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1. Introduction.
Nash manifolds have been studied for a long time and there are many brilliant

works (e.g. [2], [3], [10], [19], [20], [21], [22], [23]).
The semialgebraic subsets of R

n are just the subsets of R
n definable in the

standard structure Rstan := (R, <,+, ·, 0, 1) of the field R of real numbers [24].
However any non-polynomially bounded function is not definable in Rstan, where
a polynomially bounded function means a function f : R −→ R admitting an
integer N ∈ N and a real number x0 ∈ R with |f(x)| ≤ xN , x > x0. C. Miller
[17] proved that if there exists a non-polynomially bounded function definable in
an o-minimal expansion (R, <,+, ·, 0, 1, ....) of R stan, then the exponential function
exp : R −→ R is definable in this structure. Hence Rexp := (R, <,+, ·, exp, 0, 1) is
a natural expansion of Rstan. There are a number of results on Rexp (e.g. [11],
[12], [13], [14], [26]). Note that there are other structures with properties similar
to those of Rexp ([5], [6], [25]).

We say that a Cr manifold (0 ≤ r ≤ ω) is an exponentially Cr Nash manifold
if it is definable in Rexp (See Definition 2.5). Equivariant such manifolds are defined
in a similar way (See Definition 2.6).

In this note we are concerned with exponentially Cr Nash manifolds and equi-
variant exponentially C r Nash manifolds.

Theorem 1.1. Any compact exponentially Cr Nash manifold (0 ≤ r < ∞) admits
an exponentially Cr Nash imbedding into some Euclidean space.

Note that there exists an exponentially Cω Nash manifold which does not admit
any exponentially Cω imbedding into any Euclidean space [8]. Hence an exponen-
tially Cω Nash manifold is called affine if it admits an exponentially C ω Nash
imbedding into some Euclidean space (See Definition 2.5). In the usual Nash cat-
egory, Theorem 1.1 is a fundamental theorem and it holds true without assuming
compactness of the Nash manifold [19].

Equivariant exponentially Nash vector bundles are defined as well as Nash ones
(See Definition 2.8).
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Theorem 1.2. Let G be a compact affine Nash group and let X be a compact affine
exponentially Cω Nash G manifold with dimXG ≥ 2. Then for any C∞G vector
bundle η of positive rank over X, there exist two exponentially Cω Nash G vector
bundle structures of η such that they are exponentially C∞ Nash G vector bundle
isomorphic but not exponentially Cω Nash G vector bundle isomorphic.

Theorem 1.3. Let G be a compact affine exponentially Nash group and let X be
a compact C∞G manifold. If dimX ≥ 3 and dimXG ≥ 2, then X admits two
exponentially Cω Nash G manifold structures which are exponentially C∞ Nash G
diffeomorphic but not exponentially Cω Nash G diffeomorphic.

In the usual equivariant Nash category, any C∞ Nash G vector bundle isomor-
phism is a Cω Nash G one, and moreover every C∞ Nash G diffeomorphism is a
Cω Nash G one. Note that Nash structures of C∞G manifolds and C∞G vector
bundles are studied in [9] and [7], respectively.

In this note, all exponentially Nash Gmanifolds and exponentially Nash G vector
bundles are of class Cω and manifolds are closed unless otherwise stated.

2. Exponentially Nash G manifolds and exponentially Nash G vector
bundles.

Recall the definition of exponentially Nash G manifolds and exponentially Nash
G vector bundles [8] and basic properties of exponentially definable sets and expo-
nentially Nash manifolds [8].

Definition 2.1. (1) An Rexp-term is a finite string of symbols obtained by repeated
applications of the following two rules:
[1] Constants and variables are Rexp-terms.
[2] If f is an m-place function symbol of Rexp and t1, . . . , tm are Rexp-terms, then
the concatenated string f(t1, . . . , tm) is an Rexp-term.
(2) An Rexp-formula is a finite string of Rexp-terms satisfying the following three
rules:
[1] For any two Rexp-terms t1 and t2, t1 = t2 and t1 > t2 are Rexp-formulas.
[2] If φ and ψ are Rexp-formulas, then the negation ¬φ, the disjunction φ∨ψ, and
the conjunction φ ∧ ψ are Rexp-formulas.
[3] If φ is an Rexp-formula and v is a variable, then (∃v)φ and (∀v)φ are Rexp-
formulas.
(3) An exponentially definable set X ⊂ R

n is the set defined by an Rexp-formula
(with parameters).
(4) Let X ⊂ R

n and Y ⊂ R
m be exponentially definable sets. A map f : X −→ Y

is called exponentially definable if the graph of f ⊂ R
n × R

m is exponentially
definable.

