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Introduction

Four-dimensional topology is in an unsettled state: a great deal is known, but
the largest-scale patterns and basic unifying themes are not yet clear. Kirby has
recently completed a massive review of low-dimensional problems [Kirby], and many
of the results assembled there are complicated and incomplete. In this paper the
focus is on a shorter list of “tool” questions, whose solution could unify and clarify
the situation. However we warn that these formulations are implicitly biased toward
positive solutions. In other dimensions tool questions are often directly settled one
way or the other, and even a negative solution leads to a general conclusion (eg.
surgery obstructions, Whitehead torsion, characteristic classes, etc). In contrast,
failures in dimension four tend to be indirect inferences, and study of the failure
leads nowhere. For instance the failure of the disk embedding conjecture in the
smooth category was inferred from Donaldson’s nonexistence theorems for smooth
manifolds. And although some direct information about disks is now available, eg.
[Kr], it does not particularly illuminate the situation.

Topics discussed are: in section 1, embeddings of 2-disks and 2-spheres needed for
surgery and s-cobordisms of 4-manifolds. Section 2 describes uniqueness questions
for these, arising from the study of isotopies. Section 3 concerns handlebody struc-
tures on 4-manifolds. Finally section 4 poses a triangulation problem for certain
low-dimensional stratified spaces.

This paper was developed from a lecture given at the International Conference
on Surgery and Controlled Topology, held at Josai University in September 1996. I
would like to express my thanks to the organizers, particularly Masayuki Yamasaki,
and to Josai University for their great hospitality.

1: 2-disks and spheres in 4-manifolds

The target results here are surgery and the s-cobordism theorem. In general
these are reduced, via handlebody theory, to questions about disks and spheres in
the middle dimension of the ambient manifold. The tool results, hence the targets,
are known in the topological category for 4-manifolds when the fundamental group
is “small”, [FQ, FT1], but are unsettled in general.

Two n-dimensional submanifolds of a manifold of dimension 2n will usually in-
tersect themselves and each other in isolated points. The “Whitney trick” uses an
isotopy across an embedded 2-disk to simplify these intersections. Roughly speak-
ing this reduces the study of n-dimensional embeddings to embeddings of 2-disks.
But this is not a reduction when the dimension is 4: the 2-disks themselves are
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middle-dimensional, so trying to embed them encounters exactly the same prob-
lems they are supposed to solve. This is the phenomenon that separates dimension
4 from others. The central conjecture is that some embeddings exist in spite of this
problem.

1.1 Disk conjecture. Suppose A is an immersion of a 2-disk into a 4-manifold,
boundary going to boundary, and there is a framed immersed 2-sphere B with trivial
algebraic selfintersection and algebraic intersection 1 with A. Then there is an
embedded 2-disk with the same framed boundary as A

If this were true then the whole apparatus of high-dimensional topology would
apply in dimension 4. There are very interesting generalizations, which for example
ask about the minimal genus of an embedded surface with a given boundary, or
in a given homology class (cf. [Kirby, Problem 4.36]). However the data in 1.1
is available in the Whitney disk applications, so its inclusion reflects the “tool”
orientation of this paper.

The conjecture is very false for smooth embeddings, since it would imply exis-
tence and uniqueness results that are known to be false [Kirby Problems 4.1, 4.6].
It may be true for topological (locally flat) embeddings. The current best results
are by Freedman and Teichner [FT1, FT2]. In [FT1] they show that the conjec-
ture as stated holds if the fundamental group of the 4-manifold has “subexponential
growth,” while [FT2] gives a technical but useful statement about embeddings when
the 4-manifold changes slightly. We briefly discuss the proofs.

