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Abstract 

We consider dynamics of semigroups of rational functions on Rie-

mannn sphere. First, we will define hyperbolic rational semigroups 

and show the metrical property. We will also define subhyperbolic 

rational semigroups and show that if G is finitely generated subhyper-

bolic rational semigroup containing an element with the degree at least 

two and each M6bius transformation in G is hyperbolic or loxodromic, 

then there is no wandering domain. Also we can show the continuity 

of the Julia set with respect to the pertubation of the generators. 

Next, we will consider constructing pseudo 6-conformal measures 

on the Julia sets. If a finitely generated semigroup satisfies the strong 

open set condition, then we can construct 6-conformal measures on 

the Julia set. Using this measures, we get an upper estimate of the 

Hausdorff dimension of the Julia sets of finitely generated expanding 

sermgroups. 
Considering conformal measures in a skew product, with a method 

of the thermodynamical formalism, we can get another upper estimate 

of the Hausdorff dimension of the Julia sets of finitely generated ex-

panding semigroups. 

In more general cases than the cases in which semigroups are hy-

perbolic or satisfy the strong open set condition, we can construct 
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generalized Brolin-Lyubich's invariant measures or self-similar mea-

sures in the Julia sets and can show the uniqueness. We will get a 

lower estimate of the metric entropy of the invariant measures. With 

these facts and a generalization of Mafi6's result, we get a lower es-

timate of the Hausdorff dimension of any finitely generated rational 

semigroups such that the backward images of the Julia sets by the 

generators are mutually disjoint. 

1 Int rO duct iO n 

For a Riemann surface S) Iet End(S) denote the set of all holomorphic en-

domorphisms of S. It is a semigroup with the semigroup operation being 

composition of functions. A rational semigroup is a subsemigroup of End(C) 

without any constant elements.Similarly, an entire semigroup is a subsemi-

group of End(C) without any constant elements. A rational semigroup G 

is called a polynomial semigroup if each g e G is a polynomial. When a 
rational or entire semigroup G is generated by {fl' f2, . . . fn' ' ' '}' we denote 

this situation by 

G =･<fl' f2, . . . fn' ' ' ')' 

A rational or entire semigroup generated by a single function g is denoted 

by (g). We denote the n th iterate of f by fn. 

The studies of dynamics of rational semigroups were introduced by W.Zhou 

and F.Ren[ZR], Z.Gong and F.Ren[GR] and Hinkkanen and Martin[HMl]. 
Some properties of dynamics of rational semigroups were studied in [HMl], 

[HM2], [S1], [S2]. 

In [S3], dynamics of hyperbolic rational semigroups are investigated and 

it is shown that all limit functions of finitely generated rational semigroups 

on the Fatou sets are constant functions that take their values in the post 

critical sets. Also with respect to pertubations of generators of any finitely 

generated hyperbolic rational semigroup, the hyperbolicity is kept and the 

Julia set moves continuously. 

In this paper, we will define subhyperbolic rational semigroups and show 

that if G is finitely generated subhyperbolic rational semigroup containing 

an element with the degree at least two and each M6bius transformation in 

G is hyperbolic or loxodromic, then there is no wandering domain. Also we 

will discuss about the continuity of the Julia set. 
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In [S4], we will show that if a finitely generated rational semigroup con-

tains an element of degree at least two and each M6bius transformation in 

it is neither the identity nor an elliptic element, then the hyperbolicity and 

expandingness are equivalent. If the sets of backward images of the Julia set 

by generators are almost disjoint, then the Julia set has no interior points. 

