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Abstract 

Let R be a commutative ring with 1, and M be a free module of a finite 
rank over R. MREnd  is the endomorphism ring of M over R, σ is an 

element in ,End MR  and the matrix of σ diagonalizable. Our purpose is to 

investigate the relationship between the characteristic polynomial σχ  of 

σ and the minimal polynomial σp  of σ. If R is an integral domain, then 

we shall show that σp  is uniquely determined as a monic polynomial 

dividing .σχ  Also, the difference between the two sets of zeros of σp  

and ,σχ  respectively, is only the multiplicity of their roots. If R is not an 

integral domain, then we shall construct σ such that σp  is not necessarily 

monic nor divides .σχ  

1. Introduction 

Let F be a field and V be a finite dimensional vector space over F. Let VFEnd  

be the endomorphism ring of V over F, and let σ be in .End VF  Also let [ ]tF  be the 

polynomial ring in t over F. Then, it is well known the relationship between 
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( ) [ ]tFt ∈χσ  the characteristic polynomial of σ and ( ) [ ]tFtp ∈σ  the minimal 

polynomial of σ. For instance, ( ) 0=χσ a  for a in F if and only if ( ) ,0=σ ap  that 

is, the difference between the two sets of roots of σχ  and ,σp  respectively, is only 

the multiplicity of their roots. 

Further, if F is sufficiently large, say, an algebraically closed field, then ( )tσχ  

is a product of linear equations. Moreover, if these roots of ( )tσχ  are different each 

other, then σ is diagonalizable. Above observation about linear endomorphism σ of 
a vector space V over a field F pose us a question what will occur if we replace F the 
field to R a commutative ring, V the vector space to M a free module over R, and σ 
in VFEnd  to σ in MREnd  of which matrix is diagonalizable. The purpose of this 

note is to answer partially to the question. 

Estes and Guralnick [2] investigated what the possible minimal polynomials are 
for integral symmetric matrices. Augot and Camion [1] presented algorithms 
connected with computation of the minimal polynomial of an nn ×  matrix over a 
field K. Fiedler [3] showed that for a given polynomial, we can construct a 
symmetric matrix whose characteristic polynomial is the given polynomial. 
Schmeisser [5] proved that for a given polynomial ( )xf  with only real zeros, we 

can construct a real symmetric tridiagonal matrix whose characteristic polynomial is 

( ) ( )xfn1−  with .deg fn =  We will refer Lang [4] as a standard text book in 

algebra, in which the reader will find necessary concepts and materials. 

2. Preliminaries 

Throughout in the paper, R is a commutative ring with the identity 1, [ ]tR  is the 
polynomial ring in t over R, M is a free module over R of rank n with =X  
{ }nxxx ...,,, 21  a basis for M, and MREnd  is the endomorphism ring of M over R. 

For an element σ in ,End MR  we write 

A
X
−σ ~  

if A in ( )RM n  is the matrix of σ relative to X, where ( )RM n  denotes the ring of 

matrices of nn ×  over R. We define the characteristic polynomial ( ) σσ χχ ,t  or 

( )tχ  of A ( )σor  to be the determinant 

AIt −⋅  
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in [ ].tR  By definition, it is independent to the choice of the basis X for M. Also, it is 

monic and unique for σ. An element a in R is called an eigenvalue or a 
characteristic root of σ in R if it is a root of ,σχ  i.e., ( ) .0=χσ a  For σ in ,End MR  

we have a canonical ring homomorphism 

[ ] MtR REnd: →π  

defined by ( )( ) ( )σ=π ftf  for ( )tf  in [ ].tR  Therefore, M may be viewed as an 

[ ]tR -module, defining the operation of [ ]tR  on M by letting ( ) ( ) xfxtf σ=  for 

( )tf  in [ ]tR  and x in M. 

Lemma 2.1. ( ) .0=σχσ  

Proof. See Theorem 3.1 (Caley-Hamilton) in Lang [4, p. 561]. 

We note that { },0ker ≠π  for it contains at least 0≠χσ  by Lemma 2.1. Let P 

be the set of monic polynomials in [ ],tR  for which we define 0K  and ,1K  two 

subsets of πker  as follows: 

=0K  The set of non-zero polynomials in πker  of which degree is the lowest 

in .ker π  

=1K  The set of non-zero polynomials in πker∩P  of which degree is the 

lowest in .ker π∩P  

Clearly, φ≠0K  and ,1 φ≠K  for πker  contains a monic polynomial .σχ  We 

call any polynomial in 0K  a minimal polynomial of σ and denote it by ( ),tpσ  also 

any one in 1K  a small polynomial of σ and write it as ( ).tqσ  As we know if R is a 

field, then there exists always a unique minimal polynomial which is monic. In 
particular, in such a case we may take ( ) ( ).tqtp σσ =  As a matter of course, in 

general, σp  and σq  are not necessarily unique for σ. Indeed, if σp  is a minimal 

polynomial, so is σcp  for any c in R with .0≠σcp  Also, if σq  is a small 

polynomial with <σpdeg  ,deg σq  so is .σσ + qp  On the other hand, it is clear 

that both σpdeg  and σqdeg  are unique for σ, and we have 

.degdeg σσ ≤ qp  
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Lemma 2.2. (a) The following conditions ( )1a  and ( )2a  are equivalent: 