On the other hand, using [12] any exponentially definable subset of R
n is the

image of an Rn+m-semianalytic set by the natural projection R
n × R

m −→ R
n for

some m. Here a subset X of R
n is called Rn-semianalytic if X is a finite union of

sets of the following form:
{x ∈ R

n|fi(x) = 0, gj(x) > 0, 1 ≤ i ≤ k, 1 ≤ j ≤ l},
where fi, gj ∈ R[x1, . . . , xn, exp(x1), . . . , exp(xn)].

The following is a collections of properties of exponentially definable sets (cf.
[8]).
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Proposition 2.2 (cf. [8]). (1) Any exponentially definable set consists of only
finitely many connected components.

Let X ⊂ R
n and Y ⊂ R

m be exponentially definable sets.
(2)The closure Cl(X) and the interior Int(X) of X are exponentially definable.
(3) The distance function d(x,X) from x to X defined by d(x,X) = inf{||x−y|||y ∈
X} is a continuous exponentially definable function, where ||·|| denotes the standard
norm of R

n.
(4) Let f : X −→ Y be an exponentially definable map. If a subset A of X is
exponentially definable then so is f(A), and if B ⊂ Y is exponentially definable
then so is f−1(B).
(5) Let Z ⊂ R

l be an exponentially definable set and let f : X −→ Y and h : Y −→
Z be exponentially definable maps. Then the composition h ◦ f : X −→ Z is also
exponentially definable. In particular for any two polynomial functions f, g : R −→
R, the function h : R − {f = 0} −→ R defined by h(x) = eg(x)/f(x) is exponentially
definable.
(6) The set of exponentially definable functions on X forms a ring.
(7) Any two disjoint closed exponentially definable sets X and Y ⊂ R

n can be
separated by a continuous exponentially definable function. �

Let U ⊂ R
n and V ⊂ R

m be open exponentially definable sets. A Cr (0 ≤ r ≤ ω)
map f : U −→ V is called an exponentially Cr Nash map if it is exponentially
definable. An exponentiallyCr Nash map g : U −→ V is called an exponentially Cr

Nash diffeomorphism if there exists an exponentially Cr Nash map h : V −→ U
such that g ◦ h = id and h ◦ g = id. Note that the graph of an exponentially Cr

Nash map may be defined by an Rexp-formula with quantifiers.

Theorem 2.3 [14]. Let S1, . . . , Sk ⊂ R
n be exponentially definable sets. Then

there exists a finite family W = {Γd
α} of subsets of R

n satisfying the following four
conditions:
(1) Γd

α are disjoint, R
n = ∪α,dΓd

α and Si = ∪{Γd
α|Γd

α ∩ Si 6= ∅} for 1 ≤ i ≤ k.
(2) Each Γd

α is an analytic cell of dimension d.
(3) Γd

α − Γd
α is a union of some cells Γe

β with e < d.
(4) If Γd

α,Γe
β ∈ W,Γe

β ⊂ Γd
α − Γd

α then (Γd
α,Γe

β) satisfies Whitney’s conditions (a)
and (b) at all points of Γe

β. �
Theorem 2.3 allows us to define the dimension of an exponentially definable set

E by

dimE = max{dimΓ|Γ is an analytic submanifold contained in E}.

