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Abstract

‘We consider dynamics of semigroups of rational functions on Rie-
mannn sphere. First, we will define hyperbolic rational semigroups
and show the metrical property. We will also define subhyperbolic
rational semigroups and show that if G is finitely generated subhyper-
bolic rational semigroup containing an element with the degree at least
two and each Mdbius transformation in G is hyperbolic or loxodromic,
then there is no wandering domain. Also we can show the continuity
of the Julia set with respect to the pertubation of the generators.

Next, we will consider constructing pseudo é-conformal measures
on the Julia sets. If a finitely generated semigroup satisfies the strong
open set condition, then we can construct é-conformal measures on

. the Julia set. Using this measures, we get an upper estimate of the
Hausdorff dimension of the Julia sets of finitely generated expanding
semigroups.

Considering conformal measures in a skew product, with a method
of the thermodynamical formalism, we can get another upper estimate
of the Hausdorff dimension of the Julia sets of finitely generated ex-
panding semigroups.

In more general cases than the cases in which semigroups are hy-
perbolic or satisfy the strong open set condition, we can construct
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generalized Brolin-Lyubich’s invariant measures or self-similar mea-
sures in the Julia sets and can show the uniqueness. We will get a
lower estimate of the metric entropy of the invariant measures. With
these facts and a generalization of Maié’s result, we get a lower es-
timate of the Hausdorff dimension of any finitely generated rational
semigroups such that the backward images of the Julia sets by the
generators are mutually disjoint.

1 Introduction

For a Riemann surface S, let End(S) denote the set of all holomorphic en-
domorphisms of S. It is a semigroup with the semigroup operation being
composition of functions. A rational semigroup is a subsemigroup of End(C)
without any constant elements.Similarly, an entire semigroup is a subsemi-
group of End(C) without any constant elements. A rational semigroup G
is called a polynomial semigroup if each ¢ € G is a polynomial. When a
rational or entire semigroup G is generated by {f1, fa, ... fa, ...}, we denote
this situation by
G ={f1, far---fny-- )

A rational or entire semigroup generated by a single function ¢ is denoted
by (g). We denote the n th iterate of f by f™.

The studies of dynamics of rational semigroups were introduced by W.Zhou
and F.Ren[ZR], Z.Gong and F.Ren[GR] and Hinkkanen and Martin[HM1].
Some properties of dynamics of rational semigroups were studied in [HM1],
[HM2], [S1], [S2].

In [S3], dynamics of hyperbolic rational semigroups are investigated and
it is shown that all limit functions of finitely generated rational semigroups
on the Fatou sets are constant functions that take their values in the post
critical sets. Also with respect to pertubations of generators of any finitely
generated hyperbolic rational semigroup, the hyperbolicity is kept and the
Julia set moves continuously.

In this paper, we will define subhyperbolic rational semigroups and show
that if G is finitely generated subhyperbolic rational semigroup containing
an element with the degree at least two and each Mobius transformation in
G is hyperbolic or loxodromic, then there is no wandering domain. Also we
will discuss about the continuity of the Julia set.
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In [S4], we will show that if a finitely generated rational semigroup con-
tains an element of degree at least two and each Mdbius transformation in
it is neither the identity nor an elliptic element, then the hyperbolicity and
expandingness are equivalent. If the sets of backward images of the Julia set
by generators are almost disjoint, then the Julia set has no interior points.
We construct a generalized J-conformal measure on the Julia set of any ra-
tional semigroup which satisfies the strong open set condition. We show that
if the semigroup is hyperbolic, then the Hausdorff dimension of the Julia set
coincides with the unique value § that allows us to construct a §-conformal
measure and it is strictly less than 2. Also the é- Hausdorff measure of the
Julia set is a finite value strictly bigger than zero. Considering the convergent
series of the norm of the derivative at the backward images, With the similar
method to the! ! construction of the Patterson-Sullivan measures on the
limit sets of Kleinian groups we get a pseudo d-conformal measure in more
general case and we will show that if a finitely generated rational semigroup
is expanding, then the Hausdorff dimension of the Julia set is less than the
exponent 4.