( )1a  σσ = qp degdeg  for any (or some) 0Kp ∈σ  and any (or some) 1Kq ∈σ  

and 

( )2a  there is a monic minimal polynomial .σp  

(b) In case of (a), σp  is a unique for σ. 

Proof. Since (a) is clear, we prove (b). Let u and v be both monic minimal 
polynomials. Then since vu degdeg =  and they are monic, we have ( ) <− vudeg  

.deg u  On the other hand, since ,, vu  are in ,ker π  so is .vu −  Hence 0=− vu  by 

the minimality of u. Thus vu =  and we have proved (b). 

3. Statements of Theorems A, B and C 

Let σ be in .End MR  For σσχ p,  and σq  in [ ],tR  where σp  and σq  are 

arbitrary chosen in 0K  and ,1K  respectively, we define three subsets of R as 

=
σχS  the set of roots of ,σχ  

=
σpS  the set of roots of σp  

and 
=

σqS  the set of roots of .σq  

In Theorem A, we shall show that if R is an integral domain and σ is 
diagonalizable, then 

σχS  and 
σpS  coincide with each other, hence the difference 

between them is only the multiplicity of the roots. 

Theorem A. Let R be an integral domain and the matrix of MREnd∈σ  be 

diagonalizable. Then, we have the following: 

(a) there is a unique monic minimal polynomial ,σp  

(b) σp  divides ,σχ  

(c) ,
σσ

=χ pSS  that is, the difference between roots of σχ  and σp  is only the 

multiplicity of each root, and 
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(d) if σχ  has n distinct roots in R, we have .σσ =χ p  

Theorems B and C show that if R is not an integral domain, then Theorem A is 
not necessarily valid. 

Theorem B. There is a finite commutative ring R, a module M over R, and an 
endomorphism σ in MREnd  of which matrix is diagonal and for which we have 

(a) σσ =χ q  with 2deg =χσ  is unique for σ and has no multiple roots, and is 

decomposed in two ways into a product of linear factors. 

(b) σp  with 1deg =σp  is unique for σ, but not monic, and has no multiple 

roots. 

(c) 
σσ

⊆χ pSS  with 4=
σχS  and .8=

σpS  

(d) σp  does not divide .σχ  

Theorem C. There is a finite commutative ring R, a module M over R, and σ in 
MREnd  of which matrix is diagonal and for which we have 

(a) σp  is unique for σ but not monic, whereas σq  is not unique for σ. 

(b) .6rank4deg3deg2deg =<==χ<=<= σσσ RMqp  

(c) σχ  has two 2-ple roots and four simple roots, whereas σp  and σq  have all 

simple roots, and 

,RSSS qp ===
σσσχ  

that is, for any a in atR −,  divides each of σσχ p,  and .σq  

4. Proof for Theorems A, B and C 

4.1. Proof for Theorem A 

Since σ is diagonalizable, we have a matrix A in ( )RM n  such that 

( ),...,,,diag~ 21 n
X

aaaA =−σ  

for some basis { }nxxxX ...,,, 21=  for M. Therefore, by the definition of 
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characteristic polynomial of σ, we have 

( ) AtIt −=χσ  

( ) ( ) ( )natatat −−−= "21  (1) 

with naaa ...,,, 21  in R. 

First, we prove (a) and (b) of the theorem. Let K be the quotient field of R, 
MKM R⊗=′  be the coefficient extension of M, and σ′  be the prolongation of σ 

on .M ′  

Define the canonical ring homomorphism 

[ ] ( )MtK K ′→ϕ End:  

by ( )( ) ( )σ′=ϕ ftf  for ( )tf  in [ ].tK  Then, ϕker  is an ideal of [ ].tK  Since [ ]tK  

is a PID, ϕker  is generated by an element ( )tf  in ( ),tK  that is, we have 

( )( )tf=ϕker  for some ( )tf  in [ ],tK  (2) 

where we may assume that ( )tf  is monic, since K is a field. Consequently, ( )tf  is 

unique for σ. On the other hand, since ( ) 0=σχσ  by Lemma 2.1, ( )tσχ  belongs to 

[ ] .ker ϕ∩tR  Hence, by (2), we have 

( ) ( ) ( )tgtft =χσ  for some ( ) [ ].tKtg ∈  (3) 

Therefore, (1) yields that 

( ) ( ) ( ) ( ) ( ),21 natatattgtf −−−= "  (4) 

for some maaa ...,,, 21  in R. 

