
On topological completeness of decorated 

exponential families 

Masahiko Taniguchi 
D epartmentof Mathematics , 

Graduate school of Science, 

Kyoto University 

Abstract 

In this paper, we give two kind of proofs of topological complete-

ness of decorated exponential families. 

1 Introductioll and nlain reSultS 

As stated in [5], the exponential family and the sine family. are topological 

complete in the following sense. 

Definition We say that a f.amily of entire functions is topologically complete 

if any entire function topologically conjugate to an element of it is actually 

conformally con.jugate to an element of it. 

First, recall tha,t topological completeness of the exponential family fol-

lows from the classical result as below'. 

Proposition I Any holo?T2;orphic universal covering surface of C~ - {O} is 

conformally equivalent to the whole plane, say C(. Moreover, the covering 

p'rojection 7r is represented as 

w = 7r(() = e"c+b 

with suitable a (~ O) and b. 
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Similarly, since any element of the sine family is the projection of a holo-

morphic universal covering of the orbifold of (0,3;2, 2, oO) type, the sine 

family is topologically complete. 

But topological completeness seems to be known for few other families. 

Some exceptions are decorated exponential families. Such families has been 

getting more and more attent,ions. See [l], [4], [6] and [8]. 

In this paper, we give two proofs of the following 

Theorem 2 For any positive integers k and n, the doubly decorated expo-

nential family 

f:h,~ = {P(z) exp Q(z)}, 

where P(z) and Q(z) move over all polynomials of degree k and n, respec-

tively, is topologically complete. 

Remark The first proof of Theorem 2 in S9_ is essentially due to Keen [3] 

and Stallard [7], and relies on quasiconformal maps. The second one in S3 

is more elementary, and gives concrete information of the covering structure 

induced by an element of the fa,mily. 

On the other hand, the additively decoreted exponential families such as 

considered in [8] are not topologically complete. We only state the follo¥ving 

Theorem 3 The family 

f:+ = {z+a+e' I a ~ C} 

is not topologically complete. 

We prove Theorem 3 in S4 by giving an entire function quasiconforma.1ly 

conjugate to an element, but conformally conjuga.te to no one, of f:+' 

2 The frSt proof of Theorem 2 

We begin with the following 

Lemma 4 Let g be topologically cor~jugate to some f(z) = P(.-) exp Q(z) ~ 

J::k.~. Then g is quasiconformally equivalent to f, namely, there are quasi-

conformal maps ~/)1 a,nd ip2 of C such that 

ip of =gorpl' 
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P'roof. Let (p(z) be a homeomorphism of C onto itself such that ~a f = go fP, 

and Ef be the set of all singular values of f. Since Ef is 'a finite set, there is 

an isotopy (1) relative to Ef ¥vhich connects ~) with a quasiconformal map 11)2. 

By the assumption, we can lift ~> to an isotopy. ~ such that g o ~ = ~ o f. 

And ~ connects ~ with a quasiconformal map '~/)1 satisfying ~,/)2 o f = g o 1/)1' 
~
l
 

The first proof of Theorem 2. We ma,y assume that ~(O) = O. Then since 
f-1(O) and g~1(O) have the same number of points counting multiplicity) we 

find a polynomial I~(.-) of degree k such that g(z)/R(.*) has no zeros. I"'1ence 

we can write g(z) as I~(z) exp h(~'-) with an entire function h(z). 

Since quasiconformal maps are H6lder continuous, there are some K > l 

and A > I Such that 

4-ljzll/K < Jip.(z)j < 4lz] . _ j _. I( 
for ea,ch j and every z ¥vith sufficeintly large lzl･ Hence on {Izj = 7'} wlth 

large r, we have 

l9(z)1 = i~)!2 a f o t/)~1(z)1 ~ All~rf(f, AI(rK)IK 

where M(f,7') = ma,xlzl=r If(.-)1･ Here since f e f:!'-,n' Iog IM(f,AJ(rl¥')jlt' 

has a polynomial growth order with respect to r. Hence there are some C 

and N such that 
jRe h(z)1 ~ CrAf 

for every z with sufficeintly large lzj, which implies that h(z) is a polynomial. 

Finally, Iet n/ be the degree of h(z). Then g(z) has exaxtly k + n! _ 1 

critical points including multiplicity~ ~vhich should equals to k + n - l. Thus 

3 The second proof of Theorem 2 
We give here a more elementa,ry proof of Theorem ~-. For this purpose, fix an 

entire function g which is topologically equivalent to an element f in f:/..,n' 

Let fP('*) be a homeomorphism of C onto itself Such that fP o f = g o ~, and 

we again assume that ~(O) = O. For the sake of simplicity, we explain only 

the case that Q(z) = z and f(z) = P(z)e' has exactly k non7.ero critical 
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values, and let f;k be the set of all such P(z)ez. Other cases can be treated 

similarly. 

