

MINIMAL POLYNOMIALS AND CHARACTERISTIC POLYNOMIALS OVER RINGS

HIROYUKI ISHIBASHI

Department of Mathematics Josai University Sakado, Saitama 350-02, Japan e-mail: hishi@math.josai.ac.jp

Abstract

Let *R* be a commutative ring with 1, and *M* be a free module of a finite rank over *R*. End_{*R*}*M* is the endomorphism ring of *M* over *R*, σ is an element in End_{*R*}*M*, and the matrix of σ diagonalizable. Our purpose is to investigate the relationship between the characteristic polynomial χ_{σ} of σ and the minimal polynomial p_{σ} of σ . If *R* is an integral domain, then we shall show that p_{σ} is uniquely determined as a monic polynomial dividing χ_{σ} . Also, the difference between the two sets of zeros of p_{σ} and χ_{σ} , respectively, is only the multiplicity of their roots. If *R* is not an integral domain, then we shall construct σ such that p_{σ} is not necessarily monic nor divides χ_{σ} .

1. Introduction

Let *F* be a field and *V* be a finite dimensional vector space over *F*. Let $\operatorname{End}_F V$ be the endomorphism ring of *V* over *F*, and let σ be in $\operatorname{End}_F V$. Also let *F*[*t*] be the polynomial ring in *t* over *F*. Then, it is well known the relationship between $\overline{2010}$ Mathematics Subject Classification: 15A04, 15A23, 15A33.

Keywords and phrases: minimal polynomial, characteristic polynomial, endomorphisms ring of modules, classical groups.

Received October 22, 2010

 $\chi_{\sigma}(t) \in F[t]$ the characteristic polynomial of σ and $p_{\sigma}(t) \in F[t]$ the minimal polynomial of σ . For instance, $\chi_{\sigma}(a) = 0$ for *a* in *F* if and only if $p_{\sigma}(a) = 0$, that is, the difference between the two sets of roots of χ_{σ} and p_{σ} , respectively, is only the multiplicity of their roots.

Further, if *F* is sufficiently large, say, an algebraically closed field, then $\chi_{\sigma}(t)$ is a product of linear equations. Moreover, if these roots of $\chi_{\sigma}(t)$ are different each other, then σ is diagonalizable. Above observation about linear endomorphism σ of a vector space *V* over a field *F* pose us a question what will occur if we replace *F* the field to *R* a commutative ring, *V* the vector space to *M* a free module over *R*, and σ in End_{*F*}*V* to σ in End_{*R*}*M* of which matrix is diagonalizable. The purpose of this note is to answer partially to the question.

Estes and Guralnick [2] investigated what the possible minimal polynomials are for integral symmetric matrices. Augot and Camion [1] presented algorithms connected with computation of the minimal polynomial of an $n \times n$ matrix over a field K. Fiedler [3] showed that for a given polynomial, we can construct a symmetric matrix whose characteristic polynomial is the given polynomial. Schmeisser [5] proved that for a given polynomial f(x) with only real zeros, we can construct a real symmetric tridiagonal matrix whose characteristic polynomial is $(-1)^n f(x)$ with $n = \deg f$. We will refer Lang [4] as a standard text book in algebra, in which the reader will find necessary concepts and materials.

2. Preliminaries

Throughout in the paper, *R* is a commutative ring with the identity 1, R[t] is the polynomial ring in *t* over *R*, *M* is a free module over *R* of rank *n* with $X = \{x_1, x_2, ..., x_n\}$ a basis for *M*, and $\text{End}_R M$ is the endomorphism ring of *M* over *R*. For an element σ in $\text{End}_R M$, we write

$$\sigma \cong A$$

if A in $M_n(R)$ is the matrix of σ relative to X, where $M_n(R)$ denotes the ring of matrices of $n \times n$ over R. We define the characteristic polynomial $\chi_{\sigma}(t)$, χ_{σ} or $\chi(t)$ of A (or σ) to be the determinant

$$|t \cdot I - A|$$

in R[t]. By definition, it is independent to the choice of the basis X for M. Also, it is monic and unique for σ . An element a in R is called an *eigenvalue* or a *characteristic root* of σ in R if it is a root of χ_{σ} , i.e., $\chi_{\sigma}(a) = 0$. For σ in End_RM, we have a canonical ring homomorphism

$$\pi : R[t] \to \operatorname{End}_R M$$

defined by $\pi(f(t)) = f(\sigma)$ for f(t) in R[t]. Therefore, *M* may be viewed as an R[t]-module, defining the operation of R[t] on *M* by letting $f(t)x = f(\sigma)x$ for f(t) in R[t] and x in *M*.