Decomposing f and g as products of prime elements in [ ],tK  respectively, say, 

rffff "21=  and ,21 sgggg "=  (4) implies that 

( ) ( ) ( ).212121 nsr atatatgggfff −−−=⋅ "……  

Since [ ]tK  is UFD, comparing the both sides of the above equation, we find a 

subset { }riii aaa ...,,, 21  of { }naaa ...,,, 21  in R, and a subset { }rccc ...,,, 21  in 
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{ }0−K  such that 

( ) RaKcatcf jj ijijj ∈∈−= ,,  

for ,...,,2,1 rj =  which yields that 

( ) ( ) ( ) ( ) Raatatatccctf jr iiiir ∈−−−= ,2121 ""  

for ....,,2,1 rj =  However, since ( )tf  is monic, we obtain 121 =rccc "  and thus 

( ) ( ) ( ) ( ) Raatatattf jr iiii ∈−−−= ,21 "  (5) 

for ,...,,2,1 rj =  which guarantees that ( )tf  is contained in [ ].tR  Thus, we may 

choose ( )tf  as ( )tpσ  by Lemma 2.2 and ( ) ( ) ( ).tgtpt σσ =χ  Consequently, σp  is 

monic, divides σχ  and any zero of ( )tpσ  is that of ( ) ,tσχ  which proves (a) and (b) 

of the theorem. By (b) any root of ( )tpσ  is that of ( ).tσχ  To show (c) we have to 

prove the converse of this fact. 

Clearly, X the basis for M over R is also that of M ′  over K. Further, since σ′  is 

the prolongation of σ to M ′  we understand that σ=σ′  on X. Hence, for any 
,...,,2,1 ni =  

( ) ixtpσ=0  

( ) ixtf=  

( ) ( ) ( ) iiii xaaa r−σ−σ−σ= "21  

( ) ( ) ( ) ( ) ,221 iiiiiiiii xaaaaaaaa r−−−−= ""  

which implies that for any i in { },...,,2,1 n  we have ,jii aa =  for some j in 

{ },...,,2,1 r  since R is an integral domain and X is a basis for M ′  over K. Thus, we 

have shown the converse, namely, a zero of σχ  is that of .σp  Consequently, two 

sets of zeros of σχ  and ,σp  respectively, coincides with each other. This shows that 

the difference between the roots of σχ  and σp  is only the multiplicity, which is (c). 

(d) is clear by (c).  
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4.2. Proof for Theorem B 

Let { }15...,,1,016 == ZR  with Z16+= aa  for ,15...,,1,0=a  1RxM =  

2Rx⊕  with a basis { }21, xxX =  over R, and 

.
40

02
~











=−σ A

X
 

To show (a), first, we will treat to factorize σχ  and get its roots. By the 

definition of the characteristic polynomial, we have the unique monic polynomial 
( ) ( ) ( ).42 −−=χσ ttt  Substituting each element in 16Z  for t in ( ),tσχ  we have 

{ }.12,10,4,2=
σχS  Therefore, we have exactly two factorizations 

( ) ( ) ( ) ( ) ( ),121042 −−=−−=χσ ttttt  

which also shows that ( )tσχ  has no multiple roots. The rest of (a), ( ) ( )tqt σσ =χ  

will be treated later. Next, we deal with ( )tpσ  and ( ).tqσ  It is obvious to see that 

t8  is in ,ker π  since .08 =σ  Our claim is that this is the unique minimal 

polynomial. Suppose that ( ) 0≠+= btatf  belongs to πker  for ba ,  in .16Z  

Then we have 

( ) ( ) 11 20 xbaxf +=σ=  

and 

( ) ( ) ,40 22 xbaxf +=σ=  

which implies that 8=a  and ,0=b  hence ( ) .8ttf =  Thus we have shown that 

( ) ttp 8=σ  is the unique minimal polynomial of σ. 

Further, this shows that there are no monic polynomial of degree one in ,ker π  
and so we have 

.σσ =χ q  

Moreover, ( ) ttp 8=σ  gives us { },14...,,2,0=
σpS  i.e., .2 16Z  The rest of 

the proof is straightforward and we have completed the proof of the theorem.  



