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Abstract

We study a representation of an arbitrary endomorphism o on a free
module M of a finite rank n over a valuation domain R, that is,
factorize M into a direct sum of some free submodules determined by
o, give a sufficient condition for o to have the rational canonical form,
find a basis for M over R relative to which the matrix of o is a sum of
a lower triangular matrix and a super diagonal matrix, and show that
for some simple ring extension of R the natural prolongation of ¢ has
the rational canonical form.

1. Introduction

A matrix representation of a linear transformation of a free module over

a commutative ring depends on the choice of a basis for the module.

So, it will be natural to seek a nice basis relative to which the matrix of
the transformation is expressed in a simple form. On this demand, many
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excellent forms of linear transformations were devised, say, diagonal forms,
triangular forms, rational canonical forms, Jordan normal forms, etc., and the
conditions for them under which linear transformations have such simple
forms were investigated.

In the present paper, among those forms, we will be especially attracted
our attention to the rational canonical forms of endomorphisms of modules.

It was first introduced by Frobenius in the late 1800s. Since then much of
the results concerning it appeared and have been expanded in various
directions.

For instance Matthews [16] showed that a square matrix A over fields is
similar to a block diagonal H of hyper companion matrices and gave an

algorithm to get P satisfying that H = PAP~L. Also, Huang [9], Beard [3]

and others pursued the study of the rational canonical forms in various
situation and obtained many important and useful results.

However, the methods they contrived were applicable only when the
scalars form a field or a skew field.

In this note we will try to deal with the theory of the rational canonical
forms in some more general setting for the underlying rings, that is, we will
take a valuation domain instead of a field, and obtain the results stated in the
abstract. The details of the theorem will be stated in the next section after
providing necessary preparation.

On the other hand it is well known that the classical groups have various
generating systems. Let ¢ be an arbitrary element of a group. If we fix a set S
of generators of the group, then the minimal number of factors expressing o

as a product of elements of S U s71 is called the length of ¢ and denoted by
/(o).
Dieudonné [5] determined /(o) for o in the various classical groups

with its generating sets. The generalization of this length problem to
valuation rings or to semi local semi hereditary rings was achieved by the
author in 1970s to 1980s (see Ishibashi [10, 11, 12]).
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One can see in Hahn and O’Meara [7], Knus [13], McDonald [15] and
Baeza [2], how the theory of classical groups over fields has been developed
to the theory over rings.

As for the fundamental results in basic algebra and the rational canonical
forms are seen in any of Herestein [8], Cohn [4] and Lang [14].

2. Statements of the Theorem and the Corollary

Let R be an integral domain and M be a free module of rank n over R
with a basis X = {x, Xo, ..., X, }. We write EndgM to denote the algebra

over R of all endomorphisms of M over R, and ¢ denotes an arbitrary element
in EndgM. We consider the quotient field F of R to be a ring extension of R.

In other words, we will regard R as a subring of F, and thus F is a module
over R.

This allows us to define a coefficient extension M of M by
R n
M=F® M=PF1®x),
i=1
which is an n-dimensional vector space over F with a basis
X ={l®x[1<i<n}

Therefore, identifying x; with 1® x; for i =1, 2, ..., n, we take X = X as

a basis for M over F. Further, since R is a subring of F, M the module over
F is also a module over R, consequently M is a submodule of M over R.

In the same way we define a linear transformation ¢ by
8=1F ®o e End,:l\?l,
where 1 denotes the identity linear transformation of the R-module F. The

endomorphism & is frequently called a prolongation of ¢ on M to M.
Clearly o = G|y, the restriction of 6 to M. We may use o for & if their
matrices are the same.
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The polynomial ring in t over R is denoted by R[t]. Similarly, F[t] is the

one in t over F. The module M will be given a module structure over Fl[t] if

we define the scalar multiplication by f(t)x = f(c)x for f(t) e F(t) and
xe M.

An integral domain R is called a valuation domain if for any nonzero a
and b in R either a divides b, or b divides a, i.e., a|b or b|a. We know that

a valuation domain R is a local ring of which unique maximal ideal mv is the
set of all non-units in R.

For o in EndgM if P is the matrix of o relative to a basis X for M, i.e.,
o'X = P'X, we write
c =y P,
where ' X denotes the transpose of X.
For a monic polynomial
f()=ag+at+-+a, 4"t +t", a eF

in F[t], the matrix

0 1 0 0

0 1 0

0 0 0 1
—8 & -8 - A

is called the companion matrix of f(t) and denoted by C(f(t)) or C(f).