First, we apply a cut-paste surgery to f; namely, Iet {aj}~ I be critical 

values of f, and take mutually disjoint smooth arcs {Lj}; I on C - {O} start-

ing from aj and tending t,o oo. Consider f as a (branched and incomplete) 

covering of the target Cw of f by the domain Cz of f. (So all aj and Lj a,re 

on Cw') Cut Cz along all lif'ts of Lj with respect to this covering. Then Cz 

is decomposed into k + I components, say {Rl' ' ' " I~k, S}. Each component 

ca,n be re-pasted over Lj' and we have k + I Riemann surfaces spreading 
holomorphically over Cw' Here, h of thern corresponding to {I~l' ' ' " I~k} 
are holomorphic universal covering surfaces of Cw' den.oted by {~l' ' ' " ~k}, 

while the remaining one, say S, is a holomorphic universal covering surface 

of Cw ~ {O}. 

As noted above, f restricted on S considered as a subset of S, which in 

turn we denote as Cc, can be expressed as 

fls(~) = ea~+b 

¥vith suita,ble a and b. 

Definition ~~re call S the exponential part of the covering surface Cz' and 

each Rk a C-decoration. 

Conversely, such decoration structure characterizes the family f:k. See 

Proposition 9. 
We begin with the definitions. Let So be a universal covering surface of 

Cw ~ {O}. We decorate k copies Rjq of the whole plane inductively as follows: 

tal{e mutually dlsjoint h arcs {L~} sta,rting from a point in Cw ~ {O} and 

tending to oo. Fix a lift of L~ on So a,nd decorate R~ by connecting crosswise 

a,long this lift. Then, ¥ve have a branched incomplete covering of Cw' Next 
we fix a lift of L~ to this new covering surface, and decorate R~o along the lift. 

Repeating this process, we have a branched and incomplete covering surface 

D of the whole pla,ne. 

Definition We call D a k-th decorated exponential covering surface, and 

the projection 7r to Cw a k-th decorated exponential functio'/~. 

The domain D of 7r is clearly simply connected. Moreover, the following 

fact is essentia.1ly well-known. 
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Lemma 5 Every k-th decorated exponential function 7r can be regarded as 

an entire furhction. 

Proof. For the sake of convenience, we include a standard proof. Roughly 

speaking, on the neighborhood of the infinity, the covering structure is the 

logarithmic one, and also so does for the non-compact component of the 

covering surface restricted on a neighborhood of O. Thue we can conctruct a 

ring domain with atrbitrary large modulus as follows. 

First fix A < (1 <) ~ so t,hat {A < Iwl < L}} contains all critical values. 

Fix a positive N so large tha.t each crirical points are contained in some pth 

sheet with lpl ~ N (under a suitable choice of the O-th sheet of So). Take 

a suficient',ly large n (> N). When lpj ~ N, then let Wp be the part of the 

p-th sheet of So over 

{A/?~. < Iwj < .4} U {B < jwl < B7~,}, 

possibly ¥vith the part of R3q decorated to the p-th sheet over {B < Iwl < Bn}. 

V~7hen jpj > N, Iet T,Vp be the part of the pth sheet over 

{A/n < {wl < ~in}. 

Then the union T'V = U:pn=_* Wp can be considered as a doubly conneted 

region on the domain D of 7r. Define the conf*ormal density p on W as 
follows; on T/Vp with lpl ~ IV, we set p as the pullback of Idw:llwl by 7r, and 

on any other Wp, we set, p as the pull-back of Idwl/(plwl)･ Then, we can 
see that the plengt,h of any arc connecting boundary components is greater 

than Clogn with a positive C independent of n. Since the parea of W is 

n 2 Iog n + Iog(BIA) 
4(2N+k+ l)7rlogn + 47r ~ 

p=N+1 p2 
we can conclude that the modulus of T'V is greater than C/ Iog n with a positive 

C'! independent of n, which shows that the domain D of 7r is conform'ally 

equivalent to the whole plane. E 
Now, the covering struct.ure of 7r depends on the choice of the isotopy cl'ass 

of the arcs {L~} relative to end points, and the configuration tree induced 

from the order of the C-decora,tions. 
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Definition The configuration tree for a kth decoreated exponential function 

consists of vertices {rl' ' ' " rh, n ~ Z}; ¥vhere each rj represents R3q and each 

n represents the n-th sheet of So and they are connected by sides which are 

given by the following injunctions; 

l. Add one side connecting n ¥vith n + I f'or every n. 

