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Abstract

We study the dynamics of the two—parameter family of skew tent
maps, namely how the change of the behavior of the map is depending
on parameters. So we decompose the parameter space by the nature
of periodic points. Especially we prove that the form of attracting
orbit is of stair type and give an explicit proof of the monotonicity of
kneading sequence.

1‘ Introduction

Dynamics of the family of skew tent maps has been studied in, for exam-
ple, [ITN79] and [MV91].

According to J. Milnor[Mil85], ”attractor” is defined as the set which
attracts almost all orbits in the neighborhood. To say precicely, the set A
is called attractor of f when it satisfies the following four conditions:

(1) Ais a closed set.
(2) /(4 =A

(3) The set A has a neighborhood U such that nanQO f™(z) € A for almost
alz e U.

(4) There exists a point z € A whose orbit is dense in A.

If attractor A is a set of k points, then each point in A is mapped to itself
under f¥ and called attracting k—periodic point.
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Suppose that z is a k—periodic point of f and f is differentiable on the
neighborhood of orbit of z. If |(f*)/(x)| < 1, then z is attractive.

According to R. L. Devaney [Dev89], the dynamics of f defined on X is
said to be chaotic if f satisfies the following:

(1) f has sensitive dependance on the initial condition; there exists 6 > 0
such that, for any x € X and any neighborhood U, there exists
y € Uz and n > 0 such that |f*(z) — f*(y)| > 6.

(2) f is topologically transitive; for any pair of open sets U,V C X there
exists n > 0 such that ffUNV # ¢.

(3) periodic points are dense in X.

For twomaps f: V — V and g: U — U, if there exists a homeomorphism
h such that ho f = goh, then f and g are said to be topologically conjugate,
denoted by f ~ g. The map h is called topologicall conjugacy.

/

For the next family of skew tent maps on N S S ;
R, a quite different bifurcation occurs,
compared with the one which occurs for
the logistic family g, (z) = uz(1—z) with
3<u<4

az + , forz <0
F,,(z):{ #

—bz+p, forz>0 =
where 0 <a <1, b> 1 Figure 1: The graphs of F,
for p =1, =2, where a = %,
b=6.

First let us fix a,b and think p as the parameter. Then a bifurcation
occurs at z = 0 and p = 0 (see [NY95]). If we take a = £ and b = 3.2
(resp. 4.14,4.42 or 5.5), bifurcation diagrams are given in from Fig.2 to Fig.
5. In Fig.2, the family exibits a bifurcation from an attracting fixed point
to attracting 3-periodic points. In each Fig.3, 4, 5, the family exhibits a
bifurcation from an attracting fixed point to attracting intervals on which
F,, is chaotic. From these figures, we can see that there are various types
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with respect to what bifurcation occurs at ;£ = 0. On the other hand, for
any u > 0, there does not occur new bifurcation as long as the parameter
pair (a,b) is fixed. It is because F,, ~ F; for all x> 0.

Figure 2: a = 3, b =32. F, Figure 3: a = §, b = 414
exhibits bifurcation from an at-  F), exhibits bifurcation from an
tracting fixed point to attracting  attracting fixed point to six at-
3—periodic points. tracting intervals. F), is chaotic

on those intervals.

In this paper, we will study the characterization of an attracting periodic
orbit of skew tent map. After this, for example, we will see when the
bifurcation like as Fig. 2 occurs.

We remark that putting the results in the sequel paper [ITO] in this

volume together, we can completely obtain the partition of D in terms of
the characters of dynamics of fg.

For our purpose, we have only to fix 4 = 1 and analyze the dynamics of
fap with the following parameter plane D:

D = {(a,b); a>0, b>1, a+b>ab}.

_ az + 1, forz <0
fap(z) = { Cbotl  forz>0 , where (a,b) € D.

