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Abstract

We study the dynamics and monotonicity of entropy of skew tent
maps f,p having two slopes a,b as parameters. By the behavior
of fas, the domain D is divided into subdomains D; defined by
-some algebraic curves : D = Y 32, Di. In each Dy there are sub-
domains D{ where f, ; has unique attracting periodic orbit of period
k ([IN97a][ITN79b]) and D where f, 5 has 2k or k chaotic intervals.
We analyze DZ by the method of renormalization, that sheds light
to the structure of having 2k and k chaotic intervals. For this family
Misiurewicz and Visinescu in [MV91] and Marcuard and Visinescu in
[MV92] get some results of monotonicity of topological entropy. We
correct their statements of Theorem 1 and Corollary of Theorem 2 in
[MV92].

1 Introduction

For skew tent maps

_ az +1, (x <0)
fap(z) = { —bz +1, (z>0)

depending on parameter-pair (a, b) in the domain of definition D := {(a, b) :
a>0,b>1,a+b > ab}, we divide D into subdomains according to the
dynamical behaviors : D = U2, Dy, such that

1 1 1 1
= . — ces —_— < —_ e —
Dy {(a,b)eD,1+a+ '+ak‘2<b—1+a+ +ak—1}
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Figure 1: The parameter space of skew tent maps.
D# : attractor domain (k- periodic attractor),

Dy :renormalizable domain (k or 2k chaotic bands),
D; : chaotic domain (1 chaotic band),
D} : renormalizable domain (2 chaotic bands),
Ay :renormalization domain (1 or 2 chaotic bands).
In each Dy, there are subdomains Dff, DE and Dj :
D = {(a,b) € Dy; aF b < 1},

DE .= {(a, b) € Dy; a* o> 1,a+b> a,k_lbz} ,

D := {(a, b)€ Dy;a+b< ak_1b2} .
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For D5 it is known that f,; has one chaotic interval ([ITN79b]). For D
the following results is obtained ([ITN79b][IN97a]) :

A map fap of Dﬁ has unique attracting periodic orbit with pe-
riod k.

In this paper we analyze Df by the method of renormalization. In [NY95]
they have bifurcation diagrams by computer experiment related to our skew
tent maps. We can see in them that one attractor bifurcates k- periodic
attractor or 2k, k, 1 chaotic intervals (see [Ich]). The first case is D{
and the last case is Df. The second and third case is DP (k > 3) : by
the method of renormalization, the structure of having 2k and k chaotic
_ intervals will be made clear. Let

Ag = {(a,b) eD;a>b, (a,+b)b5;_2 > (b+1)a%‘l} fork>3

where a skew tent map has 2 or 1 chaotic intervals.

We obtain a result as Theorem 2 that any skew tent map of DE is renor-
malized to one of Ay : namely, for fqp of DkB there exist some f,/ 3 of Ag
and some homeomorphic function h satisfying f!f,b]U oh=ho fyy. We
rename D& Dy and have to define Ay = {(a,b) € D; a > 1} where a skew
tent map has 2™ chaotic intervals for m > 1. There also exists some fq/ p
of Ay for any f,p of Do such that ff,bﬂy ~ far pt-

For monotonicity of kneading sequence and topological entropy for this
family, some results are obtained in [MV91] and in [MV92]. We also give
the relation between kneading sequence and x- product as Theorem 3 and
correct statements of [MV92] at the end of this paper.

2 Dynamics of f;;

First we prepare some definitions and notations.

Let I, be [f2(0), £(0)]. We shall analyze dynamics of f, restricted only
on I, 5 because one is obvious on R\I, (see [Ich]). Let X be an interval of
R. Amap f: X — X is said to be chaotic on X if f is sensitively dependent
on initial conditions and topologically transitive, and its periodic points are
dense in X ([Dev89]).

