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l Introduction 

Let f be a transcendental entire function, Ff c C the Fatou set of f. We 

call a connected component U of Ff a Fatou component. Then U is either a 

wandering domain (that is, fm (U) n f" (U) = c for all n,m e N) or eventually 

periodic (that is, fm(U) is periodic for an m e N) . If it is periodic, it is well 

known that there are four possibilitie*~; U is either an attractive basin, a parabolic 

basin, a Siegel disk, or a Baker domain. 

Now in what follows let U be an unbounded invariant (that is, f(U) ~ U) 

Fatou component. Then it is known that U is simply connected ( [B] , [EL]) and 

so let ~~ : ~) -> U be a Riemann map of U. The boundary aU of U can be 

very complicated. For example, consider the exponential family E~ (z) := Ae'. If 

the parameter A satisfies A = te~t Ifl < l, then there exists a unique unbounded 

completely invariant attractive basin U which is equal to the Fatou set FEA and 

aU is equal to the Julia set JE~ which is so called a Cantor bouquet. Moreover, 

:= {e l eco (P(e ) := Iim fP(reie) = oo} C al) 
~e ie 

r/1 

is dense in aD ([DG]). This iuplies that (p is highly discontinuous on al) and 

hence aU has a very complicated structure. 

Baker and Weinreich investigated the boundary behavior of ~p generally in 

the case of attractive basins, parabolic basins and Siegel disks and showed the 

following: 
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Theorem (Baker-Weinrech. [BW] ~ The point oo belongs to the impression 

of every prime end of U. [] 
From the classical theory of prime end by Carath60dory it is well known that 

there is a I to I correspondence between alD) and the set of all the prime ends of 

U. Let us denote P(eia) the prime end corresponding to the point ei9 e alD). The 

impression Im(P(ei9)) of a prime end P(eia) is a subset of aU which is known to 

be written as follows: 

Im(P(eio)) = {p e aU I for 3zn e ~) s.t. zn ~ ei6, {p(zn) ~> p}. 

For the details of the theory of prime end, see for example, [CL]. Define the set 

loo C alD) by 

loo := {eie e al~) I oo e Im(P~eie))}, 

then the above result asserts that loo = al~ in the case of unbounded attrac-

tive basins , parabolic basins and Siegel disks . This shows that aU is extremely 

complicated . 

On the other hand, aU can be very "simple" in the case when U is a Baker 

domain. For example, 

f (z) := 2 - Iog 2 + 2z - ez 

has a Baker domain U on which f is univalent and whose boundary aU is a Jordan 

curve (i.e. aU U {oo} c C is a Jordan curve and aU C C is a Jordan arc, [Ber, 

Theorem 2]). In this case loo consists of only a single point. 

Then what can we say about the set loo in general when U is a Baker 

domain? In this paper we give an answer to this problem. 

2 Classification of Baker domains 

In this section we classify Baker domains from the dynamical point of view. 

Now let U be an invariant Baker domain. By definition f" IU -~ oo (n -> oo) 

locally uniformly, so put 

g:=(p~10fo{p l)~1) 
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then g is conjugate to flU : U -> U and from the dynamics of flU, g has no 

fixed point in D. By the theorem of Denjoy and Wolff, there exists a unique point 

p e a~) (which is called DenjoyWolff point) and gn _~ p locally uniformly. It is 

known that there exists a radial limit c := Iim./1 9/(rp) with O < c ~ l, which 

means that p is either an attracting or a parabolic fixed point of the boundary 

map of g. Next let 

z~ := g~(O) and q~ := zn+1 ~ z~ 
1 - z~nzn+1 ' 

then by the Schwarz Plck s lemma { Iq* I }nOO=1 turned out to be a decreasing sequence 

and hence there exists a limit lim~_ee lq~ I ([P]). By using this limit and the value 

c, the dynamics of g on D call be classified for three different classes as follows. 

This result is essentially due to Baker and Pommerenke ([BP], [P]). 