Example 2.4. (1) The C∞ function λ : R −→ R defined by

λ(x) =
{

0 if x ≤ 0
e(−1/x) if x > 0

is exponentially definable but not exponentially Nash. This example shows that
an exponentially definable C∞ map is not always analytic. This phenomenon does
not occur in the usual Nash category. We will use this function in section 3.
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(2) The Zariski closure of the graph of the exponential function exp : R −→ R in
R

2 is the whole space R
2. Hence the dimension of the graph of exp is smaller than

that of its Zariski closure.
(3) The continuous function h : R −→ R defined by

h(x) =
{
ex−n if n ≤ x ≤ n+ 1
en+2−x if n+ 1 ≤ x ≤ n+ 2

, for n ∈ 2Z,

is not exponentially definable, but the restriction of h on any bounded exponentially
definable set is exponentially definable. �
Definition 2.5. Let r be a non-negative integer, ∞ or ω.
(1) An exponentially Cr Nash manifold X of dimension d is a Cr manifold
admitting a finite system of charts {φi : Ui −→ R

d} such that for each i and j φi(Ui∩
Uj) is an open exponentially definable subset of R

d and the map φj◦φ−1
i |φi(Ui∩Uj) :

φi(Ui ∩ Uj) −→ φj(Ui ∩ Uj) is an exponentially Cr Nash diffeomorphism. We call
these charts exponentially Cr Nash. A subset M of X is called exponentially
definable if every φi(Ui ∩M ) is exponentially definable.
(2) An exponentially definable subset of R

n is called an exponentially Cr Nash
submanifold of dimension d if it is a Cr submanifold of dimension d of R

n. An
exponentially Cr (r > 0) Nash submanifold is of course an exponentially C r Nash
manifold [8].
(3) Let X (resp. Y ) be an exponentially Cr Nash manifold with exponentially C r

Nash charts {φi : Ui −→ R
n}i (resp. {ψj : Vj −→ R

m}j). A Cr map f : X −→ Y
is said to be an exponentially Cr Nash map if for any i and j φi(f−1(Vj) ∩Ui) is
open and exponentially definable in R

n, and that the map ψj ◦f ◦φ−1
i : φi(f−1(Vj)∩

Ui) −→ R
m is an exponentially Cr Nash map.

(4) Let X and Y be exponentially Cr Nash manifolds. We say that X is exponen-
tially Cr Nash diffeomorphic to Y if one can find exponentially Cr Nash maps
f : X −→ Y and h : Y −→ X such that f ◦ h = id and h ◦ f = id.
(5) An exponentially Cr Nash manifold is said to be affine if it is exponentially
Cr Nash diffeomorphic to some exponentially Cr Nash submanifold of R

l.
(6) A group G is called an exponentially Nash group (resp. an affine exponen-
tially Nash group) if G is an exponentially Nash manifold (resp. an affine expo-
nentially Nash manifold) and that the multiplicationG×G −→ G and the inversion
G −→ G are exponentially Nash maps.

Definition 2.6. Let G be an exponentially Nash group and let 0 ≤ r ≤ ω.
(1) An exponentially Cr Nash submanifold in a representation of G is called an
exponentially Cr Nash G submanifold if it is G invariant.
(2) An exponentially Cr Nash manifoldX is said to be an exponentially Cr Nash
G manifold ifX admits a G action whose action mapG×X −→ X is exponentially
Cr Nash.
(3) Let X and Y be exponentially Cr Nash G manifolds. An exponentially C r Nash
map f : X −→ Y is called an exponentially Cr Nash G map if it is a G map. An
exponentially Cr Nash G map g : X −→ Y is said to be an exponentially Cr Nash
G diffeomorphism if there exists an exponentially Cr Nash G map h : Y −→ X
such that g ◦ h = id and h ◦ g = id.
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(4) We say that an exponentiallyCr Nash Gmanifold is affine if it is exponentially
Cr Nash G diffeomorphic to an exponentially C r Nash G submanifold of some
representation of G.

We have the following implications on groups:

an algebraic group=⇒an affine Nash group=⇒an affine exponentially Nash group
=⇒ an exponentially Nash group =⇒ a Lie group .

Let G be an algebraic group. Then we obtain the following implications on G
manifolds:

a nonsingular algebraic G set =⇒ an affine Nash G manifold
=⇒ an affine exponentially Nash G manifold =⇒ an exponentially
Nash G manifold =⇒ a C∞G manifold .

Moreover, notice that a Nash G manifold is not always an affine exponentially Nash
G manifold.

In the equivariant exponentially Nash category, the equivariant tubular neigh-
borhood result holds true [8].