Definition ([IN97a]). A closed subinterval J of I, p will be called a chaotic
interval if f,p is chaotic on J.
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Definition. We will say that f, 3 is n - renormalizable or renormalizable of
level n if there exist some closed interval U and positive integer n such that

ap:U—Uand f;‘,blU is a.lsQ skew tent map. If f,; is n-renormalizable,
there exists topological conjugacy h satisfying ff:,blU oh = ho fqp for some

(@,¥) in D. Then we denote it by f%|y ~ fuy. We shall call these
maps f,?,b|U or fup n-renormalization of fop.
2.1 The case of D, (= DJ)

We introduce some facts from [ITN79b] for our
purpose : we define '

D* = {(a,b) €D;a+b<ab?a> 1}

where f, 5 has unique chaotic interval (i.e., Iop
is a chaotic interval). For (a,b) € Dy, set

Lo = [£25(0), fas(0)] and Ly = [£3,(0), fa,5(0)].

We have int(Lo) Nint(L1) = 0, faplo = L1
and f,pL1 = Lo. int(L;) is the interior of L;.

Moreover there exist topological conjugacy

a0 = F3.4(0)

hole) = o)y (Jes(®) =) + Fhaal0) for £3, on Ly
and
fi2,25(0) = £ (0)
(@) = =Gy (2 20) + fa(@) for Sy on L
such that

h; .
fa.2,bILi ~ sz,ab (Z =0, 1)' (1)

First we remark that f2,]z, ~ f2,|L,-

Orbit of any point in Io3\(Lo U L) except of a fixed point for f,p is
attracted to Lo U L;. Therefore, we shall study dynamics of f, 3 restricted
on L; (i =0,1).

The relation (1) motivates us to define the domain

Ag: = {(bz,ab); (a,b) € DO}
= {(a,b) € D;a>1}.

130



Lo Ly

Figure 2: Invariant intervals Ly and L; under the map f2.

Ay is contained in the union of D* and Dj.
We know that Dy can be divided into subdomains {DF*} by some function
p(m) ([ITN79b]). Hence we have the following lemma.

key-lemma (renormalization).  p(m) is defined as follows
1, if m=1
p(m) =< 2p(m—-1), if mis even

2p(m—-1)-1, if misodd
and subdomains DfF* of Dy is
Df := {(a, b) € Dy; aPMpp(m+1) < g 1+ p < ap(m+1)bp(m+2)}.

Then fop of DF* is renormalizable of level 2™.

Proof. The division of Dy by a function p(m), which means repeat of
renormalization, is showed in theorem 1.2 in [ITN79b]. We remark that
each D’ means renormalizable of level 2™.

2.2 The case of Df (k> 3)

For Df (k > 3), we can also use the renormalization method.

We define other subdomains in D for a family of skew tent map having
chaotic intervals.
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Definition.
Ay = {(a,b) € D;a>1},
Ay = {(a b) € D;a> B2, (a+b)bE > (b+ 1)a” } (k> 3).

We have the following relation of inclusion for {Ag}.

Theorem 1. Ay C D*U {UX_,Dg} and Ar C D*U D1 (k > 3).
Moreover A; D A;y1 (1> 2).

Q=

Proof. @ We have the following alge-
braic curves from definition of Ay :

a— b2 =0 (2)

@+ b F —(b+1)aF =0 (3) |

o (a+b)FF 2 — (b+1)*a* 1 =0 (4) e

-y

1
. . 5
It is sufficient to observe these curves

where 1 < b < 535 and a > b2. Then  [igure 3 : Boundary curves of
. the renormalization domains

they do not intersect each other (see A dA

Figure 3). | 3 Ag and 4s.

For fixed b(1 < b < %), the equation (4) as function of variable a
has unique root a;. We have that o tends monotonely to infinite when
k varies to infinite. Hence A; D A;yq (1 > 2). As it is easy to show that
Az c D*U D}, we have A c D* U D for k > 3.

Each boundary curve of Df* and b = 1 cross at the point 3, which is
maximal root of a®™) —a —1 =0 and f,, tends decreasingly to 1 when m
varies to infinity. Hence we have Ay C D* U {U%_, D'} O

The equation (4) has the equation (2) as a factor for each k¥ > 3, so we
call the cofactor of (4) a curve I}. Ak and Iy for k =2,---,5 are pictured
in Figure 4.