We construct a generalized 6-conformal measure on the Julia set of any ra-

tional semigroup which satisfies the strong open set condition. We show that 

if the semigroup is hyperbolic, then the Hausdorff dimension of the Julia set 

coincides with the unique value 6 that allows us to construct a 6-conformal 

measure and it is strictly less than 2. Also the 6- Hausdonf measure of the 

Julia set is a finite value strictly bigger than zero. Considering the convergent 

series of the norm of the derivative at the backward images, With the similar 

method to the! ! construction of the Patterson-Sullivan measures on the 

limit sets of Kleinian groups we get a pseudo 6-conformal measure in more 

general case and we will show that if a finitely generated rational semigroup 

is expanding, then the Hausdorff dimension of the Julia set is less than the 

exponent 6. 

Generalized Brolin-Lyubich's invariant measures on the Julia set of any 

rational semigroup which is hyperbolic or satisfying the strong open set con-

dition are constructed in [S5] and a lower estimate of the Hausdorff dimension 

of the rational semigroups is given. 

In this paper and [S6], the author will discuss about the existance and 

uniquness of the conformal measures and self-similar measures of rational 

semigroups in more general cases. We use the thermodynamic formalism and 

give an upper bound of the Hausdorff dimension of the Julia sets of finitely 

generated hyperbolic rational semigroups. Also we construct invariant mea-

sures or self-similar measures on Julia sets of any finitely generated rational 

semigroups and will estimate the metric entropy of the invariant measures of 

the skew product maps. If G = <fl' f2, . . . fm) is finitely generated rational 

semigroup and the sets {fi-1(J(G))}i are mutually disjoint, then by a gen-

eralization of Mai6's relult and the estimate of the metric entropy, we will 

get 
dimH(J(G)) ~ Iog(~;3'T~=1 deg(fj)) 

fJ(G) Iog ll f f (z) Ild/1(z) ' 

where the map f : J(G) ~> J(G) is defined by f(z) = fs(z) if z e f~1(J(G)). 
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Definition 1.1 Let G be a rational semigroup. 

F(G) d-ef {z e ~; I G is normal in a neighborhood of z} 

J(G) d-ef ~: ¥ F(G) 

F(G) is called the Fatou set for G and J(G) is called the Julia set for G. 

J(G) is backward invariant under G but not forward invariant in general. If 

G =- <fl' f2, . . . f~) is a finitely generated rational semigroup , then J(G) has 

the backward self-similarity. That is, we have 

J(G) = U"?=1fi-1(J(G)). 

The Julia set of any rational semigroup is a perfect set, backward orbit of any 

point of the Julia set is dense in the Julia set and the set of repelling fixed 

points of the semigroup is dense in the Julia set. For more detail about these 

properties, see [ZR], [GR], [HMl], [HM2], [Sl] and [S2]. In general Julia sets 

may have non-empty interior points and be not the Riemann sphere. For 
example, J((z2, 2z)) is the closure of the unit disc. In [HM2], it was shown 

that if G is a finitely generated rational semigroup, then each super attracting 

fixed point of any element of g e G does not belong to the boundary of the 

Julia set. So we can construct many examples such that the Julia sets have 

non-empty interior points. 
In [S4], it was shown that if G = <fl' f2, ' ' ' fn> is a finitely generated ra-

tional semigroup and the set U(i,j)=i~j ff I (J(G)) n f3~1 (J(G)) does not contain 

any continuum, then the Julia set J(G) has no interior points. Note that 

this result solves the Problem 3,4 in [Re]. 

2 ( ) Sub hyperbOlicity and StrOng Open Set 
COnditiOn 

Defimtron 2 1 Let G be a ratlonal senugroup. We set 

P(G) = U { critical values of g} 

9eG 

and we say that G is hyperbolic if P(G) c F(G). We call P(G) the post 
critical set of G. 
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Definition 2.2 Let G = (fl' f2, . ' ' fn> be a finitely generated rational semi-

group. We say that G satisfies strong open set condition if there is an open 

neighborhood O of J(G) such that each set jfl(O) is included in O and is 

mutually disjoint. 

