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1 Introduction

Let f be a transcendental entire function, Fy C C the Fatou set of f. We
call a connected component U of Fy a Fatou component. Then U is either a
wandering domain (that is, f™(U) N f*(U) = 0 for all n,m € N) or eventually
periodic (that is, f™(U) is periodic for an m € N). If it is periodic, it is well
known that there are four possibilities; U is either an attractive basin, a parabolic

basin, a Siegel disk, or a Baker domain.

Now in what follows let U be an unbounded invariant (that is, f(U) C U)
Fatou component. Then it is known that U is simply connected ([B], [EL]) and
so let ¢ : ) — U be a Riemann map of U. The boundary 8U of U can be
very complicated. For example, consider the exponential family Ey(z) := Ae®. If
the parameter \ satisfies A = te™® |¢| < 1, then there exists a unique unbounded
completely invariant attractive basin U which is equal to the Fatou set Fp, and

OU is equal to the Julia set Jg, which is so called a Cantor bouquet. Moreover,
O = {ew l (e = 11/‘1111 o(ret?) = oo} c oD
™

is dense in D ([DG]). This implies that ¢ is highly discontinuous on 81D and

hence QU has a very complicated structure.

Baker and Weinreich investigated the boundary behavior of ¢ generally in
the case of attractive basins, parabolic basins and Siegel disks and showed the

following:
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Theorem (Baker-Weinrech, [BW]) The point co belongs to the impression

of every prime end of U. 0

From the classical theory of prime end by Carathéodory it is well known that
there is a 1 to 1 correspondence between 0D and the set of all the prime ends of
U. Let us denote P(e*®) the prime end corresponding to the point ¥ € dID. The
impression Im(P(e*)) of a prime end P(e*) is a subset of U which is known to

be written as follows:
Im(P(e®?)) = {pc U | for 2, € D s.t. z, — €, ©(z,) — p}.

For the details of the theory of prime end, see for example, [CL]. Define the set
I, ¢ 8D by

I = {€? € 8D | 0o € Im(P(e*))},
then the above result asserts that I,, = 8D in the case of unbounded attrac-
tive basins, parabolic basins and Siegel disks. This shows that OU is extremely
complicated.

On the other hand, AU can be very “simple” in the case when U is a Baker

domain. For example,
fz)=2—log2+2z—¢"

has a Baker domain U on which f is univalent and whose boundary U is a Jordan
curve (i.e. OU U {o0} C C is a Jordan curve and 8U C C is a Jordan arc, [Ber,

Theorem 2]). In this case I, consists of only a single point.

Then what can we say about the set I, in general when U is a Baker

domain? In this paper we give an answer to this problem.

2 Classification of Baker domains

In this section we classify Baker domains from the dynamical point of view.
Now let U be an invariant Baker domain. By definition f*|U — oo (n — o0)

locally uniformly, so put

g=¢ tofop:D-D,
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then g is conjugate to f|U : U — U and from the dynamics of f|U, g has no
fixed point in ). By the theorem of Denjoy and Wolff, there exists a unique point
p € 0D (which is called Denjoy-Wolff point) and g* — p locally uniformly. It is
known that there exists a radial limit ¢ := lim, ~; ¢'(rp) with 0 < ¢ < 1, which
means that p is either an attracting or a parabolic fixed point of the boundary
map of g. Next let

zn i =g¢™"(0) and g¢n:= f—’—i%—;;%,

then by the Schwarz-Pick’s lemma {|g,|}2; turned out to be a decreasing sequence
and hence there exists a limit lim, .« |gr| ([P]). By using this limit and the value
¢, the dynamics of g on I can be classified for three different classes as follows.

This result is essentially due to Baker and Pommerenke ([BP], [P]).

