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Abstract

Let R be a commutative ring with 1, and M be a free module of a finite
rank over R. EndgM is the endomorphism ring of M over R, o is an

element in EndgM, and the matrix of o diagonalizable. Our purpose is to
investigate the relationship between the characteristic polynomial y, of
o and the minimal polynomial p; of o. If R is an integral domain, then
we shall show that pg is uniquely determined as a monic polynomial
dividing . Also, the difference between the two sets of zeros of pg
and y, respectively, is only the multiplicity of their roots. If R is not an
integral domain, then we shall construct ¢ such that pg is not necessarily

monic nor divides .

1. Introduction

Let F be a field and V be a finite dimensional vector space over F. Let EndgV
be the endomorphism ring of V over F, and let c be in EndgV. Also let F[t] be the

polynomial ring in t over F. Then, it is well known the relationship between
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%o (t) € F[t] the characteristic polynomial of ¢ and ps(¢) € F[t] the minimal
polynomial of &. For instance, ys(a) =0 for a in F if and only if ps(a) = 0, that
is, the difference between the two sets of roots of y, and ps, respectively, is only

the multiplicity of their roots.

Further, if F is sufficiently large, say, an algebraically closed field, then y(¢)
is a product of linear equations. Moreover, if these roots of y(¢) are different each

other, then & is diagonalizable. Above observation about linear endomorphism c of
a vector space V over a field F pose us a question what will occur if we replace F' the
field to R a commutative ring, V' the vector space to M a free module over R, and &
in EndgV to o in EndpM of which matrix is diagonalizable. The purpose of this
note is to answer partially to the question.

Estes and Guralnick [2] investigated what the possible minimal polynomials are
for integral symmetric matrices. Augot and Camion [1] presented algorithms
connected with computation of the minimal polynomial of an »n x n matrix over a
field K. Fiedler [3] showed that for a given polynomial, we can construct a
symmetric matrix whose characteristic polynomial is the given polynomial.

Schmeisser [5] proved that for a given polynomial f(x) with only real zeros, we
can construct a real symmetric tridiagonal matrix whose characteristic polynomial is
(=1)" f(x) with n =deg f. We will refer Lang [4] as a standard text book in

algebra, in which the reader will find necessary concepts and materials.
2. Preliminaries

Throughout in the paper, R is a commutative ring with the identity 1, R[¢] is the
polynomial ring in ¢ over R, M is a free module over R of rank n with X =
{x|, x5, ..., x,,} abasis for M, and EndzM is the endomorphism ring of M over R.

For an element ¢ in Endz M, we write

c=A4
X

if 4in M, (R) is the matrix of o relative to X, where M, (R) denotes the ring of
matrices of nxn over R. We define the characteristic polynomial y,(¢), x5 oOr

x(t) of 4 (or o) to be the determinant

|[t-1-A|
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in R[t]. By definition, it is independent to the choice of the basis X for M. Also, it is

monic and unique for o. An element a in R is called an eigenvalue or a

characteristic root of 6 in R if it is a root of y 4, i.e., x5(a) = 0. For 6 in EndgM,

we have a canonical ring homomorphism
n: R[t] > EndxM

defined by n(f(¢)) = f(c) for f(¢) in R[t]. Therefore, M may be viewed as an
R[t]-module, defining the operation of R[t] on M by letting f(¢)x = f(c)x for
f(¢) in R[t] and x in M.

Lemma 2.1. (o) = 0.

Proof. See Theorem 3.1 (Caley-Hamilton) in Lang [4, p. 561].

We note that ker & # {0}, for it contains at least 3, # 0 by Lemma 2.1. Let P
be the set of monic polynomials in R[z], for which we define K, and K;, two

subsets of ker it as follows:

K = The set of non-zero polynomials in ker n of which degree is the lowest

in ker 7.

Kj = The set of non-zero polynomials in P () kern of which degree is the

lowest in P () ker m.