2. Add one side connecting rl with O (, which determines the O th sheet 
of So) . 

3. Add one side connecting r2 W~Ith rl if R~ is connected to R}. And if 

not, some sheet, say n2-th sheet, of So is connected with R~. Then Add 

one side connecting r2 with n2. 

4. Add one side connecting rj ¥vith one of {rl' ' ' " rj-1' n c Z} by similar 

injunctions as in (3), for every j > 2. 

The configuration tree determines a k-th decorated exponential function 

in the following sence. 

Lemma 6 Suppose that two k-th decorated expo'rbential function hl and h2 

has the same singular values and the same configurati072; tree (with respect to 

the same cut arcs), then there is a conformal a,utomorphism A of the whole 

plane such that 

hl=h OA 

Proof. Let Sm be the exponential part a,nd {RI~} the C-decorations for 

each m = 1,9_. Then there is a conformal map Ao : Sl ~> S2 such that the 

branch point for Rl is sent to that for R~ and ~2 o Ao o ~rl is the identitical 

automorphism of C', where 7r^m is the natural projection of Sm. Then Ao 
can be extended to a biholomorphic maps from Sl decorated with R~ to S2 
decorated with J~,~, which should send the branch point for j~;; to that for 

R~･ Repeating this, we have an af~ne map A as desired. u 

On the other hand, every h-th decorated exponential covering surfaces 

can be realized by an element of f:!" To sho¥v thls, first we recal] that 

critical values moves biholomorphica.1ly with respect to coefficients of monic 

polynomials in the following sense. 
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Lemma 7 Let Po(z)e~ be a,n elerr~ent of 'F/e ?~)zth a momc poly?aornsal 

po(z) - k o k-1 o - +c,kz ~ "' +cl -+ 
and mutua,lly differ'ent nonzero critical values ao = (a~s ' ' " a~)･ Then the 

7'rbap from c = (cl' ' ' ' ~ck) to a = (al~ ' ' ' ~ ak) is bihol07norphic i?~ a neighbor-

l?,ood of co = (c~~ ･ ･ ･ ~ c~). 

Proof. First~ since critical points p = (pl' ' ' ' ~p/f') of Po('*)ez are zeros of 

p(z) + p/(.')~ p is clearly a holomorphic funct',ion of c, and 

(p + p!)!(pj) Opj = p;~1 - (~ - l)pL 2 

ac! 

I-Iere by the assumption~ (P + p!)!(pj) is nonzero for e¥'ery j~ 'and hence the 

.Jacobian is non-degenerate. 

Next~ since a = (P(pl)ePl ' ' ' ~ p(pk)ePk)~ we have 

~
 

3 ( ! 3 3 + p;~1) eP; + p(pJ)e ;~ L~1 Pj acL P (p )ac Pjac Pj e 
I-Ience} we conclude the a,ssertion. il 
Actually~ for every point p = (pl' ' ' ' ~Pk) in the region 

~ {p (pl' ' ' ' ~pk) C Ck I n(pi - Pj) ~ O}, 

i *" j 

it is ea,sily to give an element of f:/~ with monic polynomial which has the 

critical points p. And we have shown that the map (1) from ~ into Ch 

¥vhich sends p to critic'al values a of the corrsponding element, is locally 

biholomorphic. 

So set 

, ' ' - ~ ak) e ct I al ' ' ' ak (ai - aj) ~ O}, ~/ = {a = (al H 
i~ j 

and consicler to tal{e lifts of a,rcs in ~/ starting frc'm ao with respect to ~>, 

where ao is as in Lemma, 7. And we have the f'ollowing 

Lemma 8 The germ of ~~-1 which sends ao to po can be continued ana-
lytically along a7?,y aT'c ?;n ~! starting f'rom aa, where po corresponds to co in 

Le'm,rrta '/. 
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〃ooヅ　Suppose　that　there　were狐arc7：〔0，1］→Ω∫st趾ting　fmm　ao　which

