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Abstract

We show that the set of real parameters u’s for each of which the Julia set of f,
is the whole complex plain has positive Lebesgue measure.

1 Introduction and the result

In this note, we consider a family of transcendental entire functions

{fulz) = zexp(z + 1) | p € R}.

We denote the Fatou set of f, and the Julia set of f, by F(u) and J(x), respectively. It
is easy to see that if p < 0, then z = 0 is an attracting fixed point of f, and therefore
F(p) # 0. Conversely, as a classical problem, an existence of g for which F(g) = 0, or
equivalently J(u) = C, was considered. Baker ([1]) proved an existence of such p. Further,
Jang ([6]) showed that there are infinitely many such . Successively, Kuroda and Jang
([7]) constructed a sequence {pn} of such g with p, — oo as n — oco. In this note, we
prove the following.

Theorem 1 Let
E={seR|J(=C}.

Then the one-dimensional Lebesgue measure of E is positive.

We now state briefly some properties of the iteration of transcendental entire functions.
A cyelic component of the Fatou set is one of the following four components;
(a) an attracting component
(b) a parabolic component
(¢) the Siegel disk or
(d) the Baker domain.
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A singular value of a function is either a critical value of it or an asymptotic value of it.
Singular values play important roles of the study of the iteration theory. The immediate
basin of an attracting cycle contains at least one singular value. Same is true for a parabolic
cycle. The boundary of a Siegel disk is contained in the closure of the forward orbits of the
singular values. No existence of wandering component for the iteration of rational functions
was proved by Sullivan ([8]). If a transcendental entire function has finitely many singular
values, it is called of finite type. Eremenko and Lyubich ([3]) extended a Sullivan’s result
for transcendental entire functions of finite type. That is, the Fatou set of a transcendental
entire function of finite type contains no wandering domain. Further, they also proved that
the Fatou set of a transcendental entire function of finite type contains no Baker domain.

2 Some properties of f,(z) = zexp(z + )

The singular values of f, are f,(—1) = —exp(—1 + g) and 0. Hence f, is of finite type
and therefore F'(1) contains neither wandering domain nor the Baker domain. The fixed
points of f, in R are 0 and —p. If u < 0 then 0 is an attracting fixed point. If 4 = 0 then
0 is a rationally indifferent fixed point. If 4 > 0 then 0 is a repelling fixed point. Using
the graphical analysis, we see that f](—1) — 0 as n — co for u < 0. Hence if 4 < 0 then
the component of /(1) containing 0 is the only one invariant component. We also see that
—p is an attracting fixed point for 0 < g < 2 and that —g is a rationally indifferent fixed
point for g = 2. Hence we have J(p) # C for p < 2.

Hereafter, we consider the case for 4 > 2. Note that the orbit of f,(—1) is contained in
the negative real axis, furthermore

{f2(=D}% Clfu(=1), 0]
Hence F(u) does not contain any Siegel disk.

3 Unimodal map

We recall that f, is a unimodal map on (—oo, 0]. There is a famous Jakobson’s Theorem
on unimodal maps.

Theorem 2 ([5]) Let
ho(z) = az(l — z) (0<a<4)
defined on [0, 1] and

A={a

h, has an invariant measure on [0, 1] which is absolutely
continuous with respect to the Lebesgue measure.



Then the Lebesgue measure of A is positive.

Consider h, as a complex variable function. If k, has an attracting cyclic point or a
parabolic cyclic point in C, then the intersection of its basin and the real axis is not empty,
since its finite critical value is in R. Moreover, the intersection of its basin and [0, 1] is an
open and dense set in [0, 1] . Hence, in this case, there is an invariant measure on [0, 1]
which is not absolutely continuous with respect to the Lebesgue measure. Thus, for each
a € A, the Fatou set of h, coincide with the immediate basin of the super-attracting fixed
point co.

After Jakobson, there have been many works on generalization of his result and simpli-
fication of its proof. We use one of these results proved by Tsujii([10]).

Let ko(2) = —az and o = exp(—1 + p). Since g > 2, we have o > 1. Set

9o(2) = k7" fuka(z) = azexp(—az + 1).