Proposition 2.7 [8]. Let G be a compact affine exponentially Nash group and let
X be an affine exponentially Nash G submanifold possibly with boundary in a repre-
sentation Ω of G. Then there exists an exponentially Nash G tubular neighborhood
(U, p) of X in Ω, namely U is an affine exponentially Nash G submanifold in Ω
and the orthogonal projection p : U −→ X is an exponentially Nash G map. �

Definition 2.8. Let G be an exponentially Nash group and let 0 ≤ r ≤ ω.
(1) A CrG vector bundle (E, p,X) of rank k is said to be an exponentially Cr

Nash G vector bundle if the following three conditions are satisfied:
(a) The total space E and the base space X are exponentially Cr Nash G

manifolds.
(b) The projection p is an exponentially Cr Nash G map.
(c) There exists a family of finitely many local trivializations {U i, φi : Ui×

R
k −→ p−1(Ui)}i such that {Ui}i is an open exponentially definable

covering of X and that for any i and j the map φ−1
i ◦φj|(Ui ∩Uj)×R

k :
(Ui ∩ Uj) × R

k −→ (Ui ∩ Uj) × R
k is an exponentially Cr Nash map.

We call these local trivializations exponentially Cr Nash.
(2) Let η = (E, p,X) (resp. ζ = (F, q,X)) be an exponentially Cr Nash G vector
bundle of rank n (resp. m). Let {Ui, φi : Ui × R

n −→ p−1(Ui)}i (resp. {Vj , ψj :
Vj × R

m −→ q−1(Vj)}j) be exponentially Cr Nash local trivializations of η (resp.
ζ). A CrG vector bundle map f : η −→ ζ is said to be an exponentially Cr Nash
G vector bundle map if for any i and j the map (ψj)−1 ◦ f ◦ φi|(Ui ∩ Vj) × R

n :
(Ui ∩ Vj) × R

n −→ (Ui ∩ Vj) × R
m is an exponentially Cr Nash map. A CrG

section s of η is called exponentially Cr Nash if each φ−1
i ◦ s|Ui : Ui −→ Ui × R

n

is exponentially Cr Nash.
(3) Two exponentially Cr Nash G vector bundles η and ζ are said to be exponen-
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tially Cr Nash G vector bundle isomorphic if there exist exponentially Cr Nash G
vector bundle maps f : η −→ ζ and h : ζ −→ η such that f ◦h = id and h ◦ f = id.

Recall universal G vector bundles (cf. [7]).

Definition 2.9. Let Ω be an n-dimensional representation of G and B the represen-
tation map G −→ GLn(R) of Ω. Suppose that M (Ω) denotes the vector space of
n× n-matrices with the action (g,A) ∈ G×M (Ω) −→ B(g)−1AB(g) ∈M (Ω). For
any positive integer k, we define the vector bundle γ(Ω, k) = (E(Ω, k), u,G(Ω, k))
as follows:

G(Ω, k) = {A ∈M (Ω)|A2 = A,A = A′, T rA = k},
E(Ω, k) = {(A, v) ∈ G(Ω, k) × Ω|Av = v},
u : E(Ω, k) −→ G(Ω, k) : u((A, v)) = A,

where A′ denotes the transposed matrix of A and TrA stands for the trace of A.
Then γ(Ω, k) is an algebraic set. Since the action on γ(Ω, k) is algebraic, it is an
algebraic G vector bundle. We call it the universal G vector bundle associated
with Ω and k. Since G(Ω, k) and E(Ω, k) are nonsingular, γ(Ω, k) is a Nash G
vector bundle, hence it is an exponentially Nash one.

Definition 2.10. An exponentially Cr Nash G vector bundle η = (E, p,X) of rank
k is said to be strongly exponentially Cr Nash if the base space X is affine and
that there exist some representation Ω of G and an exponentially Cr Nash G map
f : X −→ G(Ω, k) such that η is exponentially Cr Nash G vector bundle isomorphic
to f∗(γ(Ω, k)).

Let G be a Nash group. Then we have the following implications on G vector
bundles over an affine Nash G manifold:

a Nash G vector bundle =⇒ an exponentially Nash G vector bundle =⇒ a
CωG vector bundle, and
a strongly Nash G vector bundle =⇒ a strongly exponentially Nash G vector
bundle =⇒ an exponentially Nash G vector bundle.