For surfaces in 4-manifolds here is a correspondence between intersections and
fundamental group of the image: adding an intersection point enlarges the fun-
damental group of the image by one free generator (if the image is connected).
Freedman’s work roughly gives a converse: in order to remove intersections in M ,
it is sufficient to kill the image of the fundamental group of the data, in the fun-
damental group of M . More precisely, if we add the hypothesis that A ∩ B is a
single point, and π1 of the image A∪B is trivial in π1M then there is an embedded
disk. However applications of this depend on the technology for reducing images in
fundamental groups. Freedman’s earlier work showed (essentially) how to change
A and B so the fundamental group image becomes trivial under any φ : π1M → G,
where G is poly-(finite or cyclic). [FT] improves this to allow G of subexponential
growth. Quite a lot of effort is required for this rather minute advance, giving the
impression that we are near the limits of validity of the theorem. In a nutshell,
the new ingredient is the use of (Milnor) link homotopy. Reduction of fundamental
group images is achieved by trading an intersection with a nontrivial loop for a
great many intersections with trivial, or at least smaller, loops. The delicate point
is to avoid reintroducing big loops through unwanted intersections. The earlier
argument uses explicit moves. The approach in [FT1] uses a more efficient abstract
existence theorem. The key is to think of a collection of disks as a nullhomotopy of
a link. Selfintersections are harmless, while intersections between different compo-
nents are deadly. Thus the nullhomotopies needed are exactly the ones studied by
Milnor, and existence of the desired disks can be established using link homotopy
invariants.

While the conjecture is expected to be false for arbitrary fundamental groups,
no proof is in sight. Constructing an invariant to detect failure is a very delicate
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limit problem. The fundamental group of the image of the data can be compressed
into arbitrarily far-out terms in the lower central series of the fundamental group of
M . If it could be pushed into the intersection the general conjecture would follow.
(This is because it is sufficient to prove the conjecture for M with free fundamental
group, eg. a regular neighborhood of the data, and the intersection of the lower
central series of a free group is trivial). One approach is to develop a notion of
nesting of data so that the intersection of an infinite nest gives something useful.
Then in order for the theorem to fail there must be data with no properly nested
subdata, and maybe this can be detected.

There is a modification of the conjecture, in which we allow the ambient manifold
to change by s-cobordism. This form implies that “surgery” works, but not the s-
cobordism theorem. [FQ, 6] shows that if the fundamental group of the image of
the data of 1.1 is trivial in the whole manifold, then there is an embedding up to
s-cobordism. This differs from the hypothesis of the version above in that A ∩ B
is not required to be one point, just algebraically 1. The improvement of [FT2] is
roughly that infinitesimal holes are allowed in the data. A regular neighborhood of
the data gives a 4-manifold with boundary, and carrying certain homology classes.
In the regular neighborhood the homology class is represented by a sphere, since a
sphere is given in the data. The improvement relaxes this: the homology class is
required to be in a certain subgroup of H2, but not necessarily in the image of π2.
Heuristically we can drill a hole in the sphere, as long as it is small enough not to
move it too far out of π2 (technically, still in the ω term of Dwyer’s filtration on
H2).

The improved version has applications, but again falls short of the full conjecture.
Again it is a limit problem: we can start with arbitrary data and drill very small
holes to get the image π1 trivial in M . The holes can be made “small” enough
that the resulting homology classes are in an arbitrarily far-out term in the Dwyer
filtration, but maybe not in the infinite intersection.

There is still room for hope that this form of the conjecture is true, but it may
require a more elaborate construction or another infinite process. A “shell game”
approach would begin with arbitrary data, introduce some S2 × S2 summands,
and use them as gently as possible to represent the original data as a π1-trivial
submanifold with homology in Dwyer’s ω term. The S 2 × S2’s are now messed up,
and to repair this we want to represent them also with π1-trivial submanifolds with
ω-filtration homology. The new advantage is that the data is no longer random,
given by an abstract existence theorem, but is obtained from an embedding by
carefully controlled damage done in the first step. An infinite swindle would involve
introducing infinitely many copies of S2 × S2 and moving the damage down the
line. The objective would be to do this with control on sizes, so the construction
will converge in an appropriate sense (see [BFMW]). The limit should be an ANR
homology 4-manifold, but this can be resolved to regain a topological manifold [Q1].