I't(a,b) (k= 3,4,5) are

(a,b) @ =b?+ (a2 —3a)b—a =0, (5)

Ly(a,b) : —b*—4ab®+ (a® — 642 — a)b? — 4a%b — % = 0, (6)

I(a,b) : —b® — 5ab’ + (—10a2 — a)b* + (a* — 10a® — 5a%)b°
+(=10a? — a2)b? — 5a%b — a3 = 0. (7)

132



ﬁl\s

fia=1
Az
hs
13
inslin
o5 s prs “34 \‘FS

Figure 4: A; and I; for ¢ = 2,3, 4.

These curves are absolutely irreducible. It is proved by algorithms based
in [YNT90], [L85), and implemented in symbolic algebraic computing sys-
tem Risa/Asir. Detailed procedure is given in Table 1 of Appendix. -
Fact (Theorem 2.3 in [ITN79b]).  Assume that (a,b) € DE (k > 3). Set
Ji = 1f25°(0), oy (0] (0 < j < k—2) and Jeoy = [f517(0),1)- Then
we have

(1) J;’s are disjoint and fopJ; = Jjt1 (0L 5 < k—2), fopJi—1 = Jo.

(2) f:,bIJi ~ fa"—zbz,a"—lb' '

(3) For almost all z € Ip — U?;é J; there exists integer n such that

() € UsS5Jj.

From the above fact we know that f* on each J; is topologically conjugate
t0 fok—2p2 gk—15. Therefore we obtain the following theorem, which indicate
the renormalization between D and Ay for k > 3.

Lemma. Each DZ(k > 3) is divided into the following two subdomains :
Bi = {(a, b)eDB;a+b> a2k_2b3},

Bl ={(a,b) € D ; a+b < o %3}

Proof. We consider an algebraic curve a+b = a?*~2b% pulled back of the
boundary curve a + b = ab? of D} and D* by renormalization. It divides

Df into two subdomains and does not intersect two boundary curves of
DE : a*71b=1and a + b= a*"1b%. O

Theorem 2. If (a,b) € BZ(k > 3), then there exists some (a/,b') €
Ay N D} such that ff’b restricted on each invariant interval is topological
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Figure 5: D® and Aj;.

conjugate to fup. If (a,b) € Bi (k > 3), then there exists some (a/,¥) €
Ay N D* such that f(i p restricted on each invariant interval is topological
conjugate to for p.

Proof. We have Ay C D*U D} (k > 3) from Theorem 1. The renor-
malization map is continuous and bijection from D}f to Ag. The three
boundary curves of Df correspond to ones of Ay as follows

¥ %=1t b=1, a+b=a""1? to a+b=2ab

1 1
and 1+—+"'+—k—_2:b to I%.
a a 4
Hence we have the results. 0

We also have next corollary, which is stated implicitly in Corollary 3.2.
in [ITN79b].

Corollary. If (a,b) € B2, then f,} has 2k chaotic intervals. If (a,b) €
B}, then f, 5 has k chaotic intervals.

134



Figure 6: Bifurcation diagram of the skew tent maps in the case
that a is fixed at 0.5 and b varies from 1.5 to 12.

3 Kneading sequence and topological entropy of
skew tent maps

We classified the parameter domain of definition D in the previous sec-
tions. Bifurcation diagram is pictured in Figure 6 where a = 0.5 and
b=1.5 ~ 14 (i.e., b varies in Dy, D3 and Dy). In this section we analyze
kneading sequence K (a, b) and topological entropy h(a,b) of skew tent map
fap of D. Some results for monotonicity of them are given today in [MV91]
and [MV92]. For the subdomain, a > 1, of D, the monotonicity holds, as
Theorem A,B in [MV91]: :

(a,b) < (a,V) & K(a,b) < K(d/,t') and h(a,b) < h(d’,b)

under the following order :
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(a,b) < (', V') if
a < a/, b <V and at least one of these inequalities is sharp.