In [S3], dynamics of hyperbolic rational semigroups were investigated and it 

was shown that if a finitely generated rational semigroup is hyperbolic and 

each M6bius transformation in the semigroup is neither identity nor elliptic, 

then all limit functions of the semigroup on any component of the Fatou 

set are constant functions that take their values in the post critical sets. 

Also with respect to pertubations of generators of any finitely generated 

hyperbolic rational semigroup, the hyperbolicity is kept and the Julia set 

moves continuously. 

If a finitely generated rational semigroup satisfies the strong open set 

condition, then the Julia set has no interior points. 

Now we consider the expandingness of hyperbolic rational semigroups, 

which gives us an information about the analytic property of them. 

Theorem 2 3 ([S4]) Let G <fl f2 . . . fn) be a finitely generated hyper-

bolic rational semigroup . Assume that G contains an element with the degree 

at least two and each M6bius transformation in G is neither the identity nor 

an elliptic element. Let K be a compact subset of C ¥ P(G). Then there are 

a positive number c, a number A > I and a conformal metric p on an open 

subset V of C ¥ P(G) which contains K U J(G) and is backward invariant 

under G such that for each k -
inf{Il(fiko"'ofel) (z)ll I z e (feko fel) (K) (z ~l) ~ {1 n} } 

~ cAh, here we denote by ll ･ Ilp the norm of the derivative measured from the 

metric p to it. 

Now we will show the converse of Theorem 2.3. 

Theorem 2.4 ([S4]) Let G = <fl' f2, . . . fn) be a finitely generated rational 

semigroup. If there are a positive number c, a number A > I and a conformal 

metric p on an open subset U containing J(G) such that for each k 

inf{ll(fiko"'ofel) (z)tl I z e (fek fcl) (J(G)), (ik,...,il) e {1, ...,n}k} 
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~ cAk where we denote by 11 ･ ilp the norm of the derivative measured from 

the metric p on V to it, then G is hyperbolic and for each h e G such that 

deg(h) is one the map h is not elliptic. 

Remark. Because of the compactness of J(G), we can show, with an easy 

argument, which is familiar to us in the iteration theory of rational functions, 

that even if we exchange the metric p to another conformal metric pl' the 

enequality of the assumption holds with the same number A and a different 

constant cl' 

Definition 2.5 Let G = <fl' f2, . . . fn) be a fimtely generated ratronal senu 

group. We say that G is expanding if the assumption in Theorem 2.4 holds. 

Theorem 2.6 Let G = <fl' f2, . . . fm) be a fimtely generated eapandzng ra 

tional semigroup. Assume that 

e G is expanding, and 

e there is an open setO such that #(aOnJ(G)) < oo, for each j, fJT1(O) C 

O and {f3rl(O)}j=1,"',m are mutually disjoint. 

Then 2-dimensional Lebesgue measure of J(G) is equal to O. 

Proof. With the assumption of our theorem, we can show that for each 
x ~ J(G) ¥ (G-lG(aO)), the orbit G(x) n J(G) has an accumulation point 

in J(G) ¥ (G(aO) U aO). By Koebe theorem, the statement holds. Cl 

Definition 2.7 Let G be a rational semigroup and U be a component of 
F(G). For e:very element g of G, we denote by Ug the connected component 

of F(G) containing g(U). We say that U is a wandering domain if {Ug} is 

infinite. 

Next theorem follows from the argument in Theorem 2.2.4 in [S3]. 

Theorem 2.8 Let G be a rational semigroup with F(G) ~ ~. Assume that 

G contains an element with the degree at least two and P(G) n aJ(G) = ~. 

Then there is no wandering domain. Moreover, if G is finitely generated, each 

Mdbius transformation in G is hyperbolic or loxodromic and there exists no 

element g e G such that g has Siegel disks or Herman rings, then there exists 

a non-empty compact set K in P(G) n F(G) such that for each z ~ F(G), 

the orbit G(z) can accumulate only in K. 
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Propotition 2.9 Let G be a rational semigroup. Assume that G contains 

an element g with the degree at least two such that g has no Siegel disks or 

Herman rings. If P(<9)) is included in the interior of J(G), then J(G) is 

equal to C. 