2: Uniqueness

The uniqueness question we want to address is: when are two homeomorphisms
of a 4-manifold topologically isotopic? This is known for compact 1-connected 4-
manifolds [Q2], but not for nontrivial groups even in the good class for surgery.
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Neither is there a controlled version, not even in the 1-connected case. The con-
trolled version may be more important than general fundamental groups, since it
is the main missing ingredient in a general topological isotopy extension theorem
for stratified sets [Q4].

The study of isotopies is approached in two steps. First determine if two home-
omorphisms are concordant (pseudoisotopic), then see if the concordance is an iso-
topy. The first step still works for 4-manifolds, since it uses 5-dimensional surgery.
The high-dimensional approach to the second step [HW] reduces it to a “tool” ques-
tion. However the uniqueness tool question is not simply the uniqueness analog of
the existence question. In applications Conjecture 1.1 would be used to find Whit-
ney disks to manipulate 2-spheres. The tool question needed to analyse isotopies
directly concerns these Whitney disks.

Conjecture 2.1. Suppose A and B, are framed embedded families of 2-spheres,
and V , W are two sets of Whitney disks for eliminating AB intersections. Each
set of Whitney disks reduces the intersections to make the families transverse: the
spheres in A and B are paired, and the only intersections are a single point between
each pair. Then the sets V , W equivalent up to isotopy and disjoint replacement.

“Isotopic” means there is an ambient isotopy that preserves the spheres A, B
setwise, and takes one set of disks to the other. Note that A ∩ B must be point-
wise fixed under such an isotopy. “Disjoint replacement” means we declare two
sets to be equivalent if the only intersections are the endpoints (in A ∩ B). Ac-
tually there are further restrictions on framings and π2 homotopy classes, related
to Hatcher’s secondary pseudoisotopy obstruction [HW]. In practice these do not
bother us because the work is done in a relative setting that encodes a vanishing
of the high-dimensional obstruction: we try to show that a 4-dimensional concor-
dance is an isotopy if and only if the product with a disk is an isotopy. In [Q2]
this program is reduced to conjecture 2.1. The conjecture itself is proved for simply
connected manifolds and A, B each a single sphere.

Consider the boundary arcs of the disks V and W , on A and B. These fit together
to form circles and arcs: each intersection point in A ∩B is an endpoint of exactly
one arc in each of V ∩ A and W ∩ A unless it is one of the special intersections
left at the end of one of the deformations. Thus there is exactly one arc on each
sphere. The proof of [Q1] works on the arcs. Focus on a single pair of spheres.
The 1-connectedness is used to merge the circles into the arc. Intersections among
Whitney disks strung out along the arc are then “pushed off the end” of the arc.
This makes the two sets of disks equivalent in the sense of 2.1, and allows them to be
cancelled from the picture. Finitely many pairs can be cancelled by iterating this,
but this cannot be done with control since each cancellation will greatly rearrange
the remaining spheres. To get either nontrivial fundamental groups or control will
require dealing directly with the circles of Whitney arcs.

3: 4-dimensional handlebodies

Handlebody structures on 4-manifolds correspond exactly to smooth structures.
The targets in studying handlebody structures are therefore the detection and ma-
nipulation of smooth structures. However these are much more complicated than
in other dimensions, and we are not yet in a position to identify tool questions
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that might unravel them. Consequently the questions in this section suggest useful
directions rather than specific problems.

The first problem concerns detection of structures. The Donaldson and Seiberg-
Witten invariants are defined using global differential geometry. But since a han-
dlebody structure determines a smooth structure, these invariants are somehow
encoded in the handle structure. There can be no direct topological understanding
of these structures until we learn to decode this.

3.1: Problem. Find a combinatorially-defined topological quantum field theory
that detects exotic smooth structures.