Clearly, Ky # ¢ and K; # ¢, for ker © contains a monic polynomial . We
call any polynomial in K a minimal polynomial of ¢ and denote it by ps(¢), also
any one in K| a small polynomial of ¢ and write it as g(¢). As we know if R is a

field, then there exists always a unique minimal polynomial which is monic. In

particular, in such a case we may take pg(f) = g5(¢). As a matter of course, in
general, p; and g, are not necessarily unique for ¢. Indeed, if pg; is a minimal
polynomial, so is c¢ps; for any ¢ in R with ¢ps # 0. Also, if g5 is a small
polynomial with deg p; < deggys, S0 is pg + g5. On the other hand, it is clear

that both deg p; and deg ¢, are unique for o, and we have

deg p; < degq.
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Lemma 2.2. (a) The following conditions (a;) and (a,) are equivalent:

(a;) deg ps =degqy for any (or some) pg € Ky and any (or some) g € K|
and

(ay) there is a monic minimal polynomial p.

(b) In case of (a), ps is a unique for c.

Proof. Since (a) is clear, we prove (b). Let u and v be both monic minimal

polynomials. Then since degu = degv and they are monic, we have deg(u — v) <
degu. On the other hand, since u, v, are in kern, sois u —v. Hence u —v = 0 by

the minimality of u. Thus u = v and we have proved (b).
3. Statements of Theorems A, B and C

Let o be in EndzgM. For y4, ps and g5 in R[t], where ps and g, are

arbitrary chosen in K and K, respectively, we define three subsets of R as

Sy, = theset of roots of %,

Sp, = theset of roots of pg
and

S84, = the set of roots of ¢.

In Theorem A, we shall show that if R is an integral domain and o is

diagonalizable, then S, ~and S, coincide with each other, hence the difference

between them is only the multiplicity of the roots.

Theorem A. Let R be an integral domain and the matrix of 6 € EndpM be

diagonalizable. Then, we have the following:

(a) there is a unique monic minimal polynomial p,
(b) ps divides .,

() ch =S P> that is, the difference between roots of y s and pg is only the

multiplicity of each root, and
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(d) if xs has n distinct roots in R, we have s = pg.

Theorems B and C show that if R is not an integral domain, then Theorem A is

not necessarily valid.

Theorem B. There is a finite commutative ring R, a module M over R, and an

endomorphism ¢ in EndpM of which matrix is diagonal and for which we have

(@) %o = g5 With degy, = 2 is unique for ¢ and has no multiple roots, and is

decomposed in two ways into a product of linear factors.

(b) ps with deg ps =1 is unique for o, but not monic, and has no multiple

roots.
(©) Sy, < Sy, with |SXG | =4 and | S e | =8.
(d) ps does not divide .

Theorem C. There is a finite commutative ring R, a module M over R, and G in

EndpM of which matrix is diagonal and for which we have
(a) ps is unique for ¢ but not monic, whereas q is not unique for c.
(b) deg ps =2 <degqs =3 <degys =4 =rank M <|R|=6.

(¢) % has two 2-ple roots and four simple roots, whereas ps and qs have all

simple roots, and

that is, for any a in R, t — a divides each of %, ps and q.

4. Proof for Theorems A, B and C
4.1. Proof for Theorem A

Since o is diagonalizable, we have a matrix 4 in M, (R) such that

o= A = diag(ay, ar, ..., a,),
X g(l 2 n)

for some basis X = {x, x5, ..., x,} for M. Therefore, by the definition of
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characteristic polynomial of o, we have
Lo(t) =t — 4|
=(-a)(t-ay))(t-a,) (1)
with a4, ay, ..., a, iInR.

First, we prove (a) and (b) of the theorem. Let K be the quotient field of R,
M' = K ®p M be the coefficient extension of M, and ¢’ be the prolongation of ¢

on M'".
Define the canonical ring homomorphism
¢ : K[t] > Endg (M)
by ¢(f(¢)) = f(c') for f(¢) in K[t]. Then, ker ¢ is an ideal of K[t]. Since K[¢]
is a PID, ker ¢ is generated by an element f(z) in K(¢), that is, we have
ker ¢ = (f(¢)) for some f(¢) in K[t], )

where we may assume that f(¢) is monic, since K is a field. Consequently, f(¢) is
unique for ¢. On the other hand, since (o) = 0 by Lemma 2.1, y(#) belongs to
R[¢] N ker @. Hence, by (2), we have

1(t) = f(t)g(t) for some g(t) € K[r]. 3)
Therefore, (1) yields that

f(0)g(t) =t —a)(t - ay)(t - ay), 4)
for some aj, ay, .., a,, inR.