Theorem (1) If c < l, then g is semi-conjugate to a hyperbolic M6bius trans-
(1 + c)z + I - c 

formation ip : ~) -~ ID) with ip(z) = 
(1 - c)z + I + c' 

(2) If c = I and lim*_oe lq~ I > o, then g is semi-conjugate to a parabolic M6bius 
(1 ~: 2i)z - 1 

transformation ip : ID) ~' ~) with ip(z) = 
z - I :}: 2i 

(3) If c = I and lim*_oo lq* I = O, then g is semi-conjugate to a parabolic M6bius 

transformation ip : C -~ C with ip(z) = z + 1. [I 

K6nig investigated the relation between the above classification and the 

dynamics of flU : U - U and obtained the following result: 

Theorem (Kdnig9 [K] ~ Let wo e U and define 

wn := fn(wo) and dn := dist (w aU), 
n' 

where "dist" is a Euclidean distance. Then 

(1) flU is semi-conjugate to a hyperbolic M6bius transformation ip : ID) -~ ~~) if 

and only if there exists a constant p = p(f) > o such that 

lwn+1 - w~1 ~~ p (n e N) 
d n 

holds for any wo e U. 
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(2) flU is semi-conjugate to a parabolic M6bius transformation ip : ~l) -> Il) if and 

only if 

lim inf lw~+1 - wnl > O 

n-oo dn 
holds for any wo e U but 

inf limsup lwn+1 - w~] = O 

woeU n-oo dn 

(3) flU is semi-conjugate to a parabolic M6bius transformation ip : C ~ C with 

ip(z) = z + I if and only if 

lim wn+1 - wn = O 

n-oo d~ 

holds for any wo e U. Cl 
For each cases ;(6nig also gave concrete examples satisfying the above conditions: 

(1) f(z) = 3z + e~z, 

(2) f(z) = z + 27ria + ez , where a ~ (O, l) satisfies the Diophantine condition, 

)
 

2*i ( 
(3) f(z) := eT~Z + e~cpd~ where p e N' P ~ 2' 

Note that in the case (3), the function f above has a Baker domain of period 

p ;~ 2, not an invariant one. Of course, if we consider fP instead of f, fP has an 

invariant Baker domain. 

3 ReSUlt and the Outline of the proof 

With the above classification, we can state our main theorem as follows: 

Main Theorem Let f be a transcendental entire function and suppose that f 

has an invariant Baker domain U . Let {p : I~) H. U be a Riemann map of U and 

the set loo as above. Assume that flU : U -> U is not univalent. 

(1) If flU is semi-conjugate to a hyperbolic M6bius transformation ip : ID) -> l)) 

then loo contains a perfect set K c a~~. 
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(2) If flU is serni-conjugate to a parabolic M6bius transformation ip : ID) -> l~), 

then I(x> contains a perfect set K C a~). 

(3) If flU is semiconjugate to a parabolic M6bius transformation ip : C ~ 

C z H~ z+1, then loo = a~)' 

If f}U is univalent, then #1_ = 1, 2 or oo 

(Outline of the Proof) : Since U c C is unbounded, we have I_ ~ ~ and it 

is easy to see that I= is a closed subset of al). Then 61) ¥ I_ is open and it can 

be shown that g can be analytically continued over al) ¥ Ioe ' So in particular g is 

analytic on a~) ¥ Ioo and we have 

9(a~~) ¥ I_) ~; al~) ¥ I_. 

If g is a d to I map (2 ~ d < oo), then g is a finite Blaschke product of 

degree d and i{s Julia set Jg is either al)) or a CaJrtor set (in particular, it is a 

perfect set) in al). Assume that Jg n (al)¥1*) ~ ~, then from the general property 

of the dynamics of rational maps and the ginvariance of aD ¥ Ioo we have 

al) c al) ¥ I=, 

that Is, Ioo = ~, which is a contradiction. Therefore we have Jg C Ioo ' This proves 

the case (1) and (2) with a further assumption that g is a finite to one map. 

If g is an oo to I map, we can show that 

oc 
U 9-"(zo) n al~ C Ioo 

~=1 

holds for every zo e ID) (there may be some exception) and the set U"co=1 9~~(zo) n 

al~) is either equal to a~) or at least contains a certain perfect set K C alD). 

This result comes from a property of g as a boundary map g : al) ~ a~). This 

completes the proof for the case (1) and (2) . 

For the case (3), since we have lim~_oo lqnl = O, we can obtain that 

oo 
U 9-"(zo) n al) Ol) C I_, 

*=1 
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and hence loo = al) ' This fact comes from the ergodic property of g as an inner 

function. This completes the proof for the case (3). 

If g is univalent, then g is either hyperbolic or parabolic M6bius transfor-

mation. g has either one or two flxed point and the every orbit of a point other 

than the fixed points has inflnitely many points. On the other hand, we have 

g(alD) ¥ Ioo) ~ al) ¥ Ioo' 

so we can conclude that #100 = 1, 2 or oo [] 

Of course, we can obtain the same result when U is a periodic Baker domain. 
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　　臨㎜o附（五996）事1イ9．
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