MINIMAL POLYNOMIALS AND CHARACTERISTIC POLYNOMIALS … 

 

57 

4.3. Proof for Theorem C 

We claim that { },5...,,1,06 == ZR  4321 RxRxRxRxM ⊕⊕⊕=  with 

{ }4321 ,,, xxxxX =  a basis for M over R, and 

( )4,3,2,1diag~ =−σ A
X

 

satisfies all necessary conditions of the theorem. Recall that we have the canonical 
ring homomorphism 

[ ] MtR REnd: →π  

defined by ( )( ) ( )σ=π ftf  for ( ) [ ]tRtf ∈  and .End MR∈σ  Also, we have 

(1) ( ) ( ) ( )( ) ( ).4321 −−−−=χσ ttttt  

First, we show that for ( ) ( ) ( ) ( )321 −−−= ttttf  and ( ) ( ),13 −= tttg  we have 

(2) gf ,  are contained in ,ker π  i.e.,  

( ) ( ) .0== AgAf  

Indeed, for the identity matrix ( ),1,1,1,1diag=I  

( ) ( ) ( ) ( )IAIAIAAf ⋅−⋅−⋅−= 321  

( ) ( ) ( )1,0,1,2diag2,1,0,1diag3,2,1,0diag −−⋅−⋅=  

I⋅= 0  

and 

( ) ( ) ( ) ,03,2,1,0diag4,3,2,1diag3 IAg ⋅=⋅=  

which verify (2). Further, 

(3) for ( ) ,ker0 π∈≠ th  we have .1deg >h  

To show this, let ( ) π∈+=≠ ker0 btath  for ., Rba ∈  Then, 

( ),4,3,2,diag0 babababaIbAa ++++=+=  

which implies that ,0== ba  a contradiction. Thus, 1deg >h  and we have (3). 
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By (2) and (3), we find that ( ) ( )13 −= tttg  is a polynomial of the lowest degree in 

.ker π  Therefore, we may write ( ) ( ).13 −=σ tttp  Our next purpose is to show the 

uniqueness of ( )tpσ  for σ. Namely, we prove that 

(4) if ( ) ctbtatk ++=≠ 20  belongs to ,ker π  then we have 3== ba  and 

.0=c  

Since ( )tk  is in ,ker π  ( ) .0 2 IcAbAaAk ⋅++==  Substituting =A  

( )4,3,2,1diag  and ( )4,3,4,1diag2 =A  in the above equation, we get 

( ) ( ) ( ),1,1,1,14,3,2,1diag4,3,4,1diag0 cba +⋅+⋅=  

which implies that 3== ba  and 0=c  as was to be shown. Thus we have 

proved that ( ) ( )13 +=σ tttp  is unique for σ. Also, (4) shows that πker  does not 

contain a monic polynomial of degree two. This together with ( ) 0=Af  for 

( ) ( )1−= ttf ( ) ( )32 −− tt  allows us to write ( ) ( ) ( ) ( ).321 −−−=σ ttttq  

However, since σσ + qp  is in ,ker π  ( ) ( ) ( ) ( )321 −−−=σ ttttq  is not unique for 

σ. Thus, we have proved 

(5) σp  is unique for σ, but not .σq  

Since 4rankdeg,3deg,2deg ==χ== σσσ Mqp  and ,6=R  we have 

proved that 

(6) .rankdegdegdeg RMpq <=χ<< σσσ  

By (5) and (6), we have proved (a) and (b) of the theorem. Now, we show (c) 
and (d). 

Since we have another factorization ( ) ( ) ( ) ( ) ( )22 4321 −−=−−=χσ tttttt  

( ) 1,5−⋅ t  and 4  are multiple roots. On the other hand, ( ) ( )21 2 −− tt  does not 

have 0  as zero, and ( )21−tt  not .2  Therefore, 0  and 2  are simple roots of ( ).tσχ  

Similarly, substituting 3  and 5  for t in ( ) ( )54 2 −− tt  and ( ) ( ) ,43 22 −− tt  

respectively, we have no zeros and also find that both 3  and 5  are simple roots of 
( ).tσχ  Thus, we have proved 
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(7) ( )tσχ  has two 2-ple roots and four simple roots. 

Finally, substituting any element α in R for t in each of σσχ q,  and ,σp  

respectively, we get zero. Further, we see that σp  and σq  have no multiple roots. 

So, we have 

(8) σσσχ qp ,,  have the same root set R, and σp  and σq  have only simple 

roots, and 

(9) for any α in α−tR,  devides each of σσχ p,  and ,σq  

which gives us (c) and (d) of the theorem. Thus we have completed the proof for 
Theorem (C).  

Proposition. Let R be a ring and E be a left module over R. Then, the following 
(a) and (b) hold: 

(a) If two elements ba,  in R satisfy 

(i) 0== baEabE  and (ii) ,RbRaR =+  

then we have 

(1) ba EEE +=  

for { }0=|∈= axExEa  and { }.0=|∈= byEyEb  

(b) Further, if an additional condition 

(iii) ba,  are central elements of R 

 is satisfied, then we have 

(2) .ba EEE ⊕=  
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