Decomposing f'and g as products of prime elements in K[¢], respectively, say,

f=ffrf and g = g1g; - g, (4) implies that
flefrgnggs = (t_al)(t_aZ)"'(t_an)~

Since K[t] is UFD, comparing the both sides of the above equation, we find a

subset {q;, a;,, ..., a; } of {aj, ay, .., a,} in R, and a subset {c|, 3, ..., ¢,,} in
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K — {0} such that
fi= cj(t—aij), cjekK,a eR
for j =1, 2, ..., r, which yields that
f@O)=ecr e (t—a; )t —ay)-(t-a), a; R
for j =1, 2, ..., . However, since f(¢) is monic, we obtain cjc, ---¢, = 1 and thus
f@)=(t-ay)(t-ay)(t-a), a; €R (%)

for j =1, 2, .., r, which guarantees that f(¢) is contained in R[¢]. Thus, we may
choose f(¢) as ps(t) by Lemma 2.2 and x5 (¢) = ps(¢) g(¢). Consequently, pg is
monic, divides y, and any zero of pg(¢) is that of y(¢), which proves (a) and (b)
of the theorem. By (b) any root of p(¢) is that of y5(¢). To show (c) we have to
prove the converse of this fact.

Clearly, X the basis for M over R is also that of M' over K. Further, since ¢’ is

the prolongation of o to M’ we understand that ¢’ = ¢ on X. Hence, for any

i=12,..n,
0= ps(t)x;

= f()x

=(c- a; )(o - aiz)"'(G - air)xi

=(a; - ail)(ai - aiz)"'(ai - aiz)"'(ai -4, )x;,
which implies that for any i in {l, 2, ..., n}, we have a; = aj, for some j in
{1, 2, ..., r}, since R is an integral domain and X is a basis for M’ over K. Thus, we
have shown the converse, namely, a zero of ¥ is that of pg. Consequently, two
sets of zeros of y, and pg, respectively, coincides with each other. This shows that

the difference between the roots of y, and p, is only the multiplicity, which is (c).

(d) is clear by (¢).
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4.2. Proof for Theorem B

Let R =Zg =1{0, 1, .., 15} with @ = a +16Z for a = 0, 1, ..., 15, M = Rx
® Rx, with abasis X = {x|, x,} over R, and

To show (a), first, we will treat to factorize y, and get its roots. By the
definition of the characteristic polynomial, we have the unique monic polynomial

%6(t) = (t = 2)(¢ — 4). Substituting each element in Z;s for 7 in y5(t), we have

ch = {5, 4, ﬁ, ﬁ} Therefore, we have exactly two factorizations

Lo(t) = (t =2)(t = 4) = (1 ~10) (¢t - 12),

which also shows that y(¢) has no multiple roots. The rest of (a), ys(¢) = ¢5(¢)
will be treated later. Next, we deal with ps(¢) and g5 (¢). It is obvious to see that
8¢ is in kerm, since 8c = 0. Our claim is that this is the unique minimal

polynomial. Suppose that f(¢) = at + b # 0 belongs to kerm for @, b in ZLyg-

Then we have

0=f(o)x; =Qa+b)x
and

0=/(c)x, = (4@ +b)x,,

which implies that @ = 8 and b = 0, hence f(r) = 8. Thus we have shown that

ps(t) = 8t is the unique minimal polynomial of c.

Further, this shows that there are no monic polynomial of degree one in ker m,

and so we have
Xo = Yo-

Moreover, pg(t) = 8t gives us Spe = {0, 2, ..., 14}, ie., 2Z4. The rest of

the proof is straightforward and we have completed the proof of the theorem.
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4.3. Proof for Theorem C

We claim that R = Zg = {0, 1, ..., 5}, M = Rx; ® Rx, ® Rxy; ® Rx, with

X = {x|, x5, x3, x4} abasis for M over R, and
G):(A = diag (1, 2, 3, 4)

satisfies all necessary conditions of the theorem. Recall that we have the canonical
ring homomorphism

