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Abstract 

We study a representation of an arbitrary endomorphism σ on a free 
module M of a finite rank n over a valuation domain R, that is, 
factorize M into a direct sum of some free submodules determined by 
σ, give a sufficient condition for σ to have the rational canonical form, 
find a basis for M over R relative to which the matrix of σ is a sum of 
a lower triangular matrix and a super diagonal matrix, and show that 
for some simple ring extension of R the natural prolongation of σ has 
the rational canonical form. 

1. Introduction 

A matrix representation of a linear transformation of a free module over 
a commutative ring depends on the choice of a basis for the module. 

So, it will be natural to seek a nice basis relative to which the matrix of 
the transformation is expressed in a simple form. On this demand, many 
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excellent forms of linear transformations were devised, say, diagonal forms, 
triangular forms, rational canonical forms, Jordan normal forms, etc., and the 
conditions for them under which linear transformations have such simple 
forms were investigated. 

In the present paper, among those forms, we will be especially attracted 
our attention to the rational canonical forms of endomorphisms of modules. 

It was first introduced by Frobenius in the late 1800s. Since then much of 
the results concerning it appeared and have been expanded in various 
directions. 

For instance Matthews [16] showed that a square matrix A over fields is 
similar to a block diagonal H of hyper companion matrices and gave an 

algorithm to get P satisfying that .1−= PAPH  Also, Huang [9], Beard [3] 
and others pursued the study of the rational canonical forms in various 
situation and obtained many important and useful results. 

However, the methods they contrived were applicable only when the 
scalars form a field or a skew field. 

In this note we will try to deal with the theory of the rational canonical 
forms in some more general setting for the underlying rings, that is, we will 
take a valuation domain instead of a field, and obtain the results stated in the 
abstract. The details of the theorem will be stated in the next section after 
providing necessary preparation. 

On the other hand it is well known that the classical groups have various 
generating systems. Let σ be an arbitrary element of a group. If we fix a set S 
of generators of the group, then the minimal number of factors expressing σ 

as a product of elements of 1−SS U  is called the length of σ and denoted by 

( ).σl  

Dieudonné [5] determined ( )σl  for σ in the various classical groups 

with its generating sets. The generalization of this length problem to 
valuation rings or to semi local semi hereditary rings was achieved by the 
author in 1970s to 1980s (see Ishibashi [10, 11, 12]). 
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One can see in Hahn and O’Meara [7], Knus [13], McDonald [15] and 
Baeza [2], how the theory of classical groups over fields has been developed 
to the theory over rings. 

As for the fundamental results in basic algebra and the rational canonical 
forms are seen in any of Herestein [8], Cohn [4] and Lang [14]. 

2. Statements of the Theorem and the Corollary 

Let R be an integral domain and M be a free module of rank n over R 
with a basis { }....,,, 21 nxxxX =  We write MREnd  to denote the algebra 

over R of all endomorphisms of M over R, and σ denotes an arbitrary element 
in .End MR  We consider the quotient field F of R to be a ring extension of R. 

In other words, we will regard R as a subring of F, and thus F is a module 
over R. 

This allows us to define a coefficient extension M̂  of M by 

( ),1ˆ
1

i

n

i
R xFMFM ⊗=⊗= ⊕

=
 

which is an n-dimensional vector space over F with a basis 

{ }.11ˆ nixX i ≤≤|⊗=  

Therefore, identifying ix  with ix⊗1  for ,...,,2,1 ni =  we take XX ˆ=  as 

a basis for M̂  over F. Further, since R is a subring of F, M̂  the module over 

F is also a module over R, consequently M is a submodule of M̂  over R. 

In the same way we define a linear transformation σ̂  by 

,ˆEnd1ˆ MFF ∈σ⊗=σ  

where F1  denotes the identity linear transformation of the R-module F. The 

endomorphism σ̂  is frequently called a prolongation of σ on M to .M̂  
Clearly ,ˆ M|σ=σ  the restriction of σ̂  to M. We may use σ for σ̂  if their 

matrices are the same. 
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The polynomial ring in t over R is denoted by [ ].tR  Similarly, [ ]tF  is the 

one in t over F. The module M̂  will be given a module structure over [ ]tF  if 

we define the scalar multiplication by ( ) ( ) xfxtf σ= ˆ  for ( ) ( )tFtf ∈  and 

.M̂x ∈  

An integral domain R is called a valuation domain if for any nonzero a 
and b in R either a divides b, or b divides a, i.e., ba |  or .ab |  We know that 

a valuation domain R is a local ring of which unique maximal ideal m is the 
set of all non-units in R. 