We expand the range of the parameter a from {0 < a < 1} to {a > 0}.
If a +b < ab, almost all orbits tend to —oo; if a + b > ab, then the orbit
of z in R\ I, tends to either the interval | 3’,)(0), fap(0)] or —o0, or =
is a fixed point itself. Therefore the restriction {a + b > ab} is reasonable.
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Figure 4: a = §, b = 442. F, Figure 5: a = %, b =55 F,
exhibits bifurcation from an at-  exhibits bifurcation from an at-
tracting fixed point to three at-~ tracting fixed point to one at-
tracting intervals. F), is chaotic  tracting interval. F), is chaotic
on those intervals. on the interval.

Hence we find that it is sufficient to examine the dynamics of fap on Igp,
where we denote oy = [f2,(0), fas(0)].

2 Attracting region of D

In this section, we shall characterize the regions where f,; has an at-
tracting orbit.

For £ > 2, Set

1 1 1 1
D, = {(a’b)ED;1+E+”.+E_—2<bS1+E+'“+F}7
Di = {(a,b) € Dy; bl < 1}.

Proposition 1 A boundary of Df is determined by algebraic curves.
These curves have the following defining equations: :

1 1
ak"lb-—-l, b:1+-++'—k—_—§-
a a

1
These curves intersect at only one point P, and klirn P, = (5, 00).
—00
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Proof. The equation a*~1 +-.- 4+ a = 1 has a unique positive root, and so

1
P, is unique. Obviously, it is smaller than 1. Since 1+ 5 + 2z +...=1

the root converges to a = % as k — 0o. And the value b diverges to co. O

j—

| 1025 108 1025

Figure 6: The domains Df and boundary curves

For our purpose, we refer some results from the paper [ITN79].
First, let us prepare the following intervals and subdomains of D.

IL = {f2(0)3 0]7 IR = [07 f(O)]:
Dy = {(a,b) € D; ab> 1, a+b> ab?},

D; ={(a,b) € D; a+b < ab?, b<l+-i—}.

For £ > 3,
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DE = {(a,b) € Dy; a*1b> 1,0+ b > a*1b%},
Dy = Dy \ (D UDg),
D* ={(a,b) € D; a > 1,a+b < ab?}.

In the last two equations above, we note that DZ = Dy and D} = D; for
k=2

In the following Fact 1 and Fact 2, we suppose that (a,b) belongs in the
interior of D), for k > 3.

Fact 1  Set
o = 1—a—b+dk_1b m*_—ak_2b2+b2—b+ab+1—a
N (I TG R s (1 —a)(1— ak—2p2) ’
~1+aF2 .
zo and Iy = [f25(0), =]-

ak-2(1 - a)’

Then the point zg is mapped to z = 0 under ff’gz , and both z, and z* are
k-periodic points of f,; with ff’b(O) < z4 < z9g < z*. Moréover, if (a,b)
is in D\ Dj, then almost all points in I3 tend to the interval Iy under
iteration of f4p.

Fact 2 In order to analyze the dynamics of f(’f, pl1o» @ function gq g is
introduced as follows:

e s(z) { az, for0<z < %
o,3 = + 1
B+ forl<az<i

1 1
where (o, ) such that & > 1, > 0 and — + = > 1. As Iy is invariant
o

g

under f"f, b ff’bl I, is topologically conjugate to go s With some 8 < 1. If
B < 1, then the orbits of almost all points in [0, 1} tend to the fixed point
T = a%ﬁ_:% under the iteration of g, 3. The attracting fixed point for g, g

corresponds to z, for ff, blIo- Therefore almost all orbits in Iy under ff’b
tend to T..

According to J. Milnor and W. Thurston in [MT88], we will define turning
point as follows.

Let f be a continuous map on the interval I = [¢g, ¢;]. We suppose that [
is decomposed into finite maximal intervals, J; = [¢g, ¢1], -+, i = [a-1, a]
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with ¢g < ¢; < --- < ¢, and each restriction f|;; is monotone map. Then
these endpoints ¢, ¢1, - -, ¢; will be called turning points of f.