3. Proof of results.
A subset of R

n is called locally closed if it is the intersection of an open set ⊂ R
n

and a closed set ⊂ R
n.

To prove Theorem 1.1, we recall the following.

Proposition 3.1 [8]. Let X ⊂ R
n be a locally closed exponentially definable set

and let f and g be continuous exponentially definable functions on X with f−1(0) ⊂
g−1(0). Then there exist an integer N and a continuous exponentially definable
function h : X −→ R such that gN = hf on X. In particular, for any compact
subset K of X, there exists a positive constant c such that |gN | ≤ c|f | on K �
Proof of Theorem 1.1. Let X be an exponentially Cr Nash manifold. If dim X = 0
then X consists of finitely many points. Thus the result holds true.

Assume that dim X ≥ 1. Let {φi : Ui −→ R
m}l

i=1 be exponentially Cr Nash
charts of X. Since X is compact, shrinking Ui, if necessarily, we may assume that
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every φi(Ui) is the open unit ball of R
m whose center is the origin. Let f be

the function on R
m defined by f(x) = ||x|| − 1. Then f−1(0) = φi(Ui) − φi(Ui).

Hence replacing the graph of 1/f on φi(Ui) by φi(Ui), each φi(Ui) is closed in R
m.

Consider the stereographic projection s : R
m −→ Sm ⊂ R

m × R. Composing φi

and s, we have an exponentially Cω Nash imbedding φ′
i : φi(Ui) −→ R

m′
such that

the image is bounded in R
m′

and

φ′
i ◦ φi(Ui) − φ′i ◦ φi(Ui)

consists of one point, say 0. Set

η : R
m′ −→ R

m′
, η(x1, . . . , xm′) = (

m′∑
j=1

x2k
j x1, . . . ,

m′∑
j=1

x2k
j xm′),

gi : Ui −→ R
m′
, η ◦ φ′

i ◦ φi,

for a sufficiently large integer k. Then gi is an exponentially Cr Nash imbedding of
Ui into R

m′
. Moreover the extension g̃i : X −→ R of gi defined by g̃i = 0 on X−Ui.

We now prove that g̃i is of class exponentially Cr Nash. It is sufficient to see this on
each exponentially Cr Nash coordinate neighborhood of X. Hence we may assume
that X is open in R

m. We only have to prove that for any sequence {aj}∞j=1 in Ui

convergent to a point of X − Ui and for any α ∈ N
m with |α| < r, {Dαgi(aj)}∞j=1

converges to 0. On the other hand gi = (
∑m′

j=1 φ
2k
ij φi1, · · ·

∑m′

j=1 φ
2k
ij φim′), where

φ′
i ◦ φi = (φi1, . . . , φim′). Each φij is bounded, and every {φij(ai)}∞i=1 converges to

zero, and
|Dα(φ2k

ij φis)| = |
∑

β+γ=α

(α!/(β!γ!))Dβφ2k
ij D

γφis| ≤

C
∑

β1+···+βl′+γ=α,βi 6=0

|φ2k−l′
ij Dβ1φij · · ·Dβl′φijD

γφis| ≤ C ′|φ2k−γ
ij |ψ,

where C,C ′ are constants, and ψ is the positive continuous exponentially definable
function defined by

ψ(x) = max{1,
∑

β1+···+βl′+γ=α

|Dβ1φij(x) · · ·Dβl′φij(x)Dγφis(x)|}.

Define

θij(x) =
{

min{|φij(x)|, 1/ψ(x)} on Ui

0 on X − Ui,
φ̃ij =

{
φij on Ui

0 on X − Ui.

Then θij and φ̃ij are continuous exponentially definable functions on X such that

X − Ui ⊂ θ−1
ij (0) = φ̃ij

−1
(0).

Hence by Proposition 3.1 we have |φ̃ij
l′′ | ≤ dθij on some open exponentially defin-

able neighborhood V of X − Ui in X for some integer l′′, where d is a constant.
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On the other hand, by the definition of θij |ψθij | ≤ 1. Hence the above argument
proves that

|Dα(φ2k
ij φis)| ≤ c′|φ2k−r−l′′

ij |
on Ui ∩ V , where c′ is a constant and we take k such that 2k ≥ r + l′′ + 1. Hence
each g̃i is of class exponentially Cr Nash. It is easy to see that

l∏
i=1

g̃i : X −→ R
lm′

is an exponentially Cr Nash imbedding. �
By the similar method of [7], we have the following.