Generalized Brolin-Lyubich’s invariant measures on the Julia set of any
rational semigroup which is hyperbolic or satisfying the strong open set con-
dition are constructed in [S5] and a lower estimate of the Hausdorff dimension
of the rational semigroups is given.

In this paper and [S6], the author will discuss about the existance and
uniquness of the conformal measures and self-similar measures of rational
semigroups in more general cases. We use the thermodynamic formalism and
give an upper bound of the Hausdorff dimension of the Julia sets of finitely
generated hyperbolic rational semigroups. Also we construct invariant mea-
sures or self-similar measures on Julia sets of any finitely generated rational
semigroups and will estimate the metric entropy of the invariant measures of
the skew product maps. If G = (fi, fa, ... fm) is finitely generated rational
semigroup and the sets {f;"(J(G))}:; are mutually disjoint, then by a gen-
eralization of Mané’s relult and the estimate of the metric entropy, we will
get _

dimg(J(G)) > 10g(2j=1 deg(f;)) ,
ooy 08 17 (2)1du(z)

where the map f : J(G) = J(G) is defined by f(2) = fi(2) if z € f7*(J(G)).
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Definition 1.1 Let G be a rational semigroup.
F(G) ¥ {2z € T | G is normal in a neighborhood of z}

J(G) ¥ T\ F(G)
F(G) is called the Fatou set for G and J(G) is called the Julia set for G.

J(G) is backward invariant under G but not forward invariant in general. If
G = {(f1, f2,--- fx) is a finitely generated rational semigroup , then J(G) has
the backward self-similarity. That is, we have

J(G) = UL 7 (J(G)).

The Julia set of any rational semigroup is a perfect set, backward orbit of any
point of the Julia set is dense in the Julia set and the set of repelling fixed
points of the semigroup is dense in the Julia set. For more detail about these
properties, see [ZR], [GR], [HM1], [HM2], [S1] and [S2]. In general Julia sets
may have non-empty interior points and be not the Riemann sphere. For
example, J((2?,2z)) is the closure of the unit disc. In [HM2], it was shown
that if G is a finitely generated rational semigroup, then each super attracting
fixed point of any element of g € G does not belong to the boundary of the
Julia set. So we can construct many examples such that the Julia sets have
non-empty interior points.

~ In [S4], it was shown that if G = (f1, fa,... fn) is a finitely generated ra-
tional semigroup and the set Ui ;)i fi  (J(G))Nf;7(J(G)) does not contain
any continuum, then the Julia set J(G) has no interior points. Note that
this result solves the Problem 3,4 in [Re].

2 (Sub)hyperbolicity and Strong Open Set
Condition

Definition 2.1 Let G be a fational semigroup. We set
P(G) = [J{ critical values of g}
9€G

and we say that G is hyperbolic if P(G) C F(G). We call P(G) the post
critical set of G.
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Definition 2.2 Let G = (fi, fo, ... fu) be a finitely generated rational semi-
group. We say that G satisfies strong open set condition if there is an open
neighborhood O of J(G) such that each set f;7(O) is included in O and is
mutually disjoint.

In [S3], dynamics of hyperbolic rational semigroups were investigated and it
was shown that if a finitely generated rational semigroup is hyperbolic and
each Mobius transformation in the semigroup is neither identity nor elliptic,
then all limit functions of the semigroup on any component of the Fatou
set are constant functions that take their values in the post critical sets.
Also with respect to pertubations of generators of any finitely generated
hyperbolic rational semigroup, the hyperbolicity is kept and the Julia set
moves continuously.

If a finitely generated rational semigroup satisfies the strong open set
condition, then the Julia set has no interior points.

Now we consider the expandingness of hyperbolic rational semigroups,
which gives us an information about the analytic property of them.

Theorem 2.3 ([S4]) Let G = {f1, fa,-.. fn) be a finitely generated hyper-
bolic rational semigroup . Assume that G contains an element with the degree
at least two and each Mobius transformation in G is neither the identity nor
an elliptic element. Let K be a compact subset of C\ P(G). Then there are
a positive number ¢, a number A > 1 and a conformal metric p on an open

subset V of €\ P(G) which contains K U J(G) and is backward invariant
under G such that for each k ‘

inf{”(fiko' “Ofil)’(z)”p l z € (fiko' "ofil)—l(K)’(ik: "'71:1) € {1" "’n}k}

> ¢k, here we denote by || - ||, the norm of the derivative measured from the
metric p to it.