We obtain the following result for the turning point z = 0 of the skew tent
maps. This result is quite different from the case of differentiable map.

Proposition 2  The periodic turning point of f, 3 is not attractive.

Proof. Put f,p = f. If the turning point of f7 for some j > 1 is a fixed
point, then the orbit of z = 0 and f2(0) also have the period j. For each
region in D, we will prove the claim.

o (a,b) € Dq

There exist subintervals of I, , Lo = [£2(0), f4(0)}, Ly = [f3(0), £(0)]

‘such that LoNL, = @, fLy = Ly and fL; = Lg. There is no
attracting periodic point in the interval (f4(0), f3(0)) since each orbit
in Inp \ {1 — £} tends to Lo or Ly. If an attracting periodic point
exists in LgUL1, it must have even period as Lg and L; are mapped to
each other under f. Let us suppose the orbit of z = 0 has 2j—period.
Then on any differentiable point z in Lo U L1, |(f%7)(z)| > (ab)? > 1
since (a,b) € Dg and fLy C Ir. Hence even if z = 0 is a periodic
point, it is not attractive. The graph of f% on the neighborhood of
z = 0 is like as Fig.7 or Fig. 8.

Figure 7: Figure 8:

. (a, b) € D,

If f has j—periodic orbits, then we have j > 2 and |(f7)'(z)| > 1 for
the point z on which f is differentiable, since fI;, C Igr and b > 1.
Hence even if z = 0 is a periodic point, it is not attractive. The graph
of f7 on the neighborhood of z = 0 is like as Fig. 7 or Fig. 8.
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e (a,b)e DP for k>3

Recall that there exists k—periodic point of f z* and the interval
Co = [f*(0),z*] is f*~invariant. Therefore the orbit of f2(0) has a
period with the form j x k for some j > 0, so does the turning point
0. Because, for any orbit, at most k — 1 succesive images can stay on
the interval Ir, |(f*9)(z)| > (a*~1b)7 > 1 for the point z on which
f is differentiable. Hence even if x = 0 is a periodic point, it is not
attractive. The graph of f7* is like as Fig. 7 or Fig. 8.

o (a,b)e Difor k>3

It is easy to see that [f2(0),z*] is not invariant. Hence f2(0) is j-
periodic point with j > K. Because, for any orbit, at most k — 1
succesive images can stay on the interval Iy, |(f*)(z)| > (a*~1b)7 >
1 for the point z on which f is differentiable. Hence even if z = 0 is
a periodic point, it is not attractive. The graph of f7* is like as Fig.
7 or Fig.8.

o (a,b) € D*
Since a > 1 and b > 1, the graph on the neighborhood of turning
point x = 0 is like as Fig. 7 or Fig. 8. Therefore z is not attractive.
e (a,b) € D and a¥ b #1
For k > 3, if a¥71b # 1, the orbit of f2(0) under f* is attracted to z,
by Fact 1. This contradicts that turning point is periodic.

1-b
For k = 2, it is easy to check by setting z, = T ab’ that z, is 2-

periodic point and that f2(0) tend to z, under f2,. Therefore turning
point cannnot be attractive and periodic.
o (a,b) € Dff and a* 10 =1

For both case of k = 2 and k > 3, the orbit of z = 0 has period 2k.
But the graph of f2* is like as Fig. 9 or Fig. 10, it is not attractive
in the sense of [Mil85].
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Figure 9: Figure 10:

Definition The periodic orbit will be called of stair type when it satisfies
the following conditions:

0@ = {zf@), - @},
z(=fH2)) < f@) < <) <0< ).
We remark that the following result is implicitly stated in [ITN79].

Proposition 3  Skew tent map f,; has attractive periodic orbit if and
only if (a,b) is in the interior of D{.