Theorem 3.2 [8]. Let G be a compact affine exponentially Nash group and let X
be a compact affine exponentially Nash G manifold.
(1) For every C∞G vector bundle η over X, there exists a strongly exponentially
Nash G vector bundle ζ which is C∞G vector bundle isomorphic to η.
(2) For any two strongly exponentially Nash G vector bundles over X, they are
exponentially Nash G vector bundle isomorphic if and only if they are C0G vector
bundle isomorphic. �

We prepare the following results to prove Theorem 1.2.

Proposition 3.3 [8]. Let M be an affine exponentially Nash G manifold in a
representation Ω of G.
(1) The normal bundle (L, q,M ) in Ω realized by

L = {(x, y) ∈M × Ω|y is orthogonal to TxM}, q : L −→M, q(x, y) = x

is an exponentially Nash G vector bundle.
(2) If M is compact, then some exponentially Nash G tubular neighborhood U of M
in Ω obtained by Proposition 2.7 is exponentially Nash G diffeomorphic to L. �
Proposition 3.4 [8]. Let G be a compact affine exponentially Nash group and let
η = (E, p, Y ) be an exponentially Nash G vector bundle of rank k over an affine
exponentially Nash G manifold Y . Then η is strongly exponentially Nash if and
only if E is affine. �
Lemma 3.5. Let D1 and D2 be open balls of R

n which have the same center x0,
and let a (resp. b) be the radius of D1 (resp. D2) with a < b. Suppose that A and
B are two real numbers. Then there exists a C∞ exponentially definable function
f on R

n such that f = A on D1 and f = B on R
n −D2.

Proof. We can assume that A = 1, B = 0 and x0 = 0.
At first we construct such a function when n = 1. Then we may assume that

D1 = (−a, a) andD2 = (−b, b) be open intervals. Recall the exponentially definable
C∞ function λ defined in Example 2.4. The function φ : R −→ R defined by

φ(x) = λ(b− x)λ(b+ x)/(λ(b − x)λ(b+ x) + λ(x2 − a2))
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is the desired function. Therefore f : R
n −→ R, f(x) = φ(|x|) is the required

function, where |x| denotes the standard norm of R
n. �

proof of Theorem 1.2. By Theorem 3.2 we may assume that η is a strongly expo-
nentially Cω Nash G vector bundle. We only have to find an exponentially Cω Nash
G vector bundle ζ which is exponentially C∞ Nash G vector bundle isomorphic to
η but not exponentially Cω Nash G vector bundle isomorphic to η.

As well as the usual equivariant Nash category, XG is an exponentially Nash G
submanifold of X. Take an open exponentially definable subset U of X such that
η|U is exponentially Cω Nash vector bundle isomorphic to the trivial bundle and
that XG ∩ U 6= ∅. Since dimXG ≥ 2, there exists a one-dimensional exponentially
Nash G submanifold S of U which is exponentially Nash diffeomorphic to the unit
circle S1 in R

2. Moreover there exist two open G invariant exponentially definable
subsets V1 and V2 of U such that V1∪V2 ⊃ S and V1∩V2 consists of two open balls Z1

and Z2. We define the exponentially Cω Nash G vector bundle ζ′ := (E, r, V1 ∪V2)
over V1 ∪ V2 to be the bundle obtained by the coordinate transformation

g12 : V1 ∩ V2 −→ GL(Ξ), g12 =
{
I on Z1

(1 + ε)I on Z2,

where I denotes the unit matrix, ε > 0 is sufficiently small and Ξ stands for the
fiber of η|U . This construction is inspired by the proof of 4.2.8 [23].