Then gq 1s a unimodal map from [0, 1] to itself. Hence we consider g, as a real valued
function on [0, 1]. The set of the singular values of g, is {0, 1} and the set of the fixed
points of go is {0, (1 4+ loga)/a}. Since the Schwarzian derivative of g, is

6!2

S9(7) = 50 ey

{(ez —-2)*+2} <0,

Jo 18 an S-unimodal map.
Furthermore, by induction, we have the following;

site) = arsesp {o T (5 - sklo) } 1

ny\/ _ -_g_/oi(_ﬂan—ln—l __1__ kx )
(02)() = 2@ e 1T (5 - ok(=) )

We now prepare a theorem on unimodal maps we need to prove Theorem 1. Let hy(z) =
H(z, t),z €10, 1], ¢ € [0, 1] and each &; is a C*-unimodal map from [0, 1] to itself. Set
h = hg and let ¢ be a critical point of h. We consider the following conditions;

(ND) r"(c) # 0.
(CE) There are constants a and b such that, for all n > 0,

() 1) > explan—b)
(i)  |dh™(z)| > exp(an —b)  forz € A7"(c)

(Hyp) All the cyclic points of A are repelling.
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(W) liminf,—e 2 log |dh(A™(c))| = 0

oo OH (h{c
(Nvi) j=0 dhd (h () 740

Further, we deﬁne
A = {t | h, satisfies the conditions (ND), (CE), (Hyp), (W) and (NV;) holds.}.

Theorem 3 ([10]) Let A be the set above. Then the Lebesgue measure of A is positive and,
for each t € A, hy has an invariant measure which is absolutely continuous with respect to
the Lebesgue measure.

In fact, Tsujii([10]) proved not only families of unimodal maps but also families of more
general functions.

4 Proof of Theorem 1

Using Theorem 3, we prove Theorem 1. Let u be the maximal one satisfying that after
three iteration of f,, the critical point 1/u mapped to the fixed point (1 + logu)/u for the
first time. That is,

g (—1—> = '%(1+1ogu) and

u
g (3) # T0+logu) (7=0,1,9)
hold. In [7], it was proved the existence of such u and it satisfles u > 3. We investigate
whether these conditions (ND), (CE), (Hyp), (W) and (NV,) are satisfied by this u.
(ND) It is clear.
(CE) First we show (i). We have
9 (E) = %(1 +logu)

U

for n > 3. Since ¢,(1/u) = 1, by using (2),

(gu)(1) = (1+logu)g28§ " x<a_ ) ) e 1 _logu

holds for n > 3. Easy calculation shows that (¢2)'(1) # 0, (¢1)'(1) # 0 and (¢2)'(1) # 0. It
follows that (i). Facts that g, is S-unimodal and that (i) holds imply that (ii) holds.
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(Hyp) Since the asymptotic value 0 is a repelling fixed point and the critical value —1 is
preperiodic, it follows that all the cyclic points are repelling.

(W) Since ¢,(1/u) = (1 + logu)/u for all n > 3, the equality holds.
(NV,) From the equations (1) and (2), we obtain

X Oafu (93 (%;)) 1 1 oo »
N O R PR
_ 1 1 log u
- E+u(1—u)l+logu'

Here, A fact u > 3 implies that

1 1 logu
}1-u <-2_ and 0<1+1ogu
Hence, we have
oo ao( ” Z 1
e ()]

S (i)

Therefore, all the conditions of Theorem 3 are satisfied for this v. Hence the set of the
parameters u’s for each of which f, has an invariant measure with respect to Lebesgue
measure has a positive measure. By the argument similar to that stated just after Theo-
rem 2, there is neither an attracting cycle nor a parabolic cycle concerning with the critical
value 1. Further, asymptotic value 0 is a repelling fixed point of g, for « > 1. Hence, our
claim is obtained.

5 Remarks

If we pay attention to the graphs of f, in (—oo, 0], the Kuroda-Jang Theorem remind us a
problem on bifurcations of real quadratic polynomials. We have a problem similar to one
of real quadratic polynomials.

Problem 1 Is the set of p’s for each of which f, is hyperbolic open and dense in R ?

It is easy to see that the set is open. In the case of the family of real quadratic polyno-
mials, Swiatek([9]) proved such set is dense.

Similarities between the quadratic family and our family considered in this note let us
think some problem in the case that u is complex. Set

fa(z) = Azexp(2).
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Drawing the set of A for which {f{(—1)}22, is a bounded set by a computer, we can see
two Mandelbrot-like sets stretched to the mﬁmty along the real axis adjoining at the origin.
In fact, Fagella studied this family in [4].
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