They also give the relation between kneading sequences of skew tent maps
and ones of tent maps (Theorem B). For the rest subdomain, a < 1, of
D, [MV92] stated properties of kneading sequence and topological entropy
in their Theorem 1, Theorem 2 and Corollary of Theorem 2. Now we add
here the following Theorem 3 from a view point of the relation between
renormalization and *-product (see p.72 in [CE80]) and correct some of
their results at the end of this section. We refer basic definitions and
notations of symbolic dynamics from [Ich][CES0].

3.1 Renormalization and x- product

We denote f, by f in the rest of this section. For getting maximal level
of renormalization, we assume sequence B is prime. Let |A| be the length
of sequence A and int(J) interior of an interval J.

Definition. A sequence S is called prime if S does not have any finite
sequence A (# @) of L’s and R’s and any finite or infinite sequence B (# C)
such that S = A x B.

Theorem 3. K(a,b) = AxB where A (# 0) is finite sequence of L’s and
R’s and B (# C) is prime if and only if there exist invariant closed intervals
{Ji}izo,.|4| such that Jig 30, fJ; = Jip1 (i =0,---,[A| = 1), fJja = o
and int(J;) Nint(Jy) =@ (i #4'). f can not have any refinement of {J;}.

Proof. Assume K(a,b) = Ax B where A (# 0) is finite sequence of
L’s or R’s and B (# C) is prime. Set z, = f™*(1)(n > 0), p = |4| and
A = ApA;---Ap 1. Let J; be convex hull of {z;ygpt1) : £ = 0,1,---}
for ¢ = 0,---,p. Then, we have fJ; = J;41(¢ = 0,---,p— 1) and f is
monotone on each J; except of ¢ = p because symbol of z; 1) for all
k(> 0) is Ax.- Remark that fP*! on each J; has same slopes. It follows
that fP+1|, ~ fPH1|;, (i #4'). We consider the following two cases.

The first case : B does not contain both L and R.

B is finite in this case. It follows that J, contains a turning point 0
as an end point of it. Hence, fJ, = Jy. As f is monotone on J; for all
i(0 < i < p), fP*! restricted on J; is monotone and surjective on J;. Hence,
its slope is —1. Then {J;}’s are disjoint (see Figure 7) or there would exist
some 4,4 such that J; = Jy from continuity of f. The latter can not occur
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Figure 7: The graph of fP*! on J; of the first case.

Figure 8: The graph of fP*! on J; of the second case.

Ji’

Ji

Figure 9: The graph of fP*! on J;; having two turning points.
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because of the assumption of A. Therefore {J;} are disjoint. Notice that
the first case corresponds to boundary curve of DkA and DE.
The second case : B contains both L and R.

In this case fJ, = Jp and fP*!|;, has unique turning point ¢; inside
J;. We set two slopes of fP*1|; a(> 0), B(< 0). We divide J; into two
subintervals I, and I, corresponding to slope o and 8. As fP*l|; is
surjective on J;, we have that sup{|al, 8|} > 1.

If |8] < 1, then turning point is attracted to a fixed point on Ig. It
follows that B = L* or R*. This contradicts assumption of this case.

If |B] = 1, we reduce to the first case.

If |8 > 1 and int(J;) Nint(Jy) # 0, there exists Jy such that fP*1|;, has
two turning points (see Figure 9) or there exist 4,7’ such that J; = Jy. In
the latter case we have J, equals J, for some m (m # p). This contradicts
that f is monotone on J, because J, includes turning point in it. Hence
we obtain int(J;) Nint(Jy) = @. Notice that the second case corresponds
to DE. v

Conversely, if there exist disjoint invariant closed intervals {J;}i—g,..., 4]
in theorem, we have K(a,b) = Ax B with A = Ap Ay ---Ay,_,. I Bis
not prime, f has refinement of {J;}. Hence, B is prime. O

Now we have the relation of our renormalization (i.e., (|4| + 1) - renor-
malization is a skew tent map of D) and *- product.