Let φi : Vi×Ξ −→ p−1(Vi), i = 1, 2 be exponentially Nash G coordinate functions
of ζ ′. Consider an extension of the exponentiallyCω Nash section f on S∩V1 defined
by φ−1

1 ◦ f(x) = (x, I). If we extend f through Z1, then the analytic extension f̃

to S ∩V2 satisfies φ−1
2 ◦ f̃ = (x, I), x ∈ S ∩V2. However the analytic extension f̃ to

S ∩V2 through Z2 satisfies φ−1
2 ◦ f̃ = (x, 1/(1+ ε)I). Thus the smallest analytic set

containing the graph of f spins infinitely over S. Hence ζ′|S is not exponentially
Cω Nash G vector bundle isomorphic to η|S. By Theorem 3.2 ζ ′|S is not strongly
exponentially Cω Nash. Thus the exponentially Cω Nash G vector bundle ζ over
X obtained by replacing η|V1 ∪ V2 by ζ′ is not exponentially Cω Nash G vector
bundle isomorphic to η.

On the other hand, by Lemma 3.5 we can construct an exponentially C∞ Nash
G map H from a G invariant exponentially definable neighborhood of U ∩X G in
U to GL(Ξ) such that H|Z2 = (1 + ε)I and H = I outside of some G invariant
exponentially definable neighborhood of Z2. Since ε is sufficiently small, using this
map, we get an exponentially C∞ Nash G vector bundle isomorphism η −→ ζ. �
Proof of Theorem 1.3. By the proof of Theorem 1 (1) [9], X is C∞G diffeomorphic
to some affine exponentially Nash G manifold. Hence we may assume that X is an
affine exponentially Cω Nash G manifold.

Since XG is an exponentially Cω Nash G submanifold of X, there exists an
exponentially Nash G tubular neighborhood (T, q) of XG in X by Proposition 2.7.
Moreover we may assume that T is exponentially Cω Nash G diffeomorphic to the
total space of the normal bundle η of XG in X because of Proposition 3.3. Note
that η is a strongly exponentially Cω Nash G vector bundle over XG and that each
fiber is a representation of G. Take an open G invariant exponentially definable
subset U ofXG such that η|U is exponentially Cω Nash G vector bundle isomorphic
to the trivial bundle U × Ξ, where Ξ denotes the fiber of η|U .
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By the proof of Theorem 1.2, there exists an exponentially Cω Nash G vector
bundle η′ over U such that η′ is not exponentially Cω Nash G vector bundle iso-
morphic to η|U and that there exists an exponentially C∞ Nash G vector bundle
isomorphism H : η|U −→ η ′ such that H is the identity outside of some open G
invariant exponentially definable set.

Replacing the total space of η|U by that of η′, we have an exponentially Cω

Nash G manifold Y which is not exponentially Cω Nash G diffeomorphic to X.
Moreover using H, one can find an exponentially C∞ Nash G diffeomorphism from
X to Y . �

Note that Y is not exponentially Cω Nash G affine but exponentially C∞ Nash
G affine by Proposition 3.4.

4. Remarks.
It is known in [1] that every compact Lie group admits one and exactly one

algebraic group structure up to algebraic group isomorphism. Hence it admits an
affine Nash group structure. Notice that all connected one-dimensional Nash groups
and locally Nash groups are classified by [16] and [22], respectively. In particular,
the unit circle S1 in R

2 admits a nonaffine Nash group structure.
But the analogous result concerning nonaffine exponentially Nash group struc-

tures of centerless Lie groups does not hold.

Remark 4.1. Let G be a compact centerless Lie group. Then G does not admit
any nonaffine exponentially Nash group structure.

Proof. Let G′ be an exponentially Nash group which is isomorphic to G as a Lie
group. Then the adjoint representation Ad : G′ −→ Gln(R) is exponentially defin-
able by the similar method of Lemma 2.2 [15] and it is C ω, where n denotes the
dimension of G. Hence Ad is an exponentially Nash one and its kernel is the center
of G′. Therefore the image G” of Ad is an affine exponentially Nash group and Ad
is an exponentially Nash group isomorphism from G ′ to G”. �

It is known that any two disjoint closed semialgebraic sets X and Y in R
n can

be separated by a Cω Nash function on R
n [18], namely there exists a Cω Nash

function f on R
n such that

f > 0 on X and f < 0 on Y.

The following is a weak equivariant version of Nash category and exponentially
Nash category.