Proof. 1If (a,b) is in the interior of Df for some k > 3, then f,; has an
attractive k—periodic point z, by Fact 2. If (a,b) is in D4, by setting
1-b
T 14ab
points in I, 4 tend to z, under fZ,. And the orbit is of stair type.

Now we prove that only if (a,b) is in the interior of D§, f,, has an
attracting k-periodic point. By Proposition 2, the orbit of turning point
is not attractive. Therefore in neighborhood of the periodic orbit, there
exists an open interval where the itinerary is same. This cannot happen if
(a,b) ¢ UX,D# by virtue of Lemma 2.1 in [[TTN79]. Hence if f, 5 has an
attracting periodic orbit, there exists unique k such that (a,b) € Df. On
the other hand, for (a,b) on the boundary of D{!, there is no attractor in
the sense of [Mil85] (see Fig. 9 and Fig. 10). o

For the case of differentiable map with one critical point, the following
result is well known by using the method of Schwarzian derivative (see for
example, [Dev89], p.74). But despite of the indefferentiablity, it is worthy
of notice that we have the same result.

Ty it is proved that z, is 2—periodic point and that almost all
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Lemma 1  f,; has at most one attracting periodic orbit.

Proof. Suppose that f,p has attracting k~periodic orbit. By Proposition
3, it is the orbit of z,. By considering this and Fact 2, f, 4 has at most one
attractive periodic orbit. O

By the argument above, the attracting periodic orbit of skew tent map
is characterized as follows.
Theorem The attracting periodic orbit of f,p is of stair type.
Proof. The proof will immediately follow by Lemma 3 and Lemma 1. O

3’ Monotonicity of kneading sequences

We first introduce the concept of symbolic dynamics.
For z € I, and j > 0, we associate fib(z) with a symbol s7(z) as follows :

L, if fI,(z) <0
si(z) =< C, if fl,(z)=0
R, if f,(z) >0

For z € I,p, the sequence {s/(z)},5, is called itinerary and denoted as
Sap(z). Kneading sequence of f, 5 is defined as Sap(1) and will be denoted
by K(a,b). If there exists 7 > 0 such that fj,b(l) = 0, then we regard that
K(a,b) is a finite sequence, which is ended with C.

In this section we will mention the monotonicity property of kneading
sequence in the domain

D = {(a,b) € D; a >1}.

Let us define the order for parameter pairs as follows, according to M. Mi-
siurewicz and E. Visinescu [MV91]:

(a,b) = (d/,t') & a’ > a, ¥’ > b, and at least one of these inequalities is strict.

Kneading sequences are monotone increasing with respect to this order.

Monotonicity Theorem (Theorem A in [MV91]) For (d/,b'), (a,b) in
D with (a/,b') > (a,b), it holds that K(d/,t’) > K(a,b). '



o=

o -

Figure 11: The domain D

This theorem is already proved in [MV91]. M. Misiurewicz and E. Visi-
nescu showed the claim by using the estimation of topological entropy. But
we shall reprove it by using only thier results for D* in [MV91], and renor-
malization method, not via the topological entropy. For that purpose, we
show Proposition 5, Proposition 6 and Proposition 7.

3.1 Preliminaries

In order to prove our Monotonicity Theorem, we summarize some defi-
nitions and facts for symbolic dynamical systems.

¢ Finite symbolic sequence M is said to be even (resp. odd) if M has
an even (resp. odd) number of symbol R.

e Order between two itineraries is defined as follows:
Set .Lzlojl"’InIn+1"': andlz JoJl -'-Jan+1
Assume that I = Ji for 0 < k < n, Iny1 # Jnt1-

Ity < Jpy1, if Iply---I, is even
L=<l { Inp1 > Juya, if Ioly -+ I, is odd

where L < C < R.

e Symbolic sequence M is said to be admissible if M is an infinite
sequence of L and R, or if it is a finite sequence of L and R, ended
with C.



e Symbolic sequence M is said to be mazimal if it is admissible and
% (M) < M for all k > 0, where o is shift map i.e.

o(M) = (M M;---) for M = (MoM; --).