For σ in MREnd  if P is the matrix of σ relative to a basis X for M, i.e., 

,XPX tt =σ  we write 

,PXσ  

where Xt  denotes the transpose of X. 

For a monic polynomial 

( ) Fattataatf i
nn

n ∈++++= −
− ,1

110 L  

in [ ],tF  the matrix 

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−−−− −1210

1000

0100
0010

naaaa L

L

L

L

L

 

is called the companion matrix of ( )tf  and denoted by ( )( )tfC  or ( ).fC  

With these preparations we now describe our theorem and the corollary. 
The theorem consists of three results (a), (b) and (c). In (a) we will factorize 
M into a direct sum and compose some σ-invariants direct summands of M, 
and in (b) and (c) we will give some matrix representations of σ relative to 
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some bases for M over R. In the corollary, for a simple ring extension oR  of 

R we will show that the natural prolongation oσ  of σ has its rational 
canonical form. 

To save symbols we will use a letter X to denote various bases for M 
over R if there is no confusion. Also we will say the rational canonical form 
of σ for saying that of the matrix of σ. 

Theorem. Let R be a valuation domain, M be a free module of rank n 
over R, and σ be an element in .MEndR  For the quotient field F of R let 

MFM R⊗=ˆ  and ,ˆ1ˆ MEndFF ∈σ⊗=σ  and for the polynomial ring 

[ ]tF  in t over F let ( ) ( ) ( ){ }tftftf m...,,, 21=F  in [ ]tF  be the system of 

invariants of .σ̂  Further write ( )tfn jj deg=  for ....,,2,1 mj =  

Then, there exist myyy ...,,, 21  in M which are generators of cyclic 

factors of M̂  as a [ ]tF -module, i.e., 

[ ] [ ] [ ] ,...,,2,1,,ˆ 21 mjMyytFytFytFM jm =∈⊕⊕⊕= L  

and for which we have the following (a), (b) and (c): 

(a) There are free submodules mMMM ...,,, 21  of M over R such that 

 (i) mMMMM ⊕⊕⊕= L21  with jjj fMn degrank ==  for =j  

,...,,2,1 m  and if we set ,21 jj MMML ⊕⊕⊕= L  we have 

(ii) jj LL ⊆σ  for ....,,2,1 mj =  

(b) For mj ...,,2,1=  set 

{ }j
n

jjj yyyY j 1....,,, −
σσ=  

and 

.21 mYYYY UKUU=  
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Then, we have a basis X for M over R such that 

,XAY tt =  

where ( ) ( )RMaA npq ∈=  is lower triangular with 0≠ppa  for =p  

....,,2,1 n  

In particular, if ppa ’s are all units in R for ,...,,2,1 np =  then σ has 

its rational canonical form 

( )
( )

( )

,

0

0

2

1

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=σ

m

Y

fC

fC
fC

C
O

  

where { }mfff ...,,, 21=F  in [ ]tR  is the system of invariants of .σ̂  

(c) Relative to X in (b) let B be the matrix of σ, i.e., .XBX tt =σ  Then, 
B admits a partition into blocks such that 

( ),
00
000

321

2221

11

RM

BBBB

BB
B

B n

mmmmm

∈

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

L

L

L

L

 

where jkB  is in ( )RM kjnn  for mj ...,,2,1=  and jk ...,,2,1=  and jjB  

is a sum of a lower triangular matrix and an upper diagonal matrix, i.e., in a 
form 

.
0

00
000

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

∗∗∗∗∗
∗∗∗∗∗

∗∗∗∗

∗∗∗
∗∗

=

L

L

L

L

L

L

jjB  
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Corollary. In (b) of the Theorem there exists a diagonal element a of A 
such that if we set 

[ ] ,, 11 FaaRR ∈= −−o  

a simple ring extension of R in F and 

oooo
i

n
iR xRMRM 1=⊕⊗=    for ,1 ii xx ⊗=o  

then 

{ }nixxX ii ...,,2,11 =|⊗== oo  

is a basis for oM  over oR  and 

o
oo

o M
RR

End1 ∈σ⊗=σ  

has the rational canonical form 

( )
( )