With these preparations we now describe our theorem and the corollary.
The theorem consists of three results (a), (b) and (c). In (a) we will factorize
M into a direct sum and compose some c-invariants direct summands of M,
and in (b) and (c) we will give some matrix representations of c relative to
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some bases for M over R. In the corollary, for a simple ring extension R° of

R we will show that the natural prolongation c° of o has its rational
canonical form.

To save symbols we will use a letter X to denote various bases for M
over R if there is no confusion. Also we will say the rational canonical form
of o for saying that of the matrix of c.

Theorem. Let R be a valuation domain, M be a free module of rank n
over R, and c be an element in EndgM. For the quotient field F of R let

M =F ®r M and 6 =1 ®oc € End,:l\?l, and for the polynomial ring
F[t] in t over F let F = {fy(t), fo(t), ..., fn(t)} in F[t] be the system of

invariants of 6. Further write nj = deg fj(t) for j =12, .., m

Then, there exist yj, Yo, ..., Ym In M which are generators of cyclic

factors of M as a F[t]-module, i.e.,

M = Fltlyy ® FItly, ® - @ Fltlyn, yjeM, j=12.,m,
and for which we have the following (a), (b) and (c):

(@) There are free submodules M4, Mo, ..., M, of M over R such that

) M=M &My ®---®Mp, with nj =rankM; =deg f; for j =
1 2, ..., m and if we set Lj =M &M, .- Mj, we have

(i) GLj c Lj for j=1,2, .., m

(b) For j =1, 2,.., m set

i—1
YJ = {yJ’ Gyj, ey an yj}

and

Y =Y, UY, U...UY,.
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Then, we have a basis X for M over R such that
ty = A'X,

where A= (apg) € Mp(R) is lower triangular with ap, #0 for p=
12 ..,n

In particular, if app s are all units in R for p =1, 2, ..., n, then o has
its rational canonical form

C(fy) 0
6=y C = C(fy) . |
0 ~Clfy)

where F = {f{, fy, ..., fy} in R[t] is the system of invariants of &.

(c) Relative to X in (b) let B be the matrix of o, i.e., c'X = B'X. Then,
B admits a partition into blocks such that

By 0 0 0
e M, (R),

Bm1 Bm2 Bm3 Bmm
where By is in Mnjnk(R) for j=12.,mand k=12 .., jand Bj

is a sum of a lower triangular matrix and an upper diagonal matrix, i.e., in a
form

b« * * * O'
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Corollary. In (b) of the Theorem there exists a diagonal element a of A
such that if we set

R°=R[a?] aleF,
a simple ring extension of R in F and
M°=R°®g M =@ R°x for x{ =1® x;,

then
X°={x =1®x]i=12, .., n}
is a basis for M ° over R® and
c’ =1Ro @)creEndROMo

has the rational canonical form

c(fy) 0
C(f
GO :xo AO — ( 2) . c Mn(RO),

0 C(fm)
where F = {f{, f,, .., fy,} in R°[t] is the system of invariants of °.

3. Proofs for the Theorem and the Corollary

3.1. Proof for the Theorem

Since F is a field and M = F ®g M is a vector space of dimension n
over F, there exists a system of invariants F = {f}, f,, ..., f,} of 6=
1 ® o with fj’smonic for j=1,2,..,mand fy|fp|---|fy in F[t] (see
Lang [11, p. 151, Theorem 7.7]).

More precisely for f(t)e F(t) and xe M if we define a scalar
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multiplication by

f(t)x = f(o)x,

M is endowed with a structure of a module over F[t]. Hence by the structure

theorem of a finitely generated torsion module over a PID M is factorized

into a direct sum of m cyclic submodules M{, M5, ..., My, of M over F[t].

Therefore, if we denote those generators of M{, M5, ..., My, in M by

{Y1, Y2, - Ym}. respectively, we have an expression
M=M®M)®-- &M (3.1)

with

(i) M = Fltly; = Fy; ® Foy; ®--® Fs" 1y,

(i) nj = deg f; = dimMj;,

(i) fj(c)=0 for j=1,2, .., mand

(V) n=ng+ny 4+ +np,.