Proof. Assume F(G) ~ R･ Let U be a connected component of F(G). 

Considering {9n(U)}, it is a contradiction. [l 

Definition 2.lO Let G be a rational semigroup. We say that G is subhy-

perbolic if #P(G) n J(G) < oo and P(G) n F(G) is compact. 

Theorem 2.11 Let G = <fl' f2, . . . fm) be a finitely generated rational semi-

group which is subhyperbolic. Assume that there is an element of G with 

the degree at least two and each Mdbius transformation in G is hyperbolic or 

loxodromic. Then if F(G) ~ R, there exists a non-empty compact set K in 

P(G) n F(G) such that for each z e F(G), the orbit G(z) can accumulate 

only in K. In particular, there is no wandering domain. 

Proof. Using a similar argument in Theorem 2.2.8 in [S3], we have only to 

show that for each connected component U of F(G), #{Ug I 9 e G} < oo. Now 

assume #{Ug I 9 e G} = oo. By Theorem 2.2.4 in [S3], there exists a sequence 

(9n) of mutually distinct elements in G and .a point ~ e p(G) n aJ(G) such 

that (gn) converges to ( Iocally uniformly in U. Since G is finitely generated, 

we can assume that for each n, there exists an element hn e G such that 

9n+1 = hn9n' Then for each sufiiciently large n, hn(O = (･ Now we consider 

lh~(()1･ By [HM2], there is no super attracting fixed point of any element of 

G in aJ(G). With the fact, since G is subhyperbolic, it follows that C is a 

repelling fixed point of hn' But this is a contradiction by Koebe theorem. [] 

Theorem 2.12 Let G be a finitely generated rational semigroup which con-

tains an element with the degree at least two. Assume that tiP(G) < oo and 

P(G) C J(G). Then J(G) = C. 

Proof. By [HM2] , there is no super attracting fixed point of any element 

of G in aJ(G). Now we can show the statement in the same way as Propoti-

By Theorem 2.11 and Theorem 2.3.4 in [S3], we get the following result. 
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Theorem 2.13 Let M be a complex manifold. Let {Ga}aeM be a holo-
morphic family of rational semigroups (See the definition in fS3J) where 

Ga = <fl,a""'fn,a)' We assume that for a point b e M, Gb is subhy-
perbolic, contains an element of the degree at least two and each Mdbius 

transformation in Gb is hyperbolic or loxodromic. Then the map 

a H> J(Ga) 

is continuous at the point a = b with respect to the Hausdorff metric. 

3 6-COnfOrmal MeaSure 
We construct 6-conformal measures on Julia sets of rational semigroups. 6-

conformal measures on Julia sets of rational functions were introduced in 
[Sul] . 

Definition 3.1 ' Let G = <fl' f2, ' ' ' fn) be a finitely generated rational semi-

group satisfying the strong open set condition and let 6 be a non-negative 

number. We say that a probability measure ,1 on J(G) is 6-conformal if for 
each j = 1, . . . , n and for each measurable set A included in fJTl(J(G)) where 

fj is injective on A, 

~(fj(A)) = fA Il~(z)Il6d/1, 

where Jl ･ 11 denotes the norm of the derivative with respect to the spherical 

metric. And we set 

6(G) = inf{6 1 there is a 5-conformal measure on J(G)}. 

Theorem 3.2 ([S4]) Let G = <fl' f2, ' ' ' fn) be a finitely generated rational 

semigroup satisfying the strong open set condition. We assume that when n 

is equal to one the degree of fl is at least two. Then there are a number 

O < 6 ~ 2 and a probability measure /1 whose support is equal to J(G) such 

that kt is 6-conformal. Also 6(G) > o. 