Now we will show the converse of Theorem 2.3.

Theorem 2.4 ([S4]) Let G = (fi, fa, ... fn) be a finitely generated rational
semigroup. If there are a positive number ¢, a number A > 1 and a conformal
metric p on an open subset U containing J(G) such that for each k

inf{”(fiko' : 'Ofil),(z)up | YAS (f":ko' : 'Ofil)—l(J(G))7 (ik, s ’il) € {1’ s ’n}k}
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> cA*, where we denote by || - ||, the norm of the derivative measured from
the metric p on 'V to it, then G is hyperbolic and for each h € G such that
deg(h) is one the map h is not elliptic.

Remark. Because of the compactness of J(G), we can show, with an easy
argument, which is familiar to us in the iteration theory of rational functions,
that even if we exchange the metric p to another conformal metric p;, the
enequality of the assumption holds with the same number A and a different
constant c;.

Definition 2.5 Let G = (fi, fo, ... f») be a finitely generated rational semi-
group. We say that G is expanding if the assumption in Theorem 2.4 holds.

Theorem 2.6 Let G = (f1, fa2, ... fm) be a finitely generated ezpanding ra-
tional semigroup. Assume that

e G is expanding, and

o there is an open set O such that §(80NJ(G)) < oo, for eachj, fi(O) C
O and {f;*(0)};=1,..m are mutually disjoint.

Then 2-dimensional Lebesque measure of J(G) is equal to 0.

Proof. With the assumption of our theorem, we can show that for each
z € J(G) \ (GG(80)), the orbit G(z) N J(G) has an accumulation point
in J(G) \ (G(80) U 80). By Koebe theorem, the statement holds. a

Definition 2.7 Let G be a rational semigroup and U be a component of
F(G). For every element g of G, we denote by U, the connected component
of F(G) containing g(U). We say that U is a wandering domain if {U,} is
infinite.

Next theorem follows from the argument in Theorem 2.2.4 in [S3].

Theorem 2.8 Let G be a rational semigroup with F(G) # 0. Assume that
G contains an element with the degree at least two and P(G) N 8J(G) = 0.
Then there is no wandering domain. Moreover, if G is finitely generated, each
Moébius transformation in G is hyperbolic or lozodromic and there exists no
element g € G such that g has Siegel disks or Herman rings, then there exists
a non-empty compact set K in P(G) N F(G) such that for each z € F(G),
the orbit G(z) can accumulate only in K.
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Propotition 2.9 Let G be a rational semigroup. Assume that G contains
an element g with the degree at least two such that g has no Siegel disks or

Herman rings. If P((g)) is included in the interior of J(G), then J(G) is
equal to C.

Proof. Assume F(G) # 0. Let U be a connected component of F(G).
Considering {¢™(U)}, it is a contradiction. O

Definition 2.10 Let G be a rational semigroup. We say that G is subhy-
perbolic if {P(G) N J(G) < oo and P(G) N F(G) is compact.

Theorem 2.11 Let G = (fi, fa, - - . fm) be a finitely generated rational semi-
group which is subhyperbolic. Assume that there is an element of G with
the degree at least two and each Mobius transformation in G is hyperbolic or
lozodromic. Then if F(G) # 0, there erists a non-empty compact set K in
P(G) N F(G) such that for each z € F(G), the orbit G(z) can accumulate
only in K. In particular, there is no wandering domain.

Proof. Using a similar argument in Theorem 2.2.8 in [S3}, we have only to
show that for each connected component U of F(G), H{U, | g € G} < co. Now
assume §{U, | g € G} = oco. By Theorem 2.2.4 in [S3], there exists a sequence
(gn) of mutually distinct elements in G and a point { € P(G) N 8J(G) such
that (g,) converges to ( locally uniformly in U. Since G is finitely generated,
we can assume that for each n, there exists an element h, € G such that
9n+1 = hngn. Then for each sufficiently large n, h,(¢) = (. Now we consider
|h%,(¢)]. By [HM2], there is no super attracting fixed point of any element of
G in 8J(G). With the fact, since G is subhyperbolic, it follows that { is a
repelling fixed point of h,. But this is a contradiction by Koebe theorem. O

Theorem 2.12 Let G be a finitely generated rational semigroup which con-
tains an element with the degree at least two. Assume that §P(G) < oo and
P(G) C J(G). Then J(G) = C.