In (3.1), since F is the quotient field of R, by a suitable scalar
multiplication we may choose yj an elementin M for j =1, 2, ..., m, that

is, we may assume that
Y Y2, - Ymb = M, (3.2)
in particular,
8yj =oyj for i=12..,m
As we have mentioned in the previous section we have a basis
X ={X1, X9, eur, X}

for M over R. Also for {yy, Yo, ..., Y} above we will set

Y =Y, UY, U...UY, (3.3)
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with

n;—1

Yj ={yj, Gyj, ey O J yj}'

Y ={ys, o¥p, o UYL Vi OV e cnm_lym}.

Therefore, by (3.1)

Y is a basis for M over F. (3.4)

Further we have
'Y = A'X for some A = (apg) € Mp(R). (3.5)

The following is the key lemma for the proof of the Theorem.

Lemma 3.1. There exists a basis X for M over R such that A in (3.5) is
lower triangular with non-zero diagonal elements.

Proof. For A in (3.5) suppose that there exists r in {1, 2, ..., n} such that

the top left corner of Alisan (r —1) x (r —1) lower triangular matrix, that is,

ay 0 0 0 0 ... 0
a21 a22 0 0 0 0
A=laran ar-n2 ar-pns - &ryr-y O - 0
ar ar2 ar3 Ar(r-1) r o @m
an1 an2 an3 e an(r-1) or  ° @nn

Since by (3.4) Y is a basis for M over F, it is linearly independent over
F, and so at least one a,q in {a, Ar(r41) ar,} is not zero, r < g <n.

Here, since R is a valuation domain, there is k in {r, r +1, ..., n} such that

ark lar iINRforany k' =r, r+1, ..., n

Therefore, by a suitable renumbering of the basis elements
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{X¢y Xr41, - Xn} in X we may assume that k =r, i.e.,
arr|are INR
forany k' =r,r+1, .., n
From this if we set
Xr = Xr + ar_rlar(r+1)xr+1 o+ A X,
we find that
X" ={X0y s Xp—1s Xp» Xyl =00 Xn

is still a basis for M over R and relative to which A is expressed as

a1 0 0 0 0 e 0

any doo 0 0 0 e 0

A= ar1 ar2 ar3 Ary 0 e 0
Ar+1)1 &r+1)2  Ar+1)3 Ar+D)r  Ar+1)(r+1)) 7t 8m
an an2 an3 an(r+1) an(r+1) 0 A

This, by induction in r, implies that there exists a basis X for M over R
relative to which A is lower triangular with non-zero diagonal elements i.e.,
we obtain

ay 0 0 0
asy ano 0 0
A= (3.6)
an-11  4n-12 an-pns - O
an1 an2 an3 A
where a;1, a9, ..., apn # 0. O

For X in Lemma 3.1 we define a partition of X as

X =X, UXoU...U X
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where for j =12, .., m theset X; U X, U...U X is the first ny + ny +

4 Nj elements of X. Therefore, if we write

X|(<J) = Xng+ng+-+nj_g+k
for j=12 .., mand k=12, .., nj, we have

X = 0, xg:)}
for j=1,2, .., m

For a subset S of M, we write (S)p for the submodule spaned by S over

R, i.e.,

(S)r = {fgieaﬂa eR, se S}.

Similar notation (S) is adopted to denote the same object over F for R.

(D) Proof for (a) of the Theorem

We write
Mj :<XJ>R (3.7)

for the submodule M j spanned by X over R. Then, since X = X; U X,
U...U Xy, is a basis for M over R, we have
M=M &M, ®---®M (3.8)
with
rank M j = nj = deg f;
for j =1, 2, ..., m. This is the first half of (a).

To show the last half of (a) we use Lemma 3.1, so we have

ty = AlX, AeM,(R), (3.9)
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where A is lower triangular with all the diagonal elements non-zero. This
implies that A is invertible in M ,(F) and so

YUY, U UYj)p = (XaU X U...U X))
for j =1, 2, ... m. Hence,
YpUY, U...UYj)e NM = (X, UX U...UXj)e NM. (3.20)
Since X is a basis for M over R and simultaneously it is a basis for M over
F, we find that the right hand side of (3.10) coincides with

(X1, Xg1 oo, X)) =M1 @My @ @M = Lj, (3.11)

Li =M UY,U...UYj)p NM.
Since both (Y; UY, U...UY;)e and M are c-invariant, so is L, that is,
oLjcLjforj=12.,m (3.12)

as was to be shown.
(11 Proof for (b) of the Theorem

Since Lemma 3.1 is the first half of (b), the rest to be shown is the last
half. Since the triangular matrix A is in M,(R), if the diagonal elements of

A are all units in R, Y becomes a basis for M over R. Consequently, we get
the last half of (b).