If G is finitely generated hyperbolic rational semigroup and satisfies the 

strong opcn set condition, then dimH(J(G)) = 6(G) ([S4]). In [DU], M.Denker 
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and M.Urbariski gave a conjecture which states that for any rational map f 

with deg(f) ~ 2, 

dimH(J(<f))) = 6((f)). 

Similary we give the following conjecture. 

Conjecture 3.3 ([S4]) Let G = (fl' f2, ' ' ' fn) be a fimtely generated rateo 

nal semigroup satisfying the strong open set condition. We assume that when 

n is equal to one the degree of fl is at least two. Then 

dimH(J(G)) = 6(G). 

4 PSeudO 6-COnfOrmal MeaSure 
Definition 4.1 Let G be a rational semigroup and 6 be a non-negative num-

ber. We say that a probability measure ,1 on J(G) is pseudo 6-conformal if 

for each g e G and for each measurable set A included in g~1(J(G)) where 

g is injective on A, 
hc(9(A)) ~ fA Il91(z)ll8du. 

For each x e C! we set 

S(5, x) = ~ ~ Il91(y)ll 

9eG 9(y)=x 

counting multiplicities and 

S(x) = inf{s I S(s, x) < oo}. 

If there is not s such that S(s, x) < oo, then we set S(x) = oo.Also we set 

so(G) = inf{S(x)}, s(G) = inf{6 1 ~ke : pseudo 6-conformal measure} 

where the former infimum is taken over all points x such that O-(x) does 

not accumulate at any point of F(G). 

Using 'the same method 
following result. 

of the proof of Theorem 3.2, we can show the 
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Theorem 4.2 ([S4]) Let G be a rational semigroup which has at most count-

ably many elements. If there exists a point x ~ C such that S(x) < oo and 

O-(x) does not accumulate at any point of F(G), then there is a pseudo 

S(x)-conformal measure whose support is equal to J(G). In particular, there 

is a pseudo so(G)-conformal measure. Also we have s(G) > o. 

Theorem 4.3 ([S4]) Let G = <fl' f2, ' ' ' fn> be a fimtely generated rateonal 

semigroup which is expanding. Then so(G) < oo and 

dimH(J(G)) ~ s(G) ~ so(G). 

5 COnfOrmal MeaSureS in a Skew PrOduCt 

Let m be a positive integer. We denote by ~]m the one-sided word space, 

that is 
~m = {1, . . . , m}Itr 

and denote by cr : ~;m ~~ ~)m the shift map, that is 

(wl' ' ' ') H> (w2, ' ' ')' 

Let G =_ <fl' f2, ' ' ' fm) be a finitely generated rational semigroup. We define 

a map f : ~:m X ~: ~ ~m X ~~ by 

f ((w, x)) = (aw, fwlx). 

f is a finite-to-one and open map. We have that a point (w,x) e ~m X C 

satisfies flwl (x) ~ O if and only if f is a homeomorphism in a small neighbor-

hood of (w,x). Hence the map f has infinitely many sritical_points. We 
set j = nnOO=0(~m X J(G)). Then by definition, f-1(J) = J. Also from 

the backward self-similarity of J(G), we can show that 7r(J) = J(G) where 

7r : ~m X C ~ ~~ is the second projection. 
For each j = 1, . . . , m, Iet fPj be a H6lder continuous function on fJrl (J(G)). 

We set for each (w, x) e J, fP((w,x)) = fPwl (x). Then fP is a H6lder contin-

uous function on J. We define an operater L on C(J) = {ip : J ~ C l 
continuous } by 

Lip((w, x)) exp(~'((wl, y))) ip((wl, y) ) , 
= ~ exp ( P) 

j((w' , y))=(w,x) 

38 



counting multiplicities, where we denote by P = P(flj' ~') the pressure of 
( f l j' ~') ' 

Lemma 5.1 With the same notation~ as the above, Iet G = <fl' f2, ' ' ' fm) 

be a finitely generated expanding rational semigroup. Then for each set of 

Hdlder continuous functions {fPj} j=1""'m' there exists a unique probability 

measure T on J such that 

e L*T = T, 

e for each ip e C(J), IILnip - T(ip)aIIJ ~~ O,n ~> oo, where we set 

1~00 Ll(1) e O(J) and we denote by 11 ･ Ilj a = Iim the supremum norm on j, 

e aT is an equilibrium state for (flJ-, ~). 

