
UNIFORM PERFECTNESS OF THE JULIA SETS OF QUADRATIC 
P OLYNOMIALS 

TOSHIYUKI SUGAWA 

ABSTRAC･T. The author gave in [12] an explicit estimate of uniform perfectness of 
the Julia sets of general rational ma,ps of degree d Z 2. In this note, we will present 

some exapmles of such an estimate for quadratic polynomials. 

1, UNlFoRlvl PERFECTNESS OF JULIA SETS 

A compact set C with #C > I in the Riemann sphere C is said to be uniformly 
perfect if C n {z_~ C; cr < Iz - a] < r} ~ ~ for any a ~ C ¥ {oo} and O < r < diarnC, 

where O < c < I is a constant and diam stands for the diameter with respect to the 

Euclidean metric. It is easy to see that C = C ¥ D is uniformly perfect if and only if 

finite is the supremurn M'D of the .moduli of essential round annuli in D separating 

C, ~vhere t.he modulus of the round a.nnulus {*~; rl < Iz - al < r2} is deflned bv. 

10gr2/rl and an annulus in D is said to separa,te C if both of two components of 

the complement of the annulus intersect C. Teichmtiller's theorem tells us that t,he 

condition A/1~ < oo is equivalent to flniteness of the supremum MD Of the moduli of 

essential (not necessa,rily round) annuli in D separating C. Vle remark that the abo¥'e 

ecluivalences are cluantitative (for more information, see [13]). . 

The notion of uniform perfectness first appeared in [l] and then was int,ensively 

investigated by Pommerenke in [8] a,nd [9]. In [9] Pommerenke proved that the Julia 

set of a hyperbolic rational map of degree~ 2 is uniformly perfect. Aft,erwa,rds, 

Mafi6-da Rocha [7] and Hinkkanen [4] independently proved the uniform perfectness 

for general rational maps of degree;~ 2. But their proofs a,re made by contradiction 

argument, thus no explicit bounds for uniform perfectness were given so far. Recently, 

the author gave in [12] another proof for uniform perfectness of the Julia sets of 

general rational maps with explicit bounds by using the hyperbolic geometry. We 
shall present this estimate in the following. 

We begin ¥vith several definitions and notation needed later. Let C be a compact set 

in C containing at least three points and D its complement. Then each component Do 
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of D has a holomorphic universal covering map p : I) ~~ Do from the unit disk ~). Since 

the hyperbolic metric pu~ = (1 - Iz[2)~lldzl is in¥'ariant under the action of the cover 

transformation group F < M6b, this metric Induces a. Riemannian metric pDo(z)Idzl, 
which is also ca,lled the hyperbolic metric, that is, pDo(P(z))Ip/(z)1 = (1 - Izl2)-lldzl-

~'Ve define pD by pD = pDO On each component Do. For a piecewise smooth cur¥'e a 

in D the hyperbolic length ~D(a) of oi is defined as fa PD(z)Idzl･ We set 

1
 dD(z, w) I~fgD(a) bD(z) = - inf~D p 2 p ( )' 

where oi runs over all curves joining z and w in D and p runs o¥'er all nontrivial loops 

passing through z in D, which are called the h~_'perbolic distance and the injectivity 

ra,dius of D, respectively. Let LD be the infimum of hyperbolic lengths of nontrivial 

loops in D. (If D is slmply connected we define LD = +00.) In other words, LD = 
9_ infzeD LD(z). The following result is essential for our argument. 

Theorem 1.1 ([13]). The following inequalities hold for any hyperbolic open set D 

of C with the hyperbolic metric. 

1
 ~1141D - 1 7332 < Il/ID < MD and 

7r2 LD L2D LD ~ A/ID ' 2 coth2(LD/2)} ~ min{LDe 

In particular, the complement ~ ¥ D is uniformly perfect if and only if LD > o. 

Let f : C ~> C be a rational map of degree d ~ 2 and denote by Jf and !2f 
the Julia set and the Fa,tou set of f. In other words, !2f is the maximal open set 

where the iterates fn (n = l, 2, ･ ･ ･ ) form a norma.1 family and .Jf is its complement. 