( )

( ),

0

0

2

1

o
O

o
o

o RM

fC

fC
fC

A n

m

X ∈

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=σ   

where { }mfff ...,,, 21=F  in [ ]tRo  is the system of invariants of .oσ  

3. Proofs for the Theorem and the Corollary 

3.1. Proof for the Theorem 

Since F is a field and MFM R⊗=ˆ  is a vector space of dimension n 

over F, there exists a system of invariants { }mfff ...,,, 21=F  of =σ̂  

σ⊗F1  with jf ’s monic for mj ...,,2,1=  and mfff L21 |  in [ ]tF  (see 

Lang [11, p. 151, Theorem 7.7]). 

More precisely for ( ) ( )tFtf ∈  and Mx ∈  if we define a scalar 
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multiplication by 

( ) ( ) ,xfxtf σ=  

M̂  is endowed with a structure of a module over [ ].tF  Hence by the structure 

theorem of a finitely generated torsion module over a PID M̂  is factorized 

into a direct sum of m cyclic submodules mMMM ′′′ ...,,, 21  of M̂  over [ ].tF  

Therefore, if we denote those generators of mMMM ′′′ ...,,, 21  in M̂  by 

{ },...,,, 21 myyy  respectively, we have an expression 

 mMMMM ′⊕⊕′⊕′= L21ˆ  (3.1) 

with 

  (i) [ ] ,1
j

n
jjjj yFyFFyytFM j −σ⊕⊕σ⊕==′ L  

 (ii) ,dimdeg jjj Mfn ′==  

(iii) ( ) 0ˆ =σjf  for mj ...,,2,1=  and 

(iv) .21 mnnnn +++= L  

In (3.1), since F is the quotient field of R, by a suitable scalar 
multiplication we may choose jy  an element in M for ,...,,2,1 mj =  that 

is, we may assume that 

 { } ,...,,, 21 Myyy m ⊆  (3.2) 

in particular, 

jj yy σ=σ̂   for ....,,2,1 mj =  

As we have mentioned in the previous section we have a basis 

{ }nxxxX ...,,, 21=  

for M over R. Also for { }myyy ...,,, 21  above we will set 

 mYYYY UKUU 21=  (3.3) 
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with 

{ },...,,, 1
j

n
jjj yyyY j −σσ=  

i.e., 

{ }....,,,...,,...,,, 1
1

1
11 1 m

n
mm

n yyyyyyY m −− σσσσ=  

Therefore, by (3.1) 

 Y is a basis for M̂  over F. (3.4) 

Further we have 

 XAY tt =  for some ( ) ( ).RMaA npq ∈=  (3.5) 

The following is the key lemma for the proof of the Theorem. 

Lemma 3.1. There exists a basis X for M over R such that A in (3.5) is 
lower triangular with non-zero diagonal elements. 

Proof. For A in (3.5) suppose that there exists r in { }n...,,2,1  such that 

the top left corner of A is an ( ) ( )11 −×− rr  lower triangular matrix, that is, 

( ) ( ) ( ) ( ) ( )

( )

( )

.00

0000
00000

1321

1321

11312111

2221

11

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

−

−

−−−−−

nnnrrnnnn

rnrrrrrrr

rrrrr

aaaaaa

aaaaaa
aaaa

aa
a

A

LL

LL

LL

LL

LL

LL

LL

 

Since by (3.4) Y is a basis for M̂  over F, it is linearly independent over 
F, and so at least one rqa  in { ( ) }rnrrrr aaa ...,,, 1+  is not zero, .nqr ≤≤  

Here, since R is a valuation domain, there is k in { }nrr ...,,1, +  such that 

krrk aa ′|  in R for any ....,,1, nrrk +=′  

Therefore, by a suitable renumbering of the basis elements 
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{ }nrr xxx ...,,, 1+  in X we may assume that ,rk =  i.e., 

krrr aa ′|  in R 

for any ....,,1, nrrk +=′  

From this if we set 

( ) ,1
11

1
nrnrrrrrrrrr xaaxaaxx −

++
− +++=′ L  

we find that 

{ }nrrr xxxxxX ...,,,,...,, 111 +− ′=′  

is still a basis for M over R and relative to which A is expressed as 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