Proof. By [HM2], there is no super attracting fixed point of any element
of G in 8J(G). Now we can show the statement in the same way as Propoti-
tion 2.9. ‘ O

By Theorem 2.11 and Theorem 2.3.4 in [S3], we get the following result.

35



Theorem 2.13 Let M be a complez manifold. Let {G,}eem be a holo-
morphic family of rational semigroups (See the definition in [S3]) where
Go = (fiar ", fne). We assume that for a point b € M, Gy is subhy-
perbolic, contains an element of the degree at least two and each Mdbius
transformation in G, is hyperbolic or lozodromic. Then the map

ar J(G,)

18 continuous at the point a = b with respect to the Hausdorff metric.

3 4-Conformal Measure

We construct d-conformal measures on Julia sets of rational semigroups. d-
conformal measures on Julia sets of rational functions were introduced in

[Sul].

Definition 3.1 Let G = (f1, fa, ... fn) be a finitely generated rational semi-
group satisfying the strong open set condition and let § be a non-negative
number. We say that a probability measure p on J(G) is d-conformal if for
each j = 1,...,7 and for each measurable set A included in f;*(J(G)) where
fj is injective on A,

B4 = [ I55IPdu,

where || - || denotes the norm of the derivative with respect to the spherical
metric. And we set

6(G) = inf{4 | there is a 6-conformal measure on J(G)}.

Theorem 3.2 ([S4]) Let G = (f1, fo,- .. fa) be a finitely generated rational
semigroup satisfying the strong open set condition. We assume that when n
is equal to one the degree of f1 is at least two. Then there are a number

0 < § < 2 and a probability measure p whose support is equal to J(G) such
that p is d-conformal. Also §(G) > 0.

If G is finitely generated hyperbolic rational semigroup and satisfies the
strong open set condition, then dimg (J(G)) = 6(G) ([S4]). In [DU], M.Denker

36



and M.Urbanski gave a conjecture which states that for any rational map f
with deg(f) > 2,

dimg (J((£))) = 6(())-
Similary we give the following conjecture.

Conjecture 3.3 ([S4]) Let G = (fi1, fo, ... fa) be a finitely generated ratio-
nal semigroup satisfying the strong open set condition. We assume that when
n is equal to one the degree of f1 is at least two. Then

dimg (J(G)) = 6(G).

4 Pseudo /-Conformal Measure

Definition 4.1 Let G be a rational semigroup and ¢ be a non-negative num-
ber. We say that a probability measure y on J(G) is pseudo é-conformal if
for each g € G and for each measurable set A included in g~}(J(G)) where
g is injective on A,

u(g(A)) < /A llg'(2)|° .

For each z € C we set

SG =Y X ld@li

gEG g(y):.—m

counting multiplicities and
S(z) = inf{s | S(s, ) < o0}
If there is not s such that S(s, z) < oo, then we set S(z) = co0.Also we set
so(G) = inf{S(z)}, s(G) = inf{d | 3u : pseudo J-conformal measure}

where the former infimum is taken over all points z such that O~ (z) does
not accumulate at any point of F(G).

Using the same method of the proof of Theorem 3.2, we can show the
following result.
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Theorem 4.2 ([S4]) Let G be a rational semigroup which has at most count-
ably many elements. If there ezists a point x € C such that S(z) < oo and
O~ (x) does not accumulate at any point of F(G), then there is a pseudo
S(z)-conformal measure whose support is equal to J(G). In particular, there
is a pseudo so(G)-conformal measure. Also we have s(G) > 0.

Theorem 4.3 ([S4]) Let G = (fi, fa, .- fn) be a finitely generated rational
semigroup which is ezpanding. Then so(G) < 00 and

dimg(J(G)) < 5(G) < %(G).