7 : R[t] > EndzxM
defined by n(f(t)) = f(c) for f(t) € R[t] and 6 € EndzM. Also, we have
(1) %6(1) = (1 = D)t = 2)(e = 3)(t - 4).
First, we show that for f(£) = (t — 1)(t — 2)(t — 3) and g(¢) = 3#( — 1), we have
(2) f, g are contained in ker m, i.e.,
f(4) = g(4) = 0.
Indeed, for the identity matrix 7 = diag(1, 1, 1, 1),
f(A)=A-1-1)(A4-2-1)(4-3-1)
= diag (0, 1, 2, 3)-diag(~1, 0, 1, 2) - diag (-2, -1, 0, 1)
=0-7

and

which verify (2). Further,

(3) for 0 = h(¢) € ker m, we have degh > 1.
To show this, let 0 = A(¢) = at + b € kern for @, b € R. Then,
0=ad+bl =diag(@+b,2a+b,3a+b,4a +b),

which implies that @ = b = 0, a contradiction. Thus, deg/ > 1 and we have (3).
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By (2) and (3), we find that g(z) = 3#(t — 1) is a polynomial of the lowest degree in
ker m. Therefore, we may write p(¢) = 3#(t —1). Our next purpose is to show the

uniqueness of pg(7) for 6. Namely, we prove that

(4)if 0 # k(r) = at*> + bt + ¢ belongs to ker m, then we have @ = b = 3 and
c=0.

Since k(f) is in kerm, 0 =k(4)=ad>+bA+c-I. Substituting A =

diag (1, 2, 3, 4) and 4% = diag (T, 4, 3, 4) in the above equation, we get
0=a-diag(1, 4,3,4)+b -diag(1,2,3,4)+e(1, 1, 1, 1),

which implies that 2 =b =3 and ¢ = 0 as was to be shown. Thus we have
proved that p.(r) = 3¢(t + 1) is unique for c. Also, (4) shows that ker  does not
contain a monic polynomial of degree two. This together with f(4) =0 for
f@)=@-1)(—-2)(t-3) allows us to write g(t)=(—1)(t—-2)(t-3).
However, since ps + g5 isin kern, q5(¢) = (¢ —1)(¢ — 2)(¢ — 3) is not unique for
c. Thus, we have proved

(5) ps is unique for o, but not ¢.

Since deg p; =2, degqs =3, degy,; =rankM =4 and |R| =6, we have
proved that

(6) deg g, < deg pg < degy, =rank M < |R|.

By (5) and (6), we have proved (a) and (b) of the theorem. Now, we show (c)
and (d).

Since we have another factorization 74 (r) = #(t — 1)%(t — 2) = (t - 3)(t — 4)?
(t=73),1 and 4 are multiple roots. On the other hand, (¢ — 1)*(t — 2) does not
have 0 as zero, and #(t — 1)* not 2. Therefore, 0 and 2 are simple roots of Yo ()
Similarly, substituting 3 and 5 for £ in (r—4)*(r—35) and (¢ —3)*(t - 4)%,

respectively, we have no zeros and also find that both 3 and 5 are simple roots of

%o (2). Thus, we have proved



MINIMAL POLYNOMIALS AND CHARACTERISTIC POLYNOMIALS ... 59
(7) %5(2) has two 2-ple roots and four simple roots.

Finally, substituting any element o in R for ¢ in each of Y%, g5 and pg,
respectively, we get zero. Further, we see that ps; and g5 have no multiple roots.

So, we have

(8) %o> Ps> 95 have the same root set R, and p; and g5 have only simple

roots, and

(9) for any a.in R, ¢t — o devides each of ¥, ps and ¢,

which gives us (c) and (d) of the theorem. Thus we have completed the proof for
Theorem (C).

Proposition. Let R be a ring and E be a left module over R. Then, the following
(a) and (b) hold:

(a) If two elements a, b in R satisfy
(i) abE = baE = 0 and (ii) aR + bR = R,
then we have
(1) E=E, +E
for E, ={x € Elax =0} and E, = {y € E|by = 0}.
(b) Further, if an additional condition
(iii) a, b are central elements of R

is satisfied, then we have

() E=E, ®E,.
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