Lemma 5 2 Let G <fl' f2, ' ' fm) be a finitely generated expanding ratio-

nal semigroup. Then there exists a unique number 6 > o such that if we set 
V)j(x) = -610g([If3((x)ll), j = 1, . . . ,m, then P = O. 

From Lemma 5.1, for this 5 there exists a unique probability measure T on 

J such that L~T = T where L6 is an operator on C(J) defined by 

L8ip((w, x)) = ~; op((w/, y)) 
f((w',y))=(w,x~ ll (fwi) (y) Il 

Also 6 satisfies that 

6 = haT(f) < Iog(~3'7$=1 deg(fj)) 

f - ~adT ' J - fJ- ipoidT 
where a = Iiml~00 L~(1), we denote by haT(f) the metric entropy of (f, aT) 

and ~ is a function on J defined by ~((w, x)) = Iog(Ilf'wl (x)lD-

By these argument, we get the following result. 

Theorem 5.3 Let G = <fl' f2, ' ' ' fm) be a finitely generated expanding ra-

tional semigroup and 6 the number in the above argument. Then 

dimH(J(G)) ~ s(G) ~ 6. 

Moreover, if the sets {f3rl(J(G))} are mutually disjoint, then dimH(J(G)) = 

6 < 2 and O < H6(J(G)) < oo, where we denote by H6 the 6-Hausdorff 

measure. 
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Corollary 5 4 Let G (fl f2 ' ' f~) be a finitely generated eapanding ra-

tional semigroup. Then 

dimH(J(G)) ~ Iog(~j~=1 deg(fj)) 

log A 

where A denotes the number in Definition 2. 5. 

6 Generallzed BrOlln Lyublch S Invarlant Mea 
Sure, Self-Similar MeaSure 

With the same notation as the previous section, we define an operator A on 

O(J) by 

~ ~((w',y)), for each ~ e C(j), Aip((w x)) = 
' ~3~=1 deg(fj) -

f ((~',y))=(~,*) 

and an operator'A on C(J(G)) = {ip : J(G) ~~ C I continuous} by 

Aip(x) = ~ ~ ap(y), for each ip e C(J(G)). 
~3~=1 deg( fj) j=1 fj(y)=* 

Then A 07r' = 7r' o A, where 7r' is the map from C(J(G)) to C(J) defined by 

(7r'ip)((w, x)) = ip(x). Note that since 7r(J) = J(G), we have that for each 

ip e C(J(G)), 

ll7r'ipllj = IlipllJ(G). (1) 

Now we consider a condition such that the invariant measures are unique. 

Definition 6.1 Let G = (fl' f2, ' ' ' f~> be a finitely generated rational semi-

group. With the same notation as the previous section, we say that G satisfies 

condition * if for any z e J ¥ per(f), for any 6 > o, there exists a positive 

integer no = no(z, e) such that 

#{ f~-"' (z) n Z~} (2) 
<c (~3~=1 deg(fj))"' ' 

counting multiplicities, where we set 

Z~ U"~=1f"({ critical points of f} n J). (3) 
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Remark Let G = <f f . . . fm) beafimtely generated ratronal senugroup 

. l, 2, In each case of the following, the condition * holds. 

e There exists an element f such that for each j = 1, . . . , m, fj = f. 

e The sets {frl(J(G))}i=1,"',m are mutually disjoint. 

e J(G) ¥ UgeG{critical values of g} n J(G) ~ O. 