5 Conformal Measures in a Skew Product

Let m be a positive integer. We denote by %,, the one-sided word space,

that is
Sm={1,...,m}¥
and denote by o : £,, = £, the shift map, that is

(wy,...) = (w,...).

Let G = (f1, f2, - . - fm) be a finitely generated rational semigroup. We define
amap f : By X C = T X C by

f((w,2)) = (0w, fu,).

f is a finite-to-one and open map. We have that a point (w,z) € I X [
satisfies f,, () # 0 if and only if f is a homeomorphism in a small neighbor-
hood of (w,z). Hence the map f has infinitely many critical points. We
set J = N2, (S, x J(G)). Then by definition, f~1(J) = J. Also from
the backward self-similarity of J(G), we can show that 7(J) = J(G) where
7 S X C — C is the second projection.

Foreach j = 1,...,m, let ¢; be a Holder continuous function on f; ' (J(G)).
We set for each (w, x) € J, o((w,z)) = @u,(z). Then ¢ is a Holder contin-
uous function on J. We define an operater L on C(J) = {¢y : J — C |
continuous } by

| exp(p((@,9)) ,\ \
Lo((w,2) = : (W, 9)),
f((w’,g%:(w,m) exp(P) y
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counting multiplicities, where we denote by P = P( i 7, ) the pressure of
(f IJ' )

Lemma 5.1 With the same notations as the above, let G = (fi1, fa,--- fm)
be a finitely generated erpanding rational semigroup. Then for each set of

Hélder continuous functions {©;}i=1,.,m, there ezists a unique probability
measure T on J such that

o L*r =,
e for each ¥ € C(J), L") — 7(¥)all; = 0,n = oo, where we set

o = lim,e LH(1) € C(J) and we denote by || - ||5 the supremum norm
on J,

e aT is an equilibrium state for (f] 7, 0)-

Lemma 5.2 Let G = (fi1, fa, ... fm) be a finitely generated ezpanding ratio-
nal semigroup. Then there exists a unique number 6 > 0 such that if we set
pi(z) = =dlog(l|fj(@)l),5 =1,...,m, then P=0.

From Lemma 5.1, for this ¢ there exists a unique probability measure 7 on
J such that Lyt = 7 where L; is an operator on C(J) defined by

Y((v',9))
Lsy((w,z)) = Z L)
Ft ety |t @I
Also § satisfies that

5 hor(f) < log(X7 deg(f5)
-~ [5padr = [5 padr ’

where o = limy_;00 L§(1), we denote by har( f) the metric entropy of (f, ar)
and @ is a function on J defined by @((w, z)) = log(|| f,,, (z)I]).
By these argument, we get the following result.

Theorem 5.3 Let G = (fi1, f2,--- fm) be a finitely generated expanding ra-
tional semigroup and & the number in the above argument. Then

dimg(J(G)) < s(G) < 6.

Moreover, if the sets { f;*(J(G))} are mutually disjoint, then dimy(J(G)) =
§ < 2 and 0 < Hg(J(G)) < oo, where we denote by H; the §-Hausdorff
measure.
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Corollary 5.4 Let G = (f1, fo, ... fm) be a finitely generated expanding ra-
tional semigroup. Then

log(3°7%, deg(/f5))
log A ’
where )\ denotes the number in Definition 2.5.

dimg (J(G)) <

6 Generalized Brolin-Lyubich’s Invariant Mea-
sure, Self-Similar Measure

With the same notation as the previous section, we define an operator Aon
C(J) by

- 1 - - .
A 1) = ————— ")), f h C(J),
) = S g, 2, ) foreach i €CO)
and an operator A on C(J(G))={y: J(G) = C| continuous} by
1 m

A(z) = m;fj%;:z¢(y), for each ¥ € C(J(G)).

Then Aonm* = 7* o A, where 7* is the map from C(J(G)) to C(J) defined by

(7*9)((w, z)) = 1(z). Note that since n(J) = J(G), we have that for each

¥ e CJ(G)),
. 71l = Il lloo)- (1)

Now we consider a condition such that the invariant measures are unique.