3.2 x—product
According to P. Collet and J. P. Eckmann[CE85], we define x—product.

For a finite sequence A of R, L and an admissible sequence B, Ax B is
defined as follows:

" (1) If A is even and B is infinite B = ByB; - - -,

AxB=AByAB1AB;---.

(2) If A is odd and B is infinite B = ByBy - -+,
A*B=AByAB\AB; - . ‘

(3) If A is even and B is finite B = ByB; --- B,—1C,
AxB=AByAB,---AB, 1AC.

(4) If A is odd and is B is finite B = ByBj - - Bp-1C,
AxB=AByAB,---AB,_;AC

Here we define B; as follows

- [L, B =R

‘We remark that *—product holds associative law:

If A;C, A,C and B is admissible and AC = A; x(A4,C), then it is proved
that A; *x (A, * B) = A x B. Hence the sequence R*™ is well defined such

that )
n times

R"%B=Rx(Rx(---Rx(RxB))---).

The sequence R**® is defined to be nl}_)ngo R™.

Example.
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R =R,
R*?2 = RLR,
R = RLRRRLR,
R** = RLRRRLRL RLRRRLR.
Remark. Related to R*™, similar sequences are introduced in [Dev89).

T0=R7
1 = RL,

Ty = RLRR,

Tnil = TnTn, Where 7, = tg---t; when 7, = tg-- - t.
Note that R*" is equal to the sequence whose last entry is removed from
Tn+1-

Proposition 4 The length of R*" is odd for all n. Moreover R*" is an
odd ( resp. even ) sequence if n is odd( resp. even).

Proof. For the first part of the proposition, we can show that the length
of R*™ is odd for n by induction of n. For the second part, we shall show
the claim by induction of n.

(i) Whenn =1, R* = R and it is odd.
(i) When n = 2, R*?> = RLR and it is even.
(iii) For n < 2k, we assume the claim holds.

Recall that R*2*1C = R (R*?:C).

Let us denote R**¢C = ;- - - S2;C for some j > O since the length of
R*? is odd. By assumption, R*?* is even and has an odd number of
L. Tt follows that Sp--- Sp; is odd. Recall that

Rx (R**C) = RS, --- RS3;RC.
And this sequence is odd. Hence R*2k+1 is odd.

(iv) Let us check that R*?**2 jseven. Recall that R*?**2C = Rx(R*%*+1().
We can denote R*2**+1C = Ty - - - Tp;C for some 7 > 0 since the length
of R*?¥+1 is odd. By (iii), R*?***! is odd and has an even numer of
L. Tt follows that Tp- - - Ty; is odd. Recall that

Rx (R**+1C) = RTy--- RT%RC.

And this sequence is even. Hence R*%%*2 ig even.
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By (i)~(iv), the proof is done. O

Proposition 5 Let A and B be symbolic sequences with A - B. Then
for all n > 1, it holds that R*" x A > R*" x B.

Proof. Set A= AgA;---Ax_1Ag---, B=ByBy---Bg_1Bg--.
LetAszj, forOSjgk—landAk;éBk.

(I) If n is an even number, then R*" is an even sequence.

If Ag---Ax—1 = Bg---By_1 is even, then Ay > B since A >~ B.
Recall that

R™%xA=R™Ay-- R A R™ Ay,

Then it is easy to see that R*™™Ag--- R* A;_1 R*™" A}, is even. Hence
we have R*™" x A > R*™ x B.

If Ag---Ax_1 = Bg---By_1 is odd, then A, < B since A > B.
Recall that

R™"xA=R"Ay--- R™A_R™ A ---.
Therefore R*™Ag--- R"™ A1 R*™ Ay, is odd. And we have that
R™x A~ R x B.
(II) If n is-an odd number, ‘the‘n R*™ is an odd sequence.