Therefore we have many finitely generated rational semigroups satisfying con-

dition *. It seems to be true that the condition * holds if a finitely generated 

rational semigroup G satisfies that J(G) n E(G) = O, where E(G) denotes 

the exceptional set of G, that is E(G) = {z e C I #{UgeG9~1(z)} < oo}. 

Theorem 6.2 Let G = (fl' f2, ' ' . fm> be a fimtely generated rateonal seme 

group. Assume that F(H) D J(G), where we set H = {9-1 e Aut (~~) I 9 e 

Aut (C) n G}, and condition * holds. Then we have the following: 

1. There exis~s a unique probability measure p on j such that 

llAn~ _ p(~) IJ]lj ~~ O, n ~ oo, for any ip e O(J), 

where we denote by lj the constant function on J taking its value l, 

and exists a unique probability measure ,1 .on J(G) such that 

l!AnfP 'l(~)) IJ(G)llJ(G) ~ O n ~~ oo, for any fP ~ C(J(G)), 

where we denote by IJ(G) the constant function on J(G) tahing its value 
l
.
 

2. 7r*p = kt and p is f-invariant. 

3. (f,p) is exact. In particular, p is ergodic. 

4. pt is non-atomic. supp (/1) is equal to J(G). 

5 h(fl ) > hp(f) > Iog(~~ I deg(f )) where h(f!j) denotes the topolog-

ical entropy of f on J. 
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Proof. We will show the statement. in the similar way to [L]. By [HM3], 

the family of all holomorphic inverse branches of any elements of G in any 

open set U which has non-empty intersection with J(G) is normal in U. 

With this fact, we can show that the operator A is almost periodic, i.e. for 

each ip e C(J), {Anap}~ is relative compact in O(J). Hence, by [L], C(J) 

is the direct sum of the attractive basin of O for A and the closure of the 

space generated by unit eigenvectors. It is easy to see that I is the unique 

eigenvalue and the eigenvectors are constant. Therefore 1. holds. 

Because of the condition *, E(G) is included in F(G). With the fact, we 

can show that kt is non-atomic, which implies 5. 
[
l
 

Remarkl. If f[j rs expansive,(in particular, if G is expanding, ) then 

~ h(flJ) = hk(f) = Iog(~ deg(fj))' 

j=1 

Remark2. We can also construct self-similar measures on J(G) and show 

the uniqueness under a similar assumption to condition *. For example, in 

each case of the Remark after Definition 6.1, we can show that. 

Now we consider a generalization of Mai6's result([Ma]). 

Theorem 6.3 Let G = <fl' f2, ' ' ' fm) be a ftnitely generated rational .semi-

group. Assume that the sets {j,1(J(G))}j=1,"',~ are mutually disjoint. We 

define a map f : J(G) ~ J(G) by f(x) = fi(x) ifx e fi-1(J(G)). If ,1 is an 

ergodic invariant probability measure for f : J(G) ~ J(G) with h,x(f) > o, 

then fJ(G) Iog(llfll) d/1 > o 

and 
HD(/1) = hu(f) 

fJ(G) Iog(llfl!1) dkt' 

where we set 

HD(kt) mf{dlmH(Y) I Y C J(G), //(Y) = 1}. 

Proof. We can show the statement in the same way as [Ma]. Note that the 

Ruelle's inequality([Ru]) also holds for the map f : J(G) ~> J(G). [] 
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LFrom the remark after Definition 6.1, Theorem 6.2 and Theorem 6.3, we 

get the following result. This solves the Problem 12 in [Re] of F.Ren's. 

Theorem 6 4 Let G (fl' f2, . . . fm> be a finitely generated rational semi-

group. Assume that the sets {f~l(J(G))}j=1,.",m are mutually disjoint. Then 

dimH(J(G)) ~ Iog(~;3'T~=1 deg(fj)) 

fJ(G) Iog(llflll) dll' 

where kt denotes the probability measure in Theorem 6.2 and f(x) = ft(x) if 

x ~ f~1(J(G)). 