Definition 6.1 Let G = (f1, fa, ... fm) be a finitely generated rational semi-
group. With the same notation as the previous section, we say that G satisfies
condition * if for any z € J \ per(f), for any € > 0, there exists a positive
integer ng = no(2, €) such that

H{f~"(2) N Zoo}

m <€ 2
(S deg () )
counting multiplicities, where we set

Zoo = UZ, f™({ critical points of £} N .J). (3)

40



Remark. Let G = (fi, fo,.-. fm) be a finitely generated rational semigroup.
In each case of the following, the condition * holds.

o There exists an element f such that foreach j=1,...,m, f; = f.

e The sets {f;"(J(G))}i=1,..m are mutually disjoint.

o J(G) \ Ugeg{critical values of g} N J(G) # 0.

Therefore we have many finitely generated rational semigroups satisfying con-
dition *. It seems to be true that the condition * holds if a finitely generated
rational semigroup G satisfies that J(G) N E(G) = 0, where E(G) denotes
the exceptional set of G, that is E(G) = {z € C | §{Usecg™(2)} < 00}.

Theorem 6.2 Let G = (f1, fo, ... fm) be a finitely generated rational semi-
group. Assume that F(H) D J(G), where we set H = {g' € Aut (C) | g €

Aut (C) NG}, and condition x holds. Then we have the following:
1. There ezists a unique probability measure fi on J such that
1A% — (@) 15ll7 = 0, n — oo, for any ¢ € C(J),

where we denote by 1j the constant function on J taking its value 1,
and ezists a unique probability measure p on J(G) such that

1A™p — p(o) Ly llie) = 0, n— oo, for any p € C(J(G)),

where we denote by 1) the constant function on J(G) taking its value
1.

T = W and fi s f-invariant.
(f, i) is ezact. In particular, i is ergodic.
L is non-atomic. supp (u) is equal to J(G).

h(fl5) > ha(f) > log(7%, deg(f;)), where h(f|;) denotes the topolog-
ical entropy of f on J.

ST
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Proof. We will show the statement in the similar way to [L]. By [HM3],
the family of all holomorphic inverse branches of any elements of G in any
open set U which has non-empty intersection with J(G) is normal in U.
With this fact, we can show that the operator A is almost periodic, i.e. for
each ¥ € C(J), {A")}, is relative compact in C(J). Hence, by [L], C(J)
is the direct sum of the attractive basin of 0 for A and the closure of the
space generated by unit eigenvectors. It is easy to see that 1 is the unique
eigenvalue and the eigenvectors are constant. Therefore 1. holds.

Because of the condition *, E(G) is included in F(G). With the fact, we
can show that u is non-atomic, which implies 5. m]

Remarkl. If f] 7 is expansive,(in particular, if G is expanding, ) then

h(F15) = ha(F) = log(3 deg(f;)).

j=1

Remark2. We can also construct self-similar measures on J(G) and show
the uniqueness under a similar assumption to condition *. For example, in
each case of the Remark after Definition 6.1, we can show that.

Now we consider a generalization of Maiié’s result([Ma]).

Theorem 6.3 Let G = (fy, fa,... fm) be a finitely generated rational semi-
group. Assume that the sets {f{'(J(G))}j=1,..m are mutually disjoint. We
define a map f : J(G) = J(G) by f(z) = fi(z) if z € f7H(J(G)). If p is an
ergodic invariant probability measure for f : J(G) — J(G) with h,(f) > 0,

then
[y 08U e > 0

and

D)
HDW) = 7 1oeI7T) a

where we set
HD(p) = inf{dimg(Y) | Y C J(G), u(Y) =1}

Proof. We can show the statement in the same way as [Ma]. Note that the
Ruelle’s inequality([Ru]) also holds for the map f : J(G) — J(G). ]
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i From the remark after Definition 6.1, Theorem 6.2 and Theorem 6.3, we
get the following result. This solves the Problem 12 in [Re] of F.Ren’s.

Theorem 6.4 Let G = (fi, fa,... fm) be a finitely generated rational semi-
group. Assume that the sets {f71(J(G))}j=1,..m are mutually disjoint. Then

o log(Sh deg(fy)
Aima(J(@) 2 T og(IF ) du”

where u denotes the probability measure in Theorem 6.2 and f(z) = fi(z) if
z € f7(J(G))-
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