(111 Proof for (c) of the Theorem

Putly =0 and Ij =M+ Ny +--+Nj for j=1,2,..,m, so Ij = ranij
for j =12, .., m Then, observing the form of Bj; in the statement of (c)
in the previous section, we find that (c) is equivalent to

i+1

(i) oxp € D Rxy if ljg <i<ljfor j=12..,m (3.13)
=1
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and
i
(i) oxi € D_Rx, if i = l; for j=1,2,..,m
r=1
Further, for f;(t) in F if we express
n;-1 n;
fj(t)=Cj0+Cj1t+"'+Cj(nj—1)t ! +1 J, thEF

for j=12 .., mand h=01 .., n; -1 wehave

nj nij—1
o lyj=-Cjo¥j — Cj10Y] — = Cjn;-)° 7y cjheF (314)
for j=1,2,..,mand h=0,1, .., nj -1.

On the other hand, by (3.9) we have 'Y = A'X with A lower triangular,
hence

ck_lyj = Qj1X +AjpXp + -+ AiX with i =1;_3 +k (3.15)

for j=1,2,..,mand k =1, 2, .., nj.

Substituting the right hand side of (3.15) for chyj in (3.14) for h =
k-1=0,1 .., nj —1, we have

lj

olyj e Y Ry for j=12,..,m (3.16)
i=1

Now we start our proof for (c). Since (c) is equivalent to (3.13), we prove
(3.13) by induction ini for i =1, 2, ..., n. Let us assume that (c) holds for

i=0andsoi>1.
First we treat the case (i) in (3.13), i.e., we are in case where |;_; <
i < IJ-. So we have k =1, 2, ..., n; -1 ifweseti= Ij_l + k. This enable

us to apply (3.15) to (i +1, k +1) for (i, k) and we get
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kaj = A(j41)1% T Ai42)2X2 + o A1) (i1+1)Xi 410 (3.17)
where i +1 = Ij_l +k+1for j=1,2,..,mand k =1, 2, .., nj -1.
Multiplying the both sides of (3.15) by o, we have
ckyj = 8j10% + @jp0Xp + -+~ + joX; With i =1j_1 + K
fori=12.,nj=,42.,mandk =1, 2, ..., nj.
Since by Lemma 3.1 a;; = 0 for i =1, 2, ..., n, this gives us

oxj = 8 (6% Y| - anox; — ajpoXp — - - AiyyoXi_y).  (3.18)

Substituting the right hand side of (3.17) for ckyj in (3.18), we have

_ i+1 i-1

Therefore applying our inductive hypothesis in i to Z'u_:ll aj,0X, in (3.19),

we have

i1 i
Z 1 &inO%y € @uzl RX,,,

u=

hence (3.19) yields

_ i+1
oXj = aiil(Zkzl bikxkj (320)

for some bj; € R.
Here since ox; in (3.20) is in M, so is the right hand side of (3.20).
Further, since X = {x{, X5, ..., X, } is a basis for M over R and simultaneously

a basis for M over F, we conclude that ai_ilbik in (3.20) belongs to R for
iy <i<lj, j=12..,mand 2 =12 .., i+1 Thus we have proved
(i) of (3.13).
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i
Next we show (ii) of (3.13), i.e.,, oX; € ZRX;L for i =1;j. Since i =
r=1

lj_1 +k in(3.15) we have k = nj, hence (3.15) implies that
ni-1
o) Y = aya Fay X+ Ay

and so multiplying the both sides of the equation above by o and rearranging
the terms we have

lj-1
—at| gy —
GX|J. —aljlj o yJ Za“HGXH .
1

Hence by (3.16), (i) of (3.13) and the inductive hypothesis for (ii) of (3.13)
we obtain

ox. =a L le O X
I] IJIJ H:]_ IJH B

Now in the same way as the proof for (i) of (3.13) we find that al‘jllj Clin
isinRfor j =1, 2, ..., m, which verifies that (ii) of (3.13) holds.
Thus, we have proved (c), and completed the proof for the Theorem.
3.2. Proof for the Corollary
Let S be the set of diagonal elements of A in (b) of the Theorem, i.e.,
S={a; eAli=12,..,n}
Since a;; #0 for i =1 2,..,n and R is a valuation domain, we have an

element a in S such that a is a multiple for all a;; inS, i.e.,

gjjlainRfori=1 2, ..,n.

Then, if we set R° = R[a™}], then | A| is a unitin R° and thus the last half
of (b) of the Theorem gives us the corollary.
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