can　not　be　lifted　intoΩfrom　po　wi曲respect　toΦ．Further，we　may鵬sび㎜e

that7：〔0，d→Ω1h鎚sし三ch　a1ift　foぎeveryブくユ．

　　　If　the　end　of　the1ift　of7：［0，1）→Ω’from　po　a㏄umu1ates　to　a　point

ofΩ，theハby　the　fact　mted　before　Lemエna8，we　wou1d　have　a1三ft　of　the

whole　given趾cγSo　the　end　shoωd　diverge　to　the　boしmdary．Here　since7

is　inΩ1，the　end　can　not　tend　to　the　re1就ive　boしmdary　ofΩin　Cん．Hence　it

diverges　to　the虹丘nity－B砒then，7sho辻ild　end　at｛α1…　αん二〇｝ordiverge

to　the　in丘nity，which　is　imposs1b1e。　　　　　　　　　　　　　　　　　　　　　　鰯

　　　Th蝸per加rbation　ofαitica王va1ues　can　be　realized　by　e1e㎜e皿ts　ofアんwith

nユonic　po1ynon1ia1s，and　hence　we　c＆n　defor巫ユaん＿th　decorated　exponenti＆1

fしmction　within　the　f＆㎜i1y汽rather缶ee1y．Thus　we　have　the　fonowing

Proposition　g　r加∫α肌物アんco枇α伽5α〃ポ肋加coザα亡θ6εηoれε？協α1加7zc一

伽れ3m0〃0C㎝∫0ブ肌α／C0ψg肋01Z。

Pザoo∫．Fix狐e1en｝entんo　of汽with　a　monic　po｝yno㎜iaI　and　aポth　decoどated

⑧xponenti＆五fしmctionπo　arbi枕alr三且y．First，by　starting　fro㎜んo　and　moving

critical　va五ues　ofんo　so　that　they　aダe　a1ways㎜帆ua11y　distincも，we　obtain　by

Lemma8狐element　in汽whose　critica1vah三es　is加st　the　s＆㎜e鎚those　of

πoi㏄1udingtheorde・。

　　　When　the　c㎝丘guration　trees　are　not　th♀same，we　deform　it　by　moving

each　cr三tica1vak亘e蹴oしmd　a巫other　c五枇ica1va玉ue　or0．Then　again　by　Lem㎜a

8，appIying丘nite肌1mber　of　sエ1ch（ieformations　a1ong　sし正itab1e1oops，we　can

geta・elementんof汽whichhasthesamec㎝丘gurationtreeasthatofπo．
　　　Then　by　Le㎜ma6，we　can1ift　the　ide砒ical　map　between　the　target　p1anes

of　the　exponentia1p肌ts　to　a　conforn泌1n泌p　A　of　the　domai皿ofπo　sえlch　that

　　　　　　　　　　　　　　　　　　　　　　　　　　　πOOA＝ん．

This　imp1ies　thatπo　is　confomユaHy　con加gate　to狐eIeme航of汽。　　　　鰯

丁んe3εcoク〃ρrooヅo∫τ加oザεm2．　Now　back　to　g　in　the　beginning　of　this

sect三〇n，it　is　c1ear　that　g　gives　aん＿th　decorated　expo皿entia1covering　sむrface，

forgis　topo1ogicauyconjugateto∫．HenceProposition　ggives　the＆sse1’tion．

鰯



4 A proof of Theorenl 3 

To show Theorem 3, ,,ve ta.l{e ao So that each critica,1 values of f (z) = .~+a0+e' 

belongs to mutually distinct attr'active basins for fixed points of f. For 

instance, take l/'- as ao' 

The grand orbits of such attractive basins are mutually disjoint. The 

c',rutial fact is the following 

Proposition 10 For every g ~ J::+, the complex dynamics oJ'g is invar'iant 

u'!~der conjugation by th,e translation T(z) = -' + 9-7ri, 

g = T o g a T-1, 

Proof of Theorem 3. Fix the grand orbit of an attracti¥'e basin D of f, 

ancl denote it by [D]. (See [2] and [8] for terminologies and fundamental 

facts.) For an ,invaria,nt", Beltrami coefficeint /h supported on [D], Iet rf)/~ be. 

a, quasiconformal map of C with t,he Beltra,mi coefficient /1 on [D] and O on 

C - [D]. Thcn g = ip o f o ip-1 ¥vith ip = ip!~ rs aga,in 'an entire function and 

ip([D]) is the grand orbit of an attr'actlve basin of a fixed point of g. Since 

the Teichmtiller sl.)ace of I~ = [Dl/f is non-trivial, we can choose pt so that 

ip[D] gives a once-punctured torus not conformally equivalent t.o R. 

IIere the grand orbit of any other attractive basin of g still gives the same 

I~. Thus ~ve conclude that g does not belong to J::+ by Proposition lO. ~
 

Remark Actually, we have sho~vn that f:+ rs not qu~d,siconf'ormallv. complete. 

Also note that, ~vhen ¥*,'e st,art with 

f(z) = z + I + e~, 

then e¥'ery critical point of f dcterrnines a superattractive basin. And ¥ve 

can not deform f cluasiconformally on the grand orbits of such basins. The 

situation is similar ¥vhen we start with 

.~ + ez, 

which has infmitely many Baker domains (cf. [8]). 
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