Corollary 1. If |B| # 2 in above theorem, then f is renormalizable of
level |A] + 1.

Proof. Let pbe |A|. In the first case, we have |B| = 2 because a turning
point of f on J, is 2-periodic point of fP*1. In the second case, we have
|8] > 1 and fPH1J; = J;. It follows (a,8) € D. Therefore f is (p+ 1)-
renormalizable on [c;, fPT1(c;)] (resp. [fP(c:),c)) if ¢ < fPT(c;) (resp.
P e) < ). , O
It is well known that for a smooth unimodal map g, n- periodic g-
admissible sequence implies the existence of n or 2n - periodic point ([Dev89)).
This fact is proved by Schwarzian derivative. But we have the following
analogous fact for skew tent maps.
Corollary 2. If K(a,b) = A* B where A (# @) is finite sequence of L’s
and R’s and B (# C) is prime, then f has periodic points of period |A| + 1.
Moreover if |B| = 2, then f also has periodic points of period 2(|A4]| + 1).
Remark. For showing Corollary 1 and 2, we need only the assumption
B # C, L*°, R* instead of primarity of B.
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3.2 Renormalization and topological entropy
Now we correct two statements of [MV92].

‘First : kneading sequence for boundary curve of An(= DA, ;) and
Bm(= D71792.+1)'

In Theorem 1 of the paper [MV92], they say ;
(A B)(= (a,b) € A < K(A, B) = (RL™)™,
(\B) € B, & K(\B) =RL™*xB with Be M
where M is set of kneading sequence for tent map fi (1 < A < 2).

A, and B,, have common boundary curve : A™y = 1. In our opinion this
curve should be discussed separately from A,, and from B,,. We find our
reason in the fact that the kneading sequence on this curve is RL™RL™1C,
not admitted by one on A,, and on By,.
Second : topological entropy of Bi(= Dy) is not constant.

In Corollary in [MV92], they say ;

let (A, 8), (X, B') € {(A\,8) € D; A <1} such that (), B) < (X, 8,

\B), (X,B) € AnUBy = h()\,B)=h(XN,5).

‘Namely, topological entropy on By, is constant for all m (> 1). But we
can show the followings :

Proposition.  Let MNB), (XN, 8) e {\B) e D; AL 1} If (\,0) <
X, 8,

h(A, B) < R(X, B').
Proof. From [MT88] we obtain that topological entropy of f,; for By

naturally follows from one of its renormalized map of subdomain a > 1
where the strictly monotonicity holds. m]

A counter example to this statement is given in [Ich] in this volume.
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Appendix

- Table 1: Calculation by Risa/Asir

This is Asir, Version 940420.

Copyright (C) FUJITSU LABORATORIES LIMITED.

3 March 1994. All rights reserved.

[0] F3=-b~2+(a~2-3*a)*b-a;

b*a~2+(-3%b—-1)*a-b"2

[1] F4=-b~4-4*a*b~3+(a"3-6%a"2-a)*b"~2-4%a"2*b-a"2;
b~2%a~3+(-64%b~2-4*b-1) *a~2+(-4*b~3-b"2) *a-b"4

[2] F5=-b"6-5%a*b~5+(-10%a~2-a)*b~4+(a~4-10*%a~3-5%a~2) *b~3+(-10%a"~3-a"2
)*b~2-5%a~3*b-a"3;

b~3*%a~4+(~10%b~3-10*b"2-5%b-1) *a~3+(~10*b~4-5%b" 3—b 2)*a~2+(-5%b"5-b"4)
*a-b"6

[3] fctr(F3);

[[1,1], [b*a~2+(-3*b-1)*a-b"2,1] ]

[4] fctr(F4);

[[1,1], [b~2*%a~3+(~6%b~2-4*b~1) *a~2+(~4*b"3-b"2) *a~b~"4,1]]

[5] fctr(F5);