.00

0000
00000

11321

111312111

321

2221

11

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

++

++++++

nnrnrnnnn

rnrrrrrrr

rrrrr

aaaaaa

aaaaaa
aaaa

aa
a

A

LL

LL

LL

LL

LL

LL

LL

 

This, by induction in r, implies that there exists a basis X for M over R 
relative to which A is lower triangular with non-zero diagonal elements i.e., 
we obtain 

 

( ) ( ) ( )
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

−−−

nnnnn

nnn
aaaa

aaa

aa
a

A

L

L

L

L

L

321

312111

2221

11

0

00
000

 (3.6) 

where .0...,,, 2211 ≠nnaaa  ~ 

For X in Lemma 3.1 we define a partition of X as 

mXXXX UKUU 21=  
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where for mj ...,,2,1=  the set jXXX UKUU 21  is the first ++ 21 nn  

jn+L  elements of X. Therefore, if we write 

( )
knnn

j
k j

xx ++++ −
=

121 L  

for mj ...,,2,1=  and ,...,,2,1 jnk =  we have 

{ ( ) ( ) ( )}j
n

jj
j j

xxxX ...,,, 21=  

for ....,,2,1 mj =  

For a subset S of M, we write RS  for the submodule spaned by S over 

R, i.e., 

.,
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈∈|= ∑
finite

R SsRaasS  

Similar notation FS  is adopted to denote the same object over F for R. 

(I) Proof for (a) of the Theorem 

We write 

 Rjj XM =  (3.7) 

for the submodule jM  spanned by jX  over R. Then, since 21 XXX U=  

mXUKU  is a basis for M over R, we have 

 mMMMM ⊕⊕⊕= L21  (3.8) 

with 

jjj fnM degrank ==  

for ....,,2,1 mj =  This is the first half of (a). 

To show the last half of (a) we use Lemma 3.1, so we have 

 ( ),, RMAXAY n
tt ∈=  (3.9) 
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where A is lower triangular with all the diagonal elements non-zero. This 
implies that A is invertible in ( )FM n  and so 

FjFj XXXYYY UKUUUKUU 2121 =  

for ....,2,1 mj =  Hence, 

 .2121 MXXXMYYY FjFj IUKUUIUKUU =  (3.10) 

Since X is a basis for M over R and simultaneously it is a basis for M̂  over 

,F̂  we find that the right hand side of (3.10) coincides with 

 ,,,, 2121 jjRj LMMMXXX =⊕⊕⊕= LK  (3.11) 

i.e., 

.21 MYYYL Fjj IUKUU=  

Since both FjYYY UKUU 21  and M are σ-invariant, so is ,jL  that is, 

 jj LL ⊆σ  for mj ...,,2,1=  (3.12) 

as was to be shown. 

(II) Proof for (b) of the Theorem 

Since Lemma 3.1 is the first half of (b), the rest to be shown is the last 
half. Since the triangular matrix A is in ( ),RM n  if the diagonal elements of 

A are all units in R, Y becomes a basis for M over R. Consequently, we get 
the last half of (b). 

(III) Proof for (c) of the Theorem 

Put 00 =l  and jj nnnl +++= L21  for ,...,,2,1 mj =  so jj Ll rank=  

for ....,,2,1 mj =  Then, observing the form of jjB  in the statement of (c) 

in the previous section, we find that (c) is equivalent to 

 (i) ∑
+

=λ
λ∈σ

1

1

i
i Rxx  if jj lil <<−1  for mj ...,,2,1=  (3.13) 
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and 

(ii) ∑
=λ

λ∈σ
i

i Rxx
1

 if jli =  for ....,,2,1 mj =  

Further, for ( )tf j  in F  if we express 

( ) ( ) Fcttctcctf jh
nn

njjjj
jj

j
∈++++= −

− ,1
110 L  

for mj ...,,2,1=  and ,1...,,1,0 −= jnh  we have 

 ( ) Fcycycycy jhj
n

njjjjjj
n j

j
j ∈σ−−σ−−=σ −

− ,1
110 L  (3.14) 

for mj ...,,2,1=  and .1...,,1,0 −= jnh  

On the other hand, by (3.9) we have XAY tt =  with A lower triangular, 
hence 

 iiiiij
k xaxaxay +++=σ − L2211

1  with kli j += −1  (3.15) 

for mj ...,,2,1=  and ....,,2,1 jnk =  

Substituting the right hand side of (3.15) for j
h yσ  in (3.14) for =h  

,1...,,1,01 −=− jnk  we have 

 ∑
=

∈σ
j

j
l

i
ij

n Rxy
1

 for ....,,2,1 mj =  (3.16) 