(a) Assume that & is an even number.
If Ag--- Ax—1 = By --- Bg—1 is even, then A, > By since A > B.
Moreqver we have that Ag--- Ay_1 = By---Bg-1 is even and
that Ay < By. By recalling that
R*n*A=R*nA()"'R*nfik_lR*nAk"',
it is easy to see that R*™Ag--- R™A;_;R*™ is odd. Hence we
have that R*"x A >~ R*" x B.

If Ag---Aj_1 = By--- Bi_1 is odd, then A < ﬁk since A > B.
Moreover we have that Ag--- Ax—1 = Bp--- Bg—1 is odd and
that A > By. By recalling that

R*n*AIR*nAO"'R*nAk—lR*nAk"',
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it is easy to see that

R™Ag--- R A;_{R*™ is even. Hence we have that

R™xA> R"™xB.

(b) Assume that k is an odd number.

IfAg---Ay1 =By B~ 1 is even, then Ak > By, since A > B.
Moreover we have Ag---Ax_; = Bp--

Ay < Bg. By recalling that

R*" *A — Rmfio ..
it is easy to see that R*™Ag--
have that R*" x A >~ R*" x B.

If Ag--- Ag—1 = By Bg—1 is 0dd, then Ay < By since A> B.
Moreover we have thatAg---Ax_; = Byp--

"R™A, (R™Ag -,

-R*™Ar_1R*™ is odd. Hence we

that A; > By. By recalling that

R*n*AszAO"

it follows that

R™A,_ R™A -,

R™Ay--- R*™Ar_R*™ is odd. Hence we conclude that

R™x A» R™xB.

3.3 Monétonicity in D*

M. Misiurewicz and E. Visinescu proved
in [MV91] that K(a’,t’) > K(a,b) for
(d',b), (a,b) € D* such that (d/,b’) >~
(a,b), where D* is defined by

D* ={(a,b) € D; a+b < ab?,a > 1}.

This domain D* is characterlized by the
following lemma.

Fact 3 (Lemma 2.1 in [MV91])
(a,b) € D* & K(a,b) = RLR*™.

119

Figure 12: The shadowed
part is domain of D*.

-Bi_1 is odd and that

-Bj_; is even and



Using a parameter t € [0, 1], set

ft= fa't+a(1—t), b't+b(1-t)-
First, the monotonicity of kneading sequence is shown as to parameter t.

Fact 4 (Lemma 4.1 in [MV91]) If 0 < v < w <1 then K(f,) < K(fo),
where K(f;) denotes kneading sequence of f,.

Fact 5 (Lemma 4.2 in [MV91]) K(J:) is not constant on [0, 1].

From the two lemmas above, monotone increasing property of kneading
sequence is proved in D*.

Fact 6 (Proposition 4.3 in [MV91]) If (a,b) and (a/,b’) are in D* with
(a,b) < (a’,b'), then it holds that K(a,b) < K(d',?).

3.4 Renormalization and *—product

The aim of this section is to prove Monotonicity Theorem by using only
renormalization method. For the details of renormalization and prime se-
quence, see the sequel paper [ITO] in this volume.

Proposition 6 Let (a,b) be in D. The following three conditions are
equivalent mutually. ‘

(i) (a,b) € Dy.

(ii) There exists a unique number m > 1 and a prime sequence B whose
length is longer than 2 such that K(a,b) = R*™ x B.

(iii) There exists some number m > 1 such that ¢™(a,b) € D*, where
¢(a,b) = (b%,ab).

Furthermore, there exist closed subintervals of I,y {Ii};—¢ .. gm_;
such that their interiors are disjoint mutually, fa3f; = Ij+1 for 0 <
1< 2™ —2 and fa.,bI2m—1 = Iy, Ism_.1 3 0, and fz,b IL: ~ fcp”‘(a,b)-
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Proof. Recall that Dy = {(a,b) € D; ab> 1, a+b > ab?}.
First, we will show that (i)= (iii).