Remark 4.2. Let G be a compact affine Nash (resp. a compact affine exponen-
tially Nash ) group. Then any two disjoint closed G invariant semialgebraic (resp.
disjoint closed G invariant exponentially definable) sets in a representation Ω of G
can be separated by a G invariant continuous semialgebraic (resp. a G invariant
continuous exponentially definable) function on Ω.

Proof. By the distance d(x,X) of x between X is semialgebraic (resp. exponentially
definable). Since G is compact, d(x,X) is equivariant. Hence F : Ω −→ R, F (x) =
d(x, Y ) − d(x,X) is the desired one. �
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Remark 4.3. Under the assumption of 4.2, if one of the above two sets is com-
pact, then they are separated by a G invariant entire rational function on Ω, where
an entire rational function means a fraction of polynomial functions with nowhere
vanishing denominator.

Proof. Assume that X is compact and Y is noncompact. Let s : Ω −→ S ⊂ Ω × R

be the stereographic projection and let S = Ω ∪ {∞}. Since X is compact, s(X)
and s(Y ) ∪ {∞} are compact and disjoint. Applying Remark 4.2, we have a G
invariant continuous semialgebraic (resp. a G invariant continuous exponentially
definable) function f on Ω×R. By the classical polynomial approximation theorem
and Lemma 4.1 [4], we get a G invariant polynomial F on Ω × R such that F |S
is an approximation of f . Since s(X) and s(Y ) ∪ {∞} are compact, F ◦ s is the
required one. �
Remark 4.4. Let X ⊂ R

n be an open (resp. a closed) exponentially definable set.
Suppose that X is a finite union of sets of the following form:

{x ∈ R
n|f1(x) = · · · = fi(x) = 0, g1(x) > 0, . . . , gj(x) > 0},

(resp. {x ∈ R
n|f1(x) = · · · = fi(x) = 0, g1(x) ≥ 0, . . . , gj(x) ≥ 0}, )

where f1, . . . , fi and g1, . . . , gj are exponentially Nash functions on R
n. Then X is

a finite union of sets of the following form:

{x ∈ R
n|h1(x) > 0, . . . , hk(x) > 0},

(resp. {x ∈ R
n|h1(x) ≥ 0, . . . , hk(x) ≥ 0}, )

where h1, . . . , hi are exponentially Nash functions on R
n.

Note that any exponentially definable set in R
n can be described as a finite union

of sets of the following form [8]:

{x ∈ R
n|F1(x) = · · · = Fs(x) = 0, G1(x) > 0, . . . , Gt(x) > 0}.

Here each of F1, . . . , Fs and G1, . . . , Gt is an exponentially Nash function defined on
some open exponentially definable subset of R

n, however its domain is not always
the whole space R

n.
We define expn(x) for n ∈ N and x ∈ R by exp0(x) = x and expn+1(x) =

exp(expn(x)). The following is a bound of the growth of continuous exponentially
definable functions

Proposition 4.5 [8]. Let F be a closed exponentially definable set in R
k and let

f : F −→ R be a continuous exponentially definable function. Then there exist
c > 0, n,m ∈ N such that

|f(x)| ≤ c(1 + expn(||x||m)) for any x ∈ F,

where || · || denotes the standard norm of R
k. �

Proof of Remark 4.4. It suffices to prove the result when X is open because the
other case follows by taking complements.
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Let

B = {x ∈ R
n|f1(x) = · · · = fu(x) = 0, g1(x) > 0, . . . , gv(x) > 0},

where all fi and all gj are exponentially Nash functions on R
n. Set f := f2

1 +· · ·+f2
u

and g(x) :=
∏v

i=1(|gi(x)|+gi(x)). On R
n−X, g(x) = 0 if f(x) = 0. By Proposition

3.1 there exists an integer N and a continuous exponentially definable function h
on R

n −X such that gN = hf on R
n −X. By Proposition 4.5 we have some c ∈ R

and some m,n ∈ N such that |h(x)| ≤ c(1 + expn(||x||m) on R
n −X. Define B1 =

{x ∈ R
n|cf(x)(1 + expn(||x||m)) < (2m

∏m
i=1 gi(x))N , g1(x) > 0, . . . , gm(x) > 0}.

Then B ⊂ B1 ⊂ X. Therefore replacing B by B1, we have the required union. �
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