Theorem (1) If ¢ < 1, then g is semi-conjugate to a hyperbolic Mébius trans-

formation ¢ : D — I with #(z) = %j—gg‘i—‘”i;z

(2) If c=1 and lim, o0 |gn] > 0, then g is semi-conjugate to a parabolic Mdbius

14+2)2—1

i D — D wi = g————————

transformation — 1) with ¥(z) Y

(3) If ¢c=1 and lim, ., |g,| = 0, then g is semi-conjugate to a parabolic Mdbius
transformation ¢ : C — C with ¥(z) = z + 1. |

Konig investigated the relation between the above classification and the

dynamics of f|U : U — U and obtained the following result:

Theorem (Kénig, [K]) Let wy € U and define
wy = f(wp) and dy = dist (wy,, V),

where “dist” is a Euclidean distance. Then

(1) f|U is semi-conjugate to a hyperbolic Mébius transformation ¢ : ) — I if
and only if there exists a constant # = S(f) > 0 such that

‘wn+1 - wn[

i >p (neN)

holds for any wg € U.



(2) f|U is semi-conjugate to a parabolic Mébius transformation 1 : ) — ID if and

only if
lim inf w >0
n—00 n
holds for any wy € U but
. . lwn+1 - wn] _
wloner hgfo%p o =0.

(3) f|U is semi-conjugate to a parabolic Mébius transformation 4 : C — C with

¥(2) = z+ 1 if and only if

. Wp41 — W
lim -2+t

n—00 d,n

holds for any wg € U. ]
For each cases Konig also gave concrete examples satisfying the above conditions:

(1) f(z) =32+¢€7,
(2) f(2) = 2z + 2mia + €, where o € (0, 1) satisfies the Diophantine condition,

3) f(z) = e (z 4 /z e“cpdg“), where pe N, p> 2.
0

Note that in the case (3), the function f above has a Baker domain of period
p > 2, not an invariant one. Of course, if we consider f? instead of f, f? has an

invariant Baker domain.

3 Result and the outline of the proof

With the above classification, we can state our main theorem as follows:

Main Theorem Let f be a transcendental entire function and suppose that f
has an invariant Baker domain U. Let ¢ : ) — U be a Riemann map of U and

the set I, as above. Assume that f|{U : U — U is not univalent.

(1) If f|U is semi-conjugate to a hyperbolic Mébius transformation 3 : ) — DD,
then I, contains a perfect set K ¢ 8.
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(2) If f|U is semi-conjugate to a parabolic M&bius transformation v : D — D,
then I, contains a perfect set K c 9D.

(3) If f|U is semi-conjugate to a parabolic M&bius transformation 4 : C —
C 2z z+1, then I, = 9D.

If f]U is univalent, then #I,, = 1,2 or co.

(Outline of the Proof) : Since U C C is unbounded, we have I, # 0 and it
is easy to see that I, is a closed subset of 8ID. Then 8D\ I, is open and it can
be shown that g can be analytically continued over 81D\ I,. So in particular g is
analytic on 91D\ I and we have

g(8D\ Io) € 0D\ Is.

Ifgisadtolmap (2 <d < o), then ¢ is a finite Blaschke product of
degree d and its Julia set J, is either 8D or a Cantor set (in particular, it is a
perfect set) in 8ID. Assume that J,N(8ID\I) # 0, then from the general property

of the dynamics of rational maps and the g-invariance of 9D\ I, we have
oD c 6D\ I,

that is, Ioo = 0, which is a contradiction. Therefore we have J; C I,. This proves

the case (1) and (2) with a further assumption that g is a finite to one map.

If g is an oo to 1 map, we can show that

—_—
U g (z0) N 0D C I,
n=1
holds for every zo € I (there may be some exception) and the set MH
0D is either equal to 8D or at least contains a certain perfect set K C 8.
This result comes from a property of g as a boundary map g : 81D — 8I). This
completes the proof for the case (1) and (2).

For the case (3), since we have lim,,—, |¢.| = 0, we can obtain that

U 9 (20) NOD = 8D C I,

n=1
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and hence I, = O). This fact comes from the ergodic property of g as an inner

function. This completes the proof for the case (3).

If g is univalent, then g is either hyperbolic or parabolic M&bius transfor-
mation. ¢ has either one or two fixed point and the every orbit of a point other

than the fixed points has infinitely many points. On the other hand, we have
90D\ Iso) € 0D\ I,
so we can conclude that #I, = 1,2 or co. O

Of course, we can obtain the same result when U is a periodic Baker domain.
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