Lemma 2.1. $\chi_{\sigma}(\sigma) = 0$.

Proof. See Theorem 3.1 (Caley-Hamilton) in Lang [4, p. 561].

We note that ker $\pi \neq \{0\}$, for it contains at least $\chi_{\sigma} \neq 0$ by Lemma 2.1. Let *P* be the set of monic polynomials in *R*[*t*], for which we define K_0 and K_1 , two subsets of ker π as follows:

- K_0 = The set of non-zero polynomials in ker π of which degree is the lowest in ker π .
- K_1 = The set of non-zero polynomials in $P \cap \ker \pi$ of which degree is the lowest in $P \cap \ker \pi$.

Clearly, $K_0 \neq \phi$ and $K_1 \neq \phi$, for ker π contains a monic polynomial χ_{σ} . We call any polynomial in K_0 a *minimal polynomial* of σ and denote it by $p_{\sigma}(t)$, also any one in K_1 a small polynomial of σ and write it as $q_{\sigma}(t)$. As we know if R is a field, then there exists always a unique minimal polynomial which is monic. In particular, in such a case we may take $p_{\sigma}(t) = q_{\sigma}(t)$. As a matter of course, in general, p_{σ} and q_{σ} are not necessarily unique for σ . Indeed, if p_{σ} is a minimal polynomial, so is cp_{σ} for any c in R with $cp_{\sigma} \neq 0$. Also, if q_{σ} is a small polynomial with deg $p_{\sigma} < \deg q_{\sigma}$, so is $p_{\sigma} + q_{\sigma}$. On the other hand, it is clear that both deg p_{σ} and deg q_{σ} are unique for σ , and we have

$$\deg p_{\sigma} \leq \deg q_{\sigma}.$$

HIROYUKI ISHIBASHI

Lemma 2.2. (a) *The following conditions* (a_1) *and* (a_2) *are equivalent:*

(a₁) deg
$$p_{\sigma}$$
 = deg q_{σ} for any (or some) $p_{\sigma} \in K_0$ and any (or some) $q_{\sigma} \in K_1$

and

 (a_2) there is a monic minimal polynomial p_{σ} .

(b) In case of (a), p_{σ} is a unique for σ .

Proof. Since (a) is clear, we prove (b). Let u and v be both monic minimal polynomials. Then since deg u = deg v and they are monic, we have deg(u - v) <deg u. On the other hand, since u, v, are in ker π , so is u - v. Hence u - v = 0 by the minimality of u. Thus u = v and we have proved (b).

3. Statements of Theorems A, B and C

Let σ be in End_RM. For χ_{σ} , p_{σ} and q_{σ} in R[t], where p_{σ} and q_{σ} are arbitrary chosen in K_0 and K_1 , respectively, we define three subsets of R as

$$S_{\chi_{\sigma}}$$
 = the set of roots of χ_{σ} ,
 $S_{p_{\sigma}}$ = the set of roots of p_{σ}

and

 $S_{q_{\sigma}}$ = the set of roots of q_{σ} .

In Theorem A, we shall show that if R is an integral domain and σ is diagonalizable, then $S_{\chi_{\sigma}}$ and $S_{p_{\sigma}}$ coincide with each other, hence the difference between them is only the multiplicity of the roots.

Theorem A. Let *R* be an integral domain and the matrix of $\sigma \in \text{End}_R M$ be diagonalizable. Then, we have the following:

(a) there is a unique monic minimal polynomial p_{σ} ,

(b) p_{σ} divides χ_{σ} ,

(c) $S_{\chi_{\sigma}} = S_{p_{\sigma}}$, that is, the difference between roots of χ_{σ} and p_{σ} is only the multiplicity of each root, and

(d) if χ_{σ} has n distinct roots in R, we have $\chi_{\sigma} = p_{\sigma}$.

Theorems B and C show that if *R* is not an integral domain, then Theorem A is not necessarily valid.