Since d ~ 9- the .Julia set is non-empty and perfect, hence Jf is'uncountable. In 

particular, !2f is hyperbolic. Let Ul' ' ' " Us be a complete list of the components of 

!2f containing a critical polnt of f. The number of critical points of f with counting 

multiplicities is known to be 2,d - 9_, thus s ~ 2d - 9_. We denote by Cj the set of 

critical points of f contained in Uj for j = l, ' ' ' , s. Then we consider the following 

two families of loops in Wj = f(Uj)' For vl' vQ_, v e f(Cj) wit,h vl ~ v2 we se.t 

S(vl' v2) ={p; p is a trivial loop in Wj through vl> v2 with a nontrivial lift in Uj}' 

T(v) ={p; ,6 is a trivial loop in Wj through v essentially 

at least t~vo times with a nontrivia,1 Iift in Uj}' 

More precisely, the sta,tement, that a loop p : S1 ~ Wj passes through v at least two 

times means that there exist distinct point,s (o and (1 in Sl with p((o) = p((1) = v 

such t,hat the restrictions pll~1 and ~ll~2 Of t,he loop p are both nontrivial closed curves 

in VVj' where 11 and 12 are the connected component of Sl ¥ {(o, (1}' 

48 



And we set 

aj(vl'v2) = inf gf2(~), bj(v) = inf ~!2(~) and 
' ~e s(vl 'v2 ) p eT(v ) 

aj(vl,v2), bj = min bj(v), a' - ' 3 - mm vl 'v2 e f (cj ) ,vl ~v2 vef(c:j) 

~vhere ¥ve set aj = +oo if ~f(Cj) = l. 

, ' l. , At be t,he complete system of representatives of the cycles of Next let. A . ' ' -

Herma,n rings of f. Remark that Shishikura's theorem sa,ys that O ~ t. ~ d - 2, in 

particular, if d = 2 there are no Herma,n rings. And, since the Julia set has no isolated 

points, the Herman rings have finite moduli, so LAk > o for all k. 

Now we are in a position to state the abo¥'e-mentioned theorern. 

Theorem 1.2 ([12]). 

Lf2f > min{al' ' ' " as' bl' ' ' " bs' LAl, . . . , LAt}' 

Since ~ ~ S(vl' v2) satisfies ~wj (p) ~ 2dvvj (vl' v2), ¥ve have aj(vl' v2) ~ 9-dwj (vl' v2). 

Similarly we obtain bj(v) ~ 4Lwj(v). Hence= we have the following 

Corollary 1.3. Let V be the set of critical values of f contained in the Fatou set 

f2f' Then we have 

Lf2f ~ min{K1' K2, K3}, 

where 

Kl = min 2d!2f(1)1'v2), K2 = min4L!?f(v) 

vl~v2ev vev . . LAt}' In particular. L!2f > o equtvalently Jf ss umformly and I¥'3 = min{LAl, . , 
perf ect. 

In order to prove the above theorem, first, ¥ve remark that the Schwarz-Pick lemma 

implies ~!2f(oi) ~ ~!2f(f.a) for any loop ~' in (2f' For any nontrivial loop a In !2f' by 

¥'irtue of Sullivan's No Wandering Domains Theorem, the image curve oin = (fn).a 

becomes contractible for sumciently large n unless oin lands on some Herman ring (In 

this case, g!2f(a) ~ g!2f(ain) ~ K3), thus the following lemma completes the proof. 

Lemlna 1.4. Let f : U ~ T;V be a branched holomorphic covering map between 
hyperbolic Riemann surfaces. We define two families of curves S(vl'v2) and T(v) 

for critical values vl' v2, v with vl ~ v2 of f as in the sa7ne way as above. And define 

a,(vl'v2), b(v) as in the above and set a = infvl~v2 a(vl'v2) and b = infvb(v). Then, 

for any nontrivial loop a such that f.a is trivial, it holds that 

gU(a) ~ gw(f a) > mm{a b} 
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For a rigorous proof of thiS Iemma, see [12]. In thiS note, Iet us be content to 

exhibit only a simplified example illustra'ting an essence of the proof. 

For an r > I we set U := U(r) := {z ~ C; l/r < Izl < r}. And, we consider t,he 

Jeukowsky transformatiOn f(z)  z + 1/z and put 

f(U(r)) T'V(r) r + l/r r - 1/r < 1 :=: w:::u+ivcC + 

Then f : U ~~ T/V is a. two-sheeted branched analytic covering with critical points 

~1. Let a be a nontrlvial loop in U, then one can observe t,hat t,he image loop 

p = f.a "surrounds" both critica,1 values ~2. Thus it is not difficult to see that 

~vv(~) > a(2, -2) = 2dw(9-, -9-). Since W is simply connected, it holds that 1/4 < 

6w(z)pl'v(z) ~ 1, where 6T4'(z) = infaeavv lz - a!･ Letting .4 = T + l/r, then we have 

dvv (9 9-) >( 2 f2 dx 4/A dx f2 dx ~
 

2
 Jo 6w(x) = (r - llr)rl! + 2 J4/A A - x 

(
 + 9_ Iog ~l + r-1/r alcsm r+1/r r+1lr 

In particular, we note tha,t dw(r)(2,.~2) ~ 11(r- l) as r ~~ l+ and dw(r)(2, ~2) ~ 1lr 

as r ~> +00. In this case, in fact, we can calculat,e LU(r) explicitly as 7r2110gT. Thus, 

the estimate LU ~: 2dT'v(2, -9-) is not so good when r tends to +oo. 