ReferenceS 

[DU] M.Denker, M.Urbaiski, The dichotomy of Hausdorff measure and equi-

librium states for parabolic rational maps. Ergodic Theory and Related 

Topics 111, Proceedings Gbstow 1990, eds. U.Krengel, K.Richter and 

V.Warstat. Lecture Notes in Mathematics 1514. Springer, Berlin, 1992, 

pp. 90-113. 

[HMl] A.Hinkkanen, G.J.Martin, The Dynamics of Semigroups of Rational 

Functions I, Proc.London Math.SQc. (3)73(1996), 358-384. 

[HM2] A.Hinkkanen, G.J.Martin, Julia Sets of Rational Semigroups , 
Math.Z. 222, 1996, n0.2, 161-169. 

[HM3] A.Hinkkanen, G.J.Martin, Some Properties of Semigroups of Rational 

Functions. XVlth Rolf Nevanlinna Colloquium(Joensuu,1995) , 53-58, de 

Gruyter, Berlin, 1996. 

[L] M.J.Lyubich, Entropy Properties ofRational Endomorphisms of the Rie-

mann Sphere. Ergod.th.&Dynam.Sys. (1983), 3, 351-385 

[Ma] R.Mafi6, The Hausdorff dimension of invariant probabilities of rational 

maps, Dynamical systems, Valparaiso 1986, Lecture Notes in Mathe-
matics 1331(Springer, Berlin, 1988)86-117. 

43 



[M] C.McMullen, Complex Dynamics and Renormalization, Princeton Uni-

versity Press, Princeton, New Jersey. 

[MTU] S.Morosawa, M. Taniguchi and T. Ueda A Primer on Complex Dy-
namics, (Japanese version; Baihuukan, 1995) English version, in prepa-

ration. 

[P] S.J.Patterson, The Limit Set of a Fuchsian Group, Acta Math 
136(1976), 241-273. 

[Re] F.Ren, Advances and problems in random dynamical systems, preprint. 

[Ru] D.Ruelle, An inequality for the entropy of differenciable maps, 

Bol.Soc.Bras.Mat. Vol.9, N0.1, 1978, 83-87. 

[ZR] W.Zhou, F.Ren, The Julia sets of the random iteration of rational func-

tions, Chinese Bulletin, 37(12), 1992, 969-971. 

[GR] Z.Gong, F.Ren, A random dynamical system formed by infinitely many 

functions, Journal of Fudan University, 35, 1996, 387-392. 

[Sul] D.Sullivan, Oonformal D~namical System, in Geometrzc Dynawacs 

Springer Lecture Notes 1007(1983), 725-752. 

[Sl] H.Sumi, On Limit Functions and Oontinuity of Julia Sets of Rational 

Semigroups. In T. Sugawa, editor, RIMS Kokyuroku 959: Oomplex 
Dynamics and Related Problems, pages 59-72. Kyoto Univ., 1996. 

[S2] H.Sumi, On Dynamics of Hyperbolic Rational Semigroups and Haus-
dorff Dimension of Julia sets. In S. Morosawa, editor, RIMS Kokyuroku 

988: Complex Dynamics and Related Problems, pages 98-113, Kyoto 
Univ., 1997. 

[S3] H.Sumi, On Dynamics of Hyperbolic Rational Semigroups. Journal of 

Mathematics of Kyoto University, to appear. 

[S4] H.Sumi, On Hausdorff Dimension of Julia Sets of Hyperbolic Rational 

Semigroups, preprint. 

[S5] H.Sumi, Invariant Measures and Hausdorff dimension of Julia Sets of 

Rational Semigroups, preprint. 

44 



[S6] H.Sumi, Conformal Measures and 
Semigroups, in preparation. 

Self-similar Measures of Rational 

45 