Theorem B. There is a finite commutative ring R, a module M over R, and an endomorphism σ in End_RM of which matrix is diagonal and for which we have

(a) $\chi_{\sigma} = q_{\sigma}$ with deg $\chi_{\sigma} = 2$ is unique for σ and has no multiple roots, and is decomposed in two ways into a product of linear factors.

(b) p_{σ} with deg $p_{\sigma} = 1$ is unique for σ , but not monic, and has no multiple roots.

- (c) $S_{\chi_{\sigma}} \subseteq S_{p_{\sigma}}$ with $|S_{\chi_{\sigma}}| = 4$ and $|S_{p_{\sigma}}| = 8$.
- (d) p_{σ} does not divide χ_{σ} .

Theorem C. There is a finite commutative ring R, a module M over R, and σ in End $_RM$ of which matrix is diagonal and for which we have

- (a) p_{σ} is unique for σ but not monic, whereas q_{σ} is not unique for σ .
- (b) deg $p_{\sigma} = 2 < \deg q_{\sigma} = 3 < \deg \chi_{\sigma} = 4 = \operatorname{rank} M < |R| = 6.$

(c) χ_{σ} has two 2-ple roots and four simple roots, whereas p_{σ} and q_{σ} have all simple roots, and

$$S_{\chi_{\sigma}} = S_{p_{\sigma}} = S_{q_{\sigma}} = R,$$

that is, for any a in R, t - a divides each of χ_{σ} , p_{σ} and q_{σ} .

4. Proof for Theorems A, B and C

4.1. Proof for Theorem A

Since σ is diagonalizable, we have a matrix A in $M_n(R)$ such that

$$\sigma \underset{X}{\simeq} A = \operatorname{diag}(a_1, a_2, ..., a_n),$$

for some basis $X = \{x_1, x_2, ..., x_n\}$ for M. Therefore, by the definition of

characteristic polynomial of σ , we have

$$\chi_{\sigma}(t) = |tI - A|$$

= $(t - a_1)(t - a_2)\cdots(t - a_n)$ (1)

with $a_1, a_2, ..., a_n$ in *R*.

First, we prove (a) and (b) of the theorem. Let *K* be the quotient field of *R*, $M' = K \otimes_R M$ be the coefficient extension of *M*, and σ' be the prolongation of σ on *M'*.

Define the canonical ring homomorphism

$$\varphi: K[t] \to \operatorname{End}_K(M')$$

by $\varphi(f(t)) = f(\sigma')$ for f(t) in K[t]. Then, ker φ is an ideal of K[t]. Since K[t] is a PID, ker φ is generated by an element f(t) in K(t), that is, we have

$$\ker \varphi = (f(t)) \text{ for some } f(t) \text{ in } K[t], \tag{2}$$

where we may assume that f(t) is monic, since *K* is a field. Consequently, f(t) is unique for σ . On the other hand, since $\chi_{\sigma}(\sigma) = 0$ by Lemma 2.1, $\chi_{\sigma}(t)$ belongs to $R[t] \cap \ker \varphi$. Hence, by (2), we have

$$\chi_{\sigma}(t) = f(t)g(t) \text{ for some } g(t) \in K[t].$$
(3)

Therefore, (1) yields that

$$f(t)g(t) = (t - a_1)(t - a_2)\cdots(t - a_n),$$
(4)

for some $a_1, a_2, ..., a_m$ in R.

Decomposing f and g as products of prime elements in K[t], respectively, say, $f = f_1 f_2 \cdots f_r$ and $g = g_1 g_2 \cdots g_s$, (4) implies that

$$f_1f_2\dots f_r \cdot g_1g_2\dots g_s = (t-a_1)(t-a_2)\cdots(t-a_n).$$

Since K[t] is UFD, comparing the both sides of the above equation, we find a subset $\{a_{i_1}, a_{i_2}, ..., a_{i_r}\}$ of $\{a_1, a_2, ..., a_n\}$ in R, and a subset $\{c_1, c_2, ..., c_r\}$ in

