

Definition 4-4. Γ : bounded bicombing is quasi geodesic if for every γ, a suffi-
ciently small ε and 0 ≤ t < s < t + ε ≤ 1, S(e, γ, t) 6= S(e, γ, s). Moreover let us
denote a unit speed path of S(e, γ, ) by ωγ .

ωγ : [0, |S(e, γ, )|] → G(Γ). Then for d(γ1, γ2) ≤ 1,

Ud(ωγ1 , ωγ2) = suptd(ωγ1(t), ωγ2(t)) ≤ C,

|S(e, γ, )| ≤ k|γ| + C

Furthermore, for some A > 0, B ≥ 0, St satisfies

d(γ, St(γ, γ′)) ≥ Atd(γ, γ′) − B.

Using S, it is easy to prove the following lemma.
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Lemma 4-5[Al]. If Γ is a quasi geodesic bicombing group, then each Rips complex
Pi(Γ) is contractible in Pn(Γ) for large n = n(i).

From this, we see that for a torsion free quasi geodesic bicombing group Γ,
P∞(Γ) = limiPi(Γ) is a realization of EΓ. Unlike to the case of hyperbolic groups,
we cannot make F : P̃n ×Γ P̃n(Γ) → P̃n ×Γ P̃n(Γ) as before, because Pn is not
contractible in itself. However we have the following family of maps.

Proposition 4-6. Let us take an arbitrary family of small constants {µi}0≤i, 1 >>
. . .µi >> µi−1 · · · >> µ0 > 0. Then for some family of Rips complexes {Pn(i)}0≤i,
there exists a family of maps

Fi : P̃n(0) ×π P̃n(i) → P̃n(0) ×π P̃n(i+1)

such that
(1) Fi is fiberwise µi Lipschitz,
(2) Fi is fiberwise proper homotopic to the inclusion.

Let α0 : P̃n(0) ×π P̃n(0) → RN be a fiberwise proper map which induces Poincaré
duality. Using the above family of maps, we can construct the following commuta-
tive diagram of maps.

P̃0 ×Γ P̃0
α0−−−−→ RN0

incl

y
yincl

P̃0 ×Γ P̃1
α1−−−−→ RN1

incl

y
yincl

. . . −−−−→ . . .

To produce a proper Lipschitz map, we need to control growth of these maps
at infinity. In this case, we can construct αi which satisfy the following. There
exist families of constants {Ci}, {ai} such that the Lipschitz constant of αi on
Ni(r) = {(x, y)|x ∈ P̃0, y ∈ P̃i, di(x, y) ≤ r}, for sufficiently large r, is bounded by
CiH(air) where H is a Lipschitz function on [0,∞).

Proposition 4-7. Using these maps, we have

α∞ : P̃n(0) ×π P̃n(0) → R∞

which is fiberwise proper homotopic to α. Moreover let

pr : R∞ → RN , N = dimP̃n(0).

Then pr ◦ α∞ is fiberwise proper Lipschitz.

Let us recall that homology commutes with spaces under the direct limit opera-
tion. Thus H∗(P∞/Γ) = limnH∗(Pn/Γ). With the fact that the rank of HN(Pn/Γ)
is finite for every N , we have



THE ASYMPTOTIC METHOD IN THE NOVIKOV CONJECTURE 61

Lemma 4-8. Let us take any large N . Then for ∗ < N , there exists n such that

i∗ : H∗(Pn/Γ; Q) → H∗(P∞/Γ; Q)

is surjective where i : Pn(π)/π → P∞(π)/π is the inclusion.

As before, we can construct ϕ ∈ KKΓ( pt , P̃n).

Theorem 4-9. The following diagram commutes.

KKΓ(P̃n, pt )
µ◦ψ−−−−→ K2∗(BΓ)ych∗

yi∗◦ch∗

Hinf
2∗ (P̃n/Γ) PD−−−−→ H2∗(Pn/Γ).

We cannot construct the homotopy between pr◦α∞ and α0 through the map to
RN . Let 2K = N and Z = P̃n(0)×Pn(0). To show the commutativity of the diagram,
we construct a homotopy between the following two elements in KK( pt , Z).

α∗
0(β) = {C0(Z,∧CK), F0(x) =

α0(x)
1 + |α0(x)| }

( pr ◦ α∞)∗(β) = {C0(Z,∧CK), F∞(x) =
pr ◦ α∞(x)

1 + |pr ◦ α∞(x)| }.

Let ∆N = ∧CN . Then there are natural inclusions ∆N ⊂ ∆N+1 ⊂ . . . which
preserves the metrics. Let [∧C∞] be the infinite dimensional Hilbert space which
is the completion of the union. By adding degenerate elements, we can express

α∗
0(β) = {C0(Z, [∧C∞]), F0 ⊕ G0}

( pr α∞)∗(β) = {C0(Z, [∧C∞]), F∞ ⊕ G∞}

Using the proper homotopy between α0 and pr◦α∞ through maps to R∞, we can
construct the homotopy between the elements in KK( pt , Z).

Corollary 4-10. Let Γ be a torsion free quasi geodesic bicombing group. Then for
arbitrary large N and x ∈ H2∗(BΓ; Q), there exists a Fredholm representation F
such that x − ch(µ(F )) ∈ H∗(BΓ; Q), ∗ ≥ N .

Corollary 4-11. For torsion free quasi geodesic bicombing groups, the higher sig-
natures are oriented homotopy invariants.
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