Three-dimensional combinatorial field theories were pioneered by Reshetikhin
and Turaev [RT]. They attracted a lot of attention for a time but have not yet led to
anything really substantial. Four-dimensional attempts have not gotten anywhere,
cf. [CKY]. The Donaldson and Seiberg-Witten invariants do not satisfy the full set
of axioms currently used to define a “topological quantum field theory”, so there is
no guarantee that working in this framework will ever lead anywhere. Nonetheless
this is currently our best hope, and a careful exploration of it will probably be
necessary before we can see something better.

4-dimensional handlebodies are described by their attaching maps, embeddings
of circles and 2-spheres in 3-manifolds. The dimension is low enough to draw
explicit pictures of many of these. Kirby developed notations and a “calculus”
of such pictures for 1- and 2-handles, cf. [HKK]. This approach has been used
to analyse specific manifolds; a good example is Gompf’s identification of some
homotopy spheres as standard [Gf]. However this approach has been limited even
in the study of examples because:

(1) it only effectively tracks 1- and 2-handles, and Gompf’s example shows one
cannot afford to ignore 3-handles;

(2) it is a non-algorithmic “art form” that can hide mistakes from even skilled
practitioners; and

(3) there is no clue how the pictures relate to effective (eg. Donaldson and
Seiberg-Witten) invariants.

The most interesting possibility for manipulating handlebodies is suggested by
the work of Poenaru on the 3-dimensional Poincaré conjecture. The following is
suggested as a test problem to develop the technique:

3.2 Conjecture. A 4-dimensional (smooth) s-cobordism without 1-handles is a
product.

Settling this would be an important advance, but a lot of work remains be-
fore it would have profound applications. To some extent it would show that the
real problem is getting rid of 1-handles ([Kirby Problems 4.18, 4.88, 4.89]). It
might have some application to this: if we can arrange that some subset of the
2-handles together with the 1-handles forms an s-cobordism, then the dual han-
dlebody structure has no 1-handles and the conjecture would apply. Replacing
these 1- and 2-handles with a product structure gives a new handlebody without
1-handles. The problem encountered here is control of the fundamental group of
the boundary above the 2-handles. The classical manipulations produce a homol-
ogy s-cobordism (with Z[π1] coefficients), but to get a genuine s-cobordism we need
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for the new boundary to have the same π1. Thus to make progress we would have
to understand the relationship between things like Seiberg-Witten invariants and
restrictions on fundamental groups of boundaries of sub-handlebodies.

To analyse the conjecture consider the level between the 2- and 3-handles in
the s-cobordism. The attaching maps for the 3-handles are 2-spheres, and the
dual spheres of the 2-handles are circles. The usual manipulations arrange the
algebraic intersection matrix between these to be the identity. In other dimensions
the next step is to realize this geometrically: find an isotopy of the circles so each
has exactly one point of intersection with the family of spheres. But the usual
methods fail miserably in this dimension. V. Poenaru has attacked this problem in
the special case of ∆ × I, where ∆ is a homotopy 3-ball, [P, Gi]. The rough idea
is an infinite process in which one repeatedly introduces new cancelling pairs of 2-
and 3-handles, then damages these in order to fix the previous ones. The limit has
an infinite collections of circles and spheres with good intersections. Unfortunately
this limit is a real mess topologically, in terms of things converging to each other.
The goal is to see that, by being incredibly clever and careful, one can arrange
the spheres to converge to a singular lamination with control on the fundamental
groups of the complementary components. As an outline this makes a lot of sense.
Unfortunately Poenaru’s manuscript is extremely long and complicated, and as a
result of many years of work without feedback from the rest of the mathematical
community, is quite idiosyncratic. It would probably take years of effort to extract
clues from this on how to deal with the difficult parts.