[[1,1], [b"3*#a~4+(-10%b"3-10%b~2-5*%b~1) *a~3+(-10%b"4-5*%b~3-b~2) *a~2+(-5%
b~5-b~4)*a-b~6,1]]

[6] FF3=subst(F3,a,1);

-b"2-2%b-1

[7] fctr(FF3);

[[-1,1], [b+1,2]]

[8] FF3=subst(F3,a,-1);

~-b~2+4%b+1

[10] fctr(res(c,subst(F3,b,b+c),subst(FF3,b,c)));

[[1,1], [(b"2+4%b-1) *a~4+(-64%D"2-264b+2) *a~3+(-2%b~3-3%b"~2+28%b+8) *a"~2+(
6%b~3+38%b~2+50*b+6) ka+b~4+8%b~3+14%b~2-8*b+1, 1]]

[11] FF4=subst(F4,a,-1);

-b"4+4%b"3-6%b~2-4*b-1

[12] fctr(res(c,subst(F4,b,b+c),subst(FF4,b,c)));

[[1,1], [(b~8+8%b"7+28%b"~6+40%b~5+6+b~4-40*b"3+28%b"~2-8%b+1) *a~12+(-24%b
~8-208*b"7-788%b"6-1320*%b"5-604%b"4+800*b~3-492*%b~2+152%b-12) *a~11+(-16
*b"9+68%b~8+1408+b"7+7032*%b"6+14848+b~5+11782%b"4-3752%b"~3+2988%b"2-744
*b+2) %2~ 10+ (~4*b~10+248+b"9+1812*b"8+3520*%b "~ 7-10668*b~6-53800*b"5-75228
*b~4-9664%b"3-10516+b~2-600+b+164) *a~9+(168%b~10+48%b~9-8550+b~8-51120%
b~7-116904%b~6-89216%b~5+68840%b~4+40928%b " 3+19376%b"~2+5472%b+495) *a 8+
(48%b~11-1044*b~10-11544%b~9-42876%b"~8-34800*b"7+169984*b~6+495088*b "5+
423656%b"4+208384%b"~3+75784*b"2+130404b+872) *a~7+(6%b~12~-760%b"11-5156%
b~ 10-664%b~9+117222*b"8+524688*b~7+1063752*b"6+1069952*b"5+658828%b~4+3
13840+b~3+87384%b"2+15792+b+1052) *a~6+(-264%b"12-48%b"11+21784%b~10+169
280%b~9+612248%b"8+1249648*b"7+1491472%b"6+1170672%b"5+691144%b"~4+27065
6+b"3+80792+b"2+12112%b+872) *a~5+(-48*b~13+988%b~12+17488*b"~11+114920*b
~10+412656#b~9+897335*b~8+12131764b"7+1071556*%b"6+652520%b~5+278934*b"~4
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- Table 1: Calculation by Risa/Asir

+106968+b~3+223964b"2+4152%b+495) *a~4+ (-4+b~14+488%b>13+7164+b"~ 12+46624
*b~11+174060*b"~10+403304*b"~9+582252+b~8+504320*b~7+220020%b"6+12472*b"5
-26892%b"~4-22816%b"3-9564*b"2-264*b+164) *a"3+(120*b"14+1744*b"13+11762*
b~12+46296%b~11+113612%b~10+170040%b"9+135038%b"8+18544%b"7-42304*b"6-1
4656%b"5+5198%b"~4-6856%b"~3+2876+b~2-72*b+2) *a~2+(16%b~15+244+b"~14+1736%
b~13+7228+b"12+18656+b"11+28436+b~10+19448+b~9-6852+b~8-14448+b~T+3900+
b~ 6+8120%b"~5-7532*%b"4+3200%b~3-836+b~2+136%b-12) #a+b~16+164b"~15+120%b"1
4+528+*b"13+1436*b"12+2256*b~11+1352*b"~10-1328%b"9-1722%b"8+1328%b"7+135
2%b"6-2256%b"5+1436%b~4-528%b~3+120%b"~2-164b+1,1]]
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