Next, Iet (p be a conformal map from T/V onto the unit disk I) so that ~ := ~'(2) > o 

and 77 := fP(-9-) is very close but not eclual to -~. Now we consider the bra,nched 

covering map g : U ~ l) of degree 4 defined by g(z) = fP(f(z))2. Then the critical 

values of g is ~2, n2 and O. In this case, dl)(~2, n2) is very close to zero but a(~2, n2) js 

not so small because any element of S(~2 772) goes a long way round another critical 

va,lue O. Hence ¥ve cannot expect that the estima,te in Corollary 1.3 would be always 

sufflciently good. 

We conclude this sect,ion by giving sorne applications of the estimate of uniform 

perfectness. The first is due to Pommerenke. 

Theorem 1.5 (Pommerenke [9]). A compact set C with #C > I in C is uniformly 
perfect if and only 7;f there exists a positive cor~stant c 3uch that 

Cap(c n B(a, r)) > cr 

for any a ~ C and O < r < dia,mC, where Cap denotes the logarithmic capacity a,nd 
~(a, r) = {z; Iz - aj ~ r}. In particular, a uniformly perfect set zs regular zn the sense 

of Dirichlet. 
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In fact, the above constant c is expllcitly estima,ted by the uniform perfectness 

constant and vice versa (see [8]). The next result is essentially due to .J~rvi-Vuorinen 

[5], hol~'ever the follo¥ving cluantitative form a,ppeared in [13]. 

Theorem 1.6. The Hausdorff dimension of a uniformly perfect set C = C ¥ D ca,n 

be estimated as 

10g 2 Iog 2 Iog 2 H-dimc > ~ ~ - Iog(9-ell~I~ + l) M~ + Iog3 7r2/LD + Iog3 ' 

9_. EXPLICIT ESTllvIATE lN QUADRATIC POLYNOMIAL CASE 

In this section, we shall present a t,ypical example of estimating the constant L!2f' 

We consider here the quadratic polynomlal fc(z) = z2 +c where c is a parameter in C. 

For brevity, we set J. = Jf. and !2c = !2f. etc. Our aim here is to estirnat,e Lc = Lf?. 

from below. If c is in the Ma,ndelbrot set )vt = {c e C; {f"(O); n e N} is bounded }, 

then it is kno~vn that ,JC is connected, so L. = +oo. Therefore ~ve have nothing to do 

in this case. In the case c ~ A/1 the .Julia, set .JC is known to be a totally disconnected 

(Cantor type) set a.nd !2. = {z ~ C;fn(z) ~ oO a,s n ~ oo} Is connected. The 

critical va,lues of~f are c and oo= so ¥vhat we should do is estimate the hyperbolic 

distance dc(c, oo) and the injecti¥'ity radii bc(c) and bc(oo) by. Corollary 1.3. 

For simplicity, ~ve shall make a.n additional a,ssumption that c < =2. Then J* is 
contained in the interval [-oi, oi], where ai = (1 + V~~~)/2 is a fixed point of f. 

~vith oi > 9-. We denote another fixed point of f. by p. Note here that oi + p = l, 

and ~0i, p ~ Jc' In particular, the hyperbolic domain Do = C ¥ {ai, -c~, p} contains 

!2c' thus the Schwarz-Pick lemma yields that pDo' ~ p. = p!2. on !2c' Let T be the 

Mobius transformation taking oi. -oi and ~ to oo,O and l, respectively. Then T 
ca,n be expressed by T(z) = (3 + t)(oi + z)/(a - z) thus T(oo) (3 + t) and 
T(c) = -t(3 + t)/(4 + t), where t = fr~ - 3 ~ O. We notice that T(.Jc) C 

[O, +00]. The bihaviour of the hy. perbolic metric (J(z)Idzj of the canonical domain 

D = C ¥ {oo, O, 1} is well understood. For inst,ance, the precise version of Landau's 

theorern due to Hempel [3] sa,ys that 

(2.1) (J(z) ~ l 2!z[(1 Iog lzll + H) ' 

~vhere H = r(~)4147r2 = 4.3768796 ･ ･ ･ and the ecluality occurs when z = -1. Note 
that this inequallty is actually efficient only on the half p]ane Rez ~ ~, otherwise we 

ha,ve only to note that (T(1 - z) = (7(z). ¥~'e also note that Sol~.'nin and Vuorinen [1l] 

gave a recursive procedure for computing (T(z). 

In order to estimate the metric ~, we shall analyze the universal covering map of 
D. Let A be t,he domaln {T e ~;O < ImT < l, IT - ~l > ~}, and A : I~ ~ IHI the 

conformal homeomorphism from A onto the upper half plane 1~1 taking O, l,