4: Stratified spaces

A class of stratified spaces with a relatively weak relationship between the strata
has emerged as the proper setting for purely topological stratified questions, see
eg. [Q3, W]. The analysis of these sets, to obtain results like isotopy extension
theorems, uses a great deal of handlebody theory, etc., so often requires the as-
sumption that all strata have dimension 5 or greater. This restriction is acceptable
in some applications, for example in group actions, but not in others like smooth
singularity theory, algebraic varieties, and limit problems in differential geometry.
The suggestion here is that many of the low-dimensional issues can be reduced to
(much easier) PL and differential topology. The conjecture, as formulated, is a
tool question for applications of stratified sets. After the statement we discuss it’s
dissection into topological tool questions.

4.1: Conjecture. A three-dimensional homotopically stratified space with mani-
fold strata is triangulable. A 4-dimensional space of this type is triangulable in the
complement of a discrete set of points.

As stated this implies the 3-dimensional Poincaré conjecture. To avoid this as-
sume either that there are no fake 3-balls below a certain diameter, or change the
statement to “obtained from a polyhedron by replacing sequences of balls converg-
ing to the 2-skeleton by fake 3-balls.” The “Hauptvermutung” for 3-dimensional
polyhedra [Papa] asserts that homeomorphisms are isotopic to PL homeomor-
phisms. This reduces the 3-dimensional version to showing that stratified spaces
are locally triangulable. The 2-skeleton and its complement are both triangulable,
so the problem concerns how the 3-dimensional part approaches neighborhoods of
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points in the 2-skeleton. Consider a manifold point in the skeleton; a neighborhood
in the skeleton is isomorphic with R

n for n = 0, 1, or 2. Near this the 3-stratum
looks locally homotopically like a fibration over R

n with fiber a Poincaré space of
dimension 3 − n − 1. We can reduce to the case where the fiber is connected by
considering components of the 3-stratum one at a time. If n = 2 then the fiber
is a point, and the union of the two strata is a homology 3-manifold with R

2 as
boundary. Thus the question: is this union a manifold, or equivalently, is the R

2

collared in the union? If n = 1 then the fiber is S1 , and the union gives an arc
homotopically tamely embedded in the interior of a homology 3-manifold. Is it
locally flat? Finally if n = 0 then the fiber is a surface (2-dimensional Poincaré
spaces are surfaces, [EL]). This is an end problem: if a 3-manifold has a tame end
homotopic to S×R, S a surface, is the end collared? Answers to these are probably
known. The next step is to consider a point in the closure of strata of three differ-
ent dimensions. There are three cases: (0, 1, 3), (0, 2, 3) and (1, 2, 3). Again each
case can be described quite explicitly, and should either be known or accessible to
standard 3-manifold techniques.

Now consider 4-dimensional spaces. 4-manifolds are triangulable in the com-
plement of a discrete set, so again the question concerns neighborhoods of the
3-skeleton. In dimension 4 homeomorphism generally does not imply PL isomor-
phism, so this does not immediately reduce to a local question. However the ob-
jective is to construct bundle-like structures in a neighborhood of the skeleton, and
homeomorphism of total spaces of bundles in most cases will imply isomorphism of
bundles. So the question might be localized in this way, or just approached glob-
ally using relative versions of the local questions. As above we start with manifold
points in the skeleton. If the point has a 2- or 3-disk neighborhood then the question
reduces to local flatness of boundaries or 2-manifolds in a homology 4-manifold, see
[Q2, FQ 9.3A]. If the point has a 1-disk neighborhood then a neighborhood looks
homotopically like the mapping cylinder of a surface bundle over R. This leads
to the question: is it homeomorphic to such a mapping cylinder? If the surface
fundamental group has subexponential growth then this probably can be settled
by current techniques, but the general case may have to wait on solution of the
conjectures of section 1. Finally neighborhoods of isolated points in the skeleton
correspond exactly to tame ends of 4-manifolds. Some of these are known not to be
triangulable, so these would have to be among the points that the statement allows
to be deleted. From here the analysis progresses to points in the closure of strata
of three or four different dimensions. Again there are a small number of cases, each
of which has a detailed local homotopical description.
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