 $K - \{0\}$ such that

$$f_j = c_j(t - a_{i_j}), c_j \in K, a_{i_j} \in R$$

for j = 1, 2, ..., r, which yields that

$$f(t)=c_1c_2\cdots c_r(t-a_{i_1})(t-a_{i_2})\cdots(t-a_{i_r}),\quad a_{i_j}\in R$$

for j = 1, 2, ..., r. However, since f(t) is monic, we obtain $c_1c_2 \cdots c_r = 1$ and thus

$$f(t) = (t - a_{i_1})(t - a_{i_2})\cdots(t - a_{i_r}), \quad a_{i_j} \in \mathbb{R}$$
(5)

for j = 1, 2, ..., r, which guarantees that f(t) is contained in R[t]. Thus, we may choose f(t) as $p_{\sigma}(t)$ by Lemma 2.2 and $\chi_{\sigma}(t) = p_{\sigma}(t)g(t)$. Consequently, p_{σ} is monic, divides χ_{σ} and any zero of $p_{\sigma}(t)$ is that of $\chi_{\sigma}(t)$, which proves (a) and (b) of the theorem. By (b) any root of $p_{\sigma}(t)$ is that of $\chi_{\sigma}(t)$. To show (c) we have to prove the converse of this fact.

Clearly, X the basis for M over R is also that of M' over K. Further, since σ' is the prolongation of σ to M' we understand that $\sigma' = \sigma$ on X. Hence, for any i = 1, 2, ..., n,

$$\begin{aligned} 0 &= p_{\sigma}(t)x_{i} \\ &= f(t)x_{i} \\ &= (\sigma - a_{i_{1}})(\sigma - a_{i_{2}})\cdots(\sigma - a_{i_{r}})x_{i} \\ &= (a_{i} - a_{i_{1}})(a_{i} - a_{i_{2}})\cdots(a_{i} - a_{i_{2}})\cdots(a_{i} - a_{i_{r}})x_{i}, \end{aligned}$$

which implies that for any *i* in {1, 2, ..., *n*}, we have $a_i = a_{i_j}$, for some *j* in {1, 2, ..., *r*}, since *R* is an integral domain and *X* is a basis for *M'* over *K*. Thus, we have shown the converse, namely, a zero of χ_{σ} is that of p_{σ} . Consequently, two sets of zeros of χ_{σ} and p_{σ} , respectively, coincides with each other. This shows that the difference between the roots of χ_{σ} and p_{σ} is only the multiplicity, which is (c). (d) is clear by (c).

4.2. Proof for Theorem B

Let $R = \mathbb{Z}_{16} = \{\overline{0}, \overline{1}, ..., \overline{15}\}$ with $\overline{a} = a + 16\mathbb{Z}$ for a = 0, 1, ..., 15, $M = Rx_1 \oplus Rx_2$ with a basis $X = \{x_1, x_2\}$ over R, and

$$\sigma_X^{\simeq} A = \begin{pmatrix} \overline{2} & \overline{0} \\ \overline{0} & \overline{4} \end{pmatrix}.$$

To show (a), first, we will treat to factorize χ_{σ} and get its roots. By the definition of the characteristic polynomial, we have the unique monic polynomial $\chi_{\sigma}(t) = (t - \overline{2})(t - \overline{4})$. Substituting each element in \mathbb{Z}_{16} for t in $\chi_{\sigma}(t)$, we have $S_{\chi_{\sigma}} = \{\overline{2}, \overline{4}, \overline{10}, \overline{12}\}$. Therefore, we have exactly two factorizations

$$\chi_{\sigma}(t) = (t - \overline{2})(t - \overline{4}) = (t - \overline{10})(t - \overline{12}),$$

which also shows that $\chi_{\sigma}(t)$ has no multiple roots. The rest of (a), $\chi_{\sigma}(t) = q_{\sigma}(t)$ will be treated later. Next, we deal with $p_{\sigma}(t)$ and $q_{\sigma}(t)$. It is obvious to see that $\overline{8}t$ is in ker π , since $\overline{8}\sigma = 0$. Our claim is that this is the unique minimal polynomial. Suppose that $f(t) = \overline{a}t + \overline{b} \neq 0$ belongs to ker π for \overline{a} , \overline{b} in \mathbb{Z}_{16} . Then we have

$$0 = f(\sigma)x_1 = (\overline{2}\overline{a} + \overline{b})x_1$$

and

$$0 = f(\sigma)x_2 = (\overline{4}\overline{a} + \overline{b})x_2,$$

which implies that $\overline{a} = \overline{8}$ and $\overline{b} = \overline{0}$, hence $f(t) = \overline{8}t$. Thus we have shown that $p_{\sigma}(t) = \overline{8}t$ is the unique minimal polynomial of σ .