Let (a,b) € Dy. Set ¢™(a,b) = (an,Bn) and assume that d, < E2b" 1
for all n > 1. Fix any k > 1. By the definition of ¢, we have that
br+p > (Grby)(bx)P~! for all p > 1. If we take p — oo, then we have that

lim bgyp =00 and lim b, = co. If we take n — oo on the assumption
p—00 n—0oo

an < 329!:, then we have that

2 — — 0.

o
b2
This contradicts that @, > 1 for n > 2. Hence, for each (a,b) € Dy, there
exists m > 1 such that ¢™(a,b) € D*.

We remark that once we have ¢™(a,b) € D*, ¢™*1(a,b) does not belong
to our domain D any longer. For the second part, it is clear by [ITN79]
and [IN97b).

Second, we will show that (iii)=>(i).

If (a,b) € DAUDE, then it is proved that there is no subinterval where ff:;
is surjective, except for I, .

If (a,b) € DP for some k > 3, then we have that a+b < ab? and that p(a, b)
is in {(a,b); a + b < ab}. Because the map ¢ is proved to be surjective on
this domain, it follows that ¢™(a,b) ¢ D* for any m > 1.

Hence (a,b) is in D¥ = Dy.

To see that (i)= (ii), it is clear by virtue of Lemma 5.1, Lemma 5.2 in
[MV91]. Moreover, B is equal to K(¢™(a,b)) with ©™(a,b) € D*.

If we suppose that B is not prime, then we can show a contradiction
because of Theorem 3 in [ITO] and of that ¢™(a,b) € D*.

Last, we will show that (ii)=> (i).
If (a,b) € D4, then we have either K(a,b) = (RL)*® or K(a,b) = R*(RC).
If (a,b) € Dy, then we have K(a,b) = RLRRL---, or K(a,b) = RLRRC.
If (a,b) € Dy, for some k > 3, then we have K(a,b) = RLL---.

Hence the kneading sequence cannot be written in the form R*™ x B for
any m > 1. Therefore we have (a,b) € Dy.

We remark that the function ¢ is defined only on Dy. O
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Proposition 7 Let (a,b), (a,¥/) € D\ D* such that (a,b) < (a/,¥). If
©™(a,b) € D* and ¢"(a’,t’) € D*, then m > n.

Proof. Assume that n > m. Then ¢™(a,b) is in D. But it cannot be in
D*. Because of that (a,b) < (a’,b') and of the definition of ¢, we have that
©™(d,b') = ¢™(a,b). Setting

p™(@, V) = (@,¥) and ¢™(a,b) = (&),

~ . = _ b .
we have the inequalities a’ > @, b > b and that @ > 71 since ¢™(a, b)
is in D*.
On the other hand, since s — _;*5 is strictly decreasing, we have

b v

- > — >d > .
2-1" §*_1

Hence this is a contradiction. Therefore we conclude that n < m. a

3.5 Proof of Monotonicity Theorem '
Assume that (a,b) < (d/,b').

(i) If both (a,b) and (a’,’) belong to D*, then the proof is already given
by Fact 6.

(ii) Assume that either (a,b) or (a/,b’) belongs to D*. Then (d/,b’) is in
D* because (a,b) < (d/,b’). By virtue of Fact 3, it follows that

K(a,b) < RLR® < K(d', V).
We have that K(a,b) < K(d/,’) since an order relation ”<” is total.

(iii) Assume that (a,b) and (a’, ') both belong to D\ D*. Then by Propo-
sition 7, their kneading sequences are written as, for some n < m,

K(a,b) = ™ x K(¢™(a,b)) and K(d',¥) = R™ % K(¢"(a,b)).