Now we start our proof for (c). Since (c) is equivalent to (3.13), we prove 
(3.13) by induction in i for ....,,2,1 ni =  Let us assume that (c) holds for 

0=i  and so .1≥i  

First we treat the case (i) in (3.13), i.e., we are in case where <−1jl  

.jli <  So we have ,1...,,2,1 −= jnk  if we set .1 kli j += −  This enable 

us to apply (3.15) to ( )1,1 ++ ki  for ( )ki,  and we get 
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 ( ) ( ) ( ) ( ) ,111221111 +++++ +++=σ iiiiij
k xaxaxay L  (3.17) 

where 11 1 ++=+ − kli j  for mj ...,,2,1=  and .1...,,2,1 −= jnk  

Multiplying the both sides of (3.15) by σ, we have 

iiiiij
k xaxaxay σ++σ+σ=σ L2211  with kli j += −1  

for mjni ...,,2,1,...,,2,1 ==  and ....,,2,1 jnk =  

Since by Lemma 3.1 0≠iia  for ,...,,2,1 ni =  this gives us 

 ( ( ) ).112211
1

−−
− σ−−σ−σ−σ=σ iiiiij

k
iii xaxaxayax L  (3.18) 

Substituting the right hand side of (3.17) for j
k yσ  in (3.18), we have 

 ( ) .
1
1

1
11

1 ⎟
⎠
⎞⎜

⎝
⎛ σ−=σ ∑ ∑+

=λ

−

=μ μμλλ+
− i i

iiiii xaxaax  (3.19) 

Therefore applying our inductive hypothesis in i to ∑ −
=μ μμσ
1
1

i
i xa  in (3.19), 

we have 

∑ ⊕−

=μ μ=μμμ ∈σ
1
1 1 ,

i i
i Rxxa  

hence (3.19) yields 

 ⎟
⎠
⎞⎜

⎝
⎛=σ ∑ +

=λ λλ
− 1

1
1 i

iiii xbax  (3.20) 

for some .Rbi ∈λ  

Here since ixσ  in (3.20) is in M, so is the right hand side of (3.20). 

Further, since { }nxxxX ...,,, 21=  is a basis for M over R and simultaneously 

a basis for M̂  over F, we conclude that λ
−

iii ba 1  in (3.20) belongs to R for 

,1 jj lil <<−  mj ...,,2,1=  and .1...,,2,1 +=λ i  Thus we have proved 

(i) of (3.13). 
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Next we show (ii) of (3.13), i.e., ∑
=λ

λ∈σ
i

i Rxx
1

 for .jli =  Since =i  

kl j +−1  in (3.15) we have ,jnk =  hence (3.15) implies that 

,2211
1

jjjjj
j

lllllj
n xaxaxay +++=σ −

L  

and so multiplying the both sides of the equation above by σ and rearranging 
the terms we have 

.
1

1

1
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
σ−σ=σ ∑

−

=μ
μμ

−
j

j
j

jjj

l

lj
n

lll xayax  

Hence by (3.16), (i) of (3.13) and the inductive hypothesis for (ii) of (3.13) 
we obtain 

.
1

1 ⎟
⎠
⎞⎜

⎝
⎛=σ ∑ =μ μμ

− j
jjjj

l
llll xcax  

Now in the same way as the proof for (i) of (3.13) we find that μ
−

jjj lll ca 1  

is in R for ,...,,2,1 mj =  which verifies that (ii) of (3.13) holds. 

Thus, we have proved (c), and completed the proof for the Theorem. 

3.2. Proof for the Corollary 

Let S be the set of diagonal elements of A in (b) of the Theorem, i.e., 

{ }....,,2,1 niAaS ii =|∈=  

Since 0≠iia  for ni ...,,2,1=  and R is a valuation domain, we have an 

element a in S such that a is a multiple for all iia  in S, i.e., 

aaii |  in R for ....,,2,1 ni =  

Then, if we set [ ],1−= aRRo  then A  is a unit in oR  and thus the last half 

of (b) of the Theorem gives us the corollary. 
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