Further, this shows that there are no monic polynomial of degree one in ker π , and so we have

$$\chi_{\sigma} = q_{\sigma}$$
.

Moreover, $p_{\sigma}(t) = \overline{8}t$ gives us $S_{p_{\sigma}} = \{\overline{0}, \overline{2}, ..., \overline{14}\}$, i.e., $\overline{2}\mathbb{Z}_{16}$. The rest of the proof is straightforward and we have completed the proof of the theorem.

4.3. Proof for Theorem C

We claim that $R = \mathbb{Z}_6 = \{\overline{0}, \overline{1}, ..., \overline{5}\}, M = Rx_1 \oplus Rx_2 \oplus Rx_3 \oplus Rx_4$ with $X = \{x_1, x_2, x_3, x_4\}$ a basis for *M* over *R*, and

$$\sigma \underset{X}{\simeq} A = \operatorname{diag}(\overline{1}, \overline{2}, \overline{3}, \overline{4})$$

satisfies all necessary conditions of the theorem. Recall that we have the canonical ring homomorphism

$$\pi: R[t] \to \operatorname{End}_R M$$

defined by $\pi(f(t)) = f(\sigma)$ for $f(t) \in R[t]$ and $\sigma \in \text{End}_R M$. Also, we have

(1) $\chi_{\sigma}(t) = (t - \overline{1})(t - \overline{2})(t - \overline{3})(t - \overline{4}).$

First, we show that for $f(t) = (t - \overline{1})(t - \overline{2})(t - \overline{3})$ and $g(t) = \overline{3}t(t - \overline{1})$, we have

(2) f, g are contained in ker π , i.e.,

$$f(A) = g(A) = 0.$$

Indeed, for the identity matrix $I = \text{diag}(\overline{1}, \overline{1}, \overline{1}, \overline{1})$,

$$f(A) = (A - \overline{1} \cdot I)(A - \overline{2} \cdot I)(A - \overline{3} \cdot I)$$

= diag (\overline{0}, \overline{1}, \overline{2}, \overline{3}) \cdot diag (-\overline{1}, \overline{0}, \overline{1}, \overline{2}) \cdot diag (-\overline{2}, -\overline{1}, \overline{0}, \overline{1})
= \overline{0} \cdot I

and

$$g(A) = \overline{3}\operatorname{diag}(\overline{1}, \overline{2}, \overline{3}, \overline{4}) \cdot \operatorname{diag}(\overline{0}, \overline{1}, \overline{2}, \overline{3}) = \overline{0} \cdot I,$$

which verify (2). Further,

(3) for $0 \neq h(t) \in \ker \pi$, we have deg h > 1.

To show this, let $0 \neq h(t) = \overline{a}t + \overline{b} \in \ker \pi$ for $\overline{a}, \overline{b} \in R$. Then,

$$0 = \overline{a}A + \overline{b}I = \operatorname{diag}\left(\overline{a} + \overline{b}, 2\overline{a} + \overline{b}, 3\overline{a} + \overline{b}, 4\overline{a} + \overline{b}\right),$$

which implies that $\overline{a} = \overline{b} = \overline{0}$, a contradiction. Thus, deg h > 1 and we have (3).

By (2) and (3), we find that $g(t) = \overline{3}t(t-\overline{1})$ is a polynomial of the lowest degree in ker π . Therefore, we may write $p_{\sigma}(t) = \overline{3}t(t-1)$. Our next purpose is to show the uniqueness of $p_{\sigma}(t)$ for σ . Namely, we prove that

(4) if $0 \neq k(t) = \overline{a}t^2 + \overline{b}t + \overline{c}$ belongs to ker π , then we have $\overline{a} = \overline{b} = \overline{3}$ and $\overline{c} = 0$.