If m = n, then we have that ¢"(a,b) < ¢™(a’,?’) since ¢ is an increas-
ing function. Because K (¢"(a,b)) < K(¢™(a/,b')) and from Proposi-
tion 5, we have that K(a,b) < K(a’,?).
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If n < m , then we have that ¢"(a,b) # D* and ¢"(d/,V') € D*. By
virtue of Fact 3, it follows that

K(¢"(a,b)) 2 RLR™® < K(p"(d,V)).

By Proposition 5, we have that K(a,b) < K(d/,V'). ]

4 Topological Entropy of f,;

J. Milnor and W. Thurston studied in the paper [MT88] that for piece-
wise monotone mapping, the kneading sequence determines its topological
entropy. In this section, we will summarize some, well-known but impor-
tant results and give some correct for a statement in [MV92].

4.1 Topological entropy of f,; for (a,b) € D

In the paper [MV91], the following theorem is also proved as Theorem
B, and as a result, strict monotoicity property for the topological entropy
is obtained as well. )

Fact 7 (Theorem B in [MV91]) If (a,b) € D, then K(a,b) € M,

where M denotes the set of kneading sequence of tent maps, that is,

az forz <0
= ! i < 2.
fae { a(l—z), for > 0 withl<a<2

Fact 8 (see for example [MW80] and [M89]) The entropy of fq 4 is proved
to equal to loga, namely it is monotone increasing for a.

By taking the aboves and our Monotonicity Theorem into consideration,
it is found that in D, the topological entropy is also strictly monotone
increasing with respect to the order ”>” ( See Corollary in [MV91] ).

We remark that the topological entropy of f, is equal to log Bk (a,p) (1)
with p such that Bg,p)(#) = p. This fact is implicitly shown by Fact 7
and Theorem C in [MV91]. Theorem C is as follows.

Fact 9 (Theorem Cin [MV91]) Foreach M € M, there exists a number
(M) and a continuous decreasing function B : (1, y(M)] — [1, ) ( with
one exeption M = RL*® when v(M) = oo ) such that for (a,b) € D,
K(a,b) = M if and only if a = Ba(b). The function 7 is increasing. The
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graphs of the functions By fill up the whole set D. Moreover the following
are shown:

MEIJIzl*w VM) =1,
Miuélm (M) = oo,

limﬂM_ b)=c0 if M > RLR*™,

if M LR™®
lim fu(b) = ¥(J) if M < RLR™,
J is given by
M = R*i)
Bu(v(M)) =1 if M # RL*™,

lim By (b) = +oo if M = RL*.

4.2 Topological Entropy of f,; for (a,b) € D\ D

Let us denote the topological entropy of f, 4 by h(a,b).

According to J. C. Marcuard and E. Visinescu, topological entropy of f,
for (a,b) € D\ D is studied in [MV92]. But we claim that the following
result, Corollary in [MV92] is not true:

The function h(a,b) is constant in (DF U D) N (D\ D), for k > 2.

Proposition 8  The function h(a, b) is not constant in (DF UDg)N(D\
D), for k > 2.

Proof. We can give the following counter example.

Consider the case of k = 2. Recall that DEN(D\D) = {(a,b) € Dy anda <
1} and that, for (a,b) € Dy, fop is renormalizable of level, at least, two.
By renormalization, namely by map ¢, the parameter domain {(a,b) €
Dy and a < 1} is mapped into a subdomain of D,

{(a,b) € D; a=1, a="b, a+ b= ab}.

See also Fig. 13 and Fig. 14.

If (a,b) is in Dy, then it is easily proved that 2h(a,b) = h(p(a,b)).
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Figure 14: In this figure, the
Figure 13: The shadowed part shadowed part corresponds
is the domain DF N (D \ D) the domain where (D¥ N D.\
(04<a<). D) is mapped by map ¢ is de-

picted .

Consequently; the entropy is not constant in the domain
{(a,b) € Dg; a < 1}.
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