Since k(t) is in ker π , $0 = k(A) = \overline{a}A^2 + \overline{b}A + \overline{c} \cdot I$. Substituting $A = \text{diag}(\overline{1}, \overline{2}, \overline{3}, \overline{4})$ and $A^2 = \text{diag}(\overline{1}, 4, \overline{3}, \overline{4})$ in the above equation, we get

 $0 = \overline{a} \cdot \operatorname{diag}(\overline{1}, \overline{4}, \overline{3}, \overline{4}) + \overline{b} \cdot \operatorname{diag}(\overline{1}, \overline{2}, \overline{3}, \overline{4}) + \overline{c}(\overline{1}, \overline{1}, \overline{1}, \overline{1}),$

which implies that $\overline{a} = \overline{b} = \overline{3}$ and $\overline{c} = \overline{0}$ as was to be shown. Thus we have proved that $p_{\sigma}(t) = \overline{3}t(t+\overline{1})$ is unique for σ . Also, (4) shows that ker π does not contain a monic polynomial of degree two. This together with f(A) = 0 for $f(t) = (t-\overline{1})(t-\overline{2})(t-\overline{3})$ allows us to write $q_{\sigma}(t) = (t-1)(t-2)(t-3)$. However, since $p_{\sigma} + q_{\sigma}$ is in ker π , $q_{\sigma}(t) = (t-1)(t-2)(t-3)$ is not unique for σ . Thus, we have proved

(5) p_{σ} is unique for σ , but not q_{σ} .

Since deg $p_{\sigma} = 2$, deg $q_{\sigma} = 3$, deg $\chi_{\sigma} = \operatorname{rank} M = 4$ and |R| = 6, we have proved that

(6) deg q_{σ} < deg p_{σ} < deg χ_{σ} = rank M < |R|.

By (5) and (6), we have proved (a) and (b) of the theorem. Now, we show (c) and (d).

Since we have another factorization $\chi_{\sigma}(t) = t(t-\overline{1})^2(t-\overline{2}) = (t-\overline{3})(t-\overline{4})^2$ $\cdot (t-\overline{5})$, $\overline{1}$ and $\overline{4}$ are multiple roots. On the other hand, $(t-\overline{1})^2(t-\overline{2})$ does not have $\overline{0}$ as zero, and $t(t-1)^2$ not $\overline{2}$. Therefore, $\overline{0}$ and $\overline{2}$ are simple roots of $\chi_{\sigma}(t)$. Similarly, substituting $\overline{3}$ and $\overline{5}$ for t in $(t-\overline{4})^2(t-\overline{5})$ and $(t-\overline{3})^2(t-\overline{4})^2$, respectively, we have no zeros and also find that both $\overline{3}$ and $\overline{5}$ are simple roots of $\chi_{\sigma}(t)$. Thus, we have proved (7) $\chi_{\sigma}(t)$ has two 2-ple roots and four simple roots.

Finally, substituting any element α in *R* for *t* in each of χ_{σ} , q_{σ} and p_{σ} , respectively, we get zero. Further, we see that p_{σ} and q_{σ} have no multiple roots. So, we have

(8) χ_{σ} , p_{σ} , q_{σ} have the same root set *R*, and p_{σ} and q_{σ} have only simple roots, and

(9) for any α in R, $t - \alpha$ devides each of χ_{σ} , p_{σ} and q_{σ} ,

which gives us (c) and (d) of the theorem. Thus we have completed the proof for Theorem (C).

Proposition. *Let R be a ring and E be a left module over R. Then, the following* (a) *and* (b) *hold*:

(a) If two elements a, b in R satisfy

(i) abE = baE = 0 and (ii) aR + bR = R,

then we have

(1) $E = E_a + E_b$

for $E_a = \{x \in E \mid ax = 0\}$ and $E_b = \{y \in E \mid by = 0\}$.

(b) Further, if an additional condition

(iii) a, b are central elements of R

is satisfied, then we have

(2) $E = E_a \oplus E_b$.

References

- D. Augot and P. Camion, On the computation of minimal polynomials, cyclic vectors, and Frobenius forms, Linear Algebra Appl. 260(15) (1997), 615-694.
- [2] D. R. Estes and R. M. Guralnick, Minimal polynomials of integral symmetric matrices, Linear Algebra Appl. 192 (1993), 88-99.

HIROYUKI ISHIBASHI

- [3] M. Fiedler, Expressing a polynomial as the characteristics polynomial of a symmetric matrix, Linear Algebra Appl. 141 (1990), 265-270.
- [4] S. Lang, Algebra, 3rd ed., Addison-Wesley, Tokyo, 1993.
- [5] G. Schmeisser, A real symmetric tridiagonal matrix with a given characteristic polynomial, Linear Algebra Appl. 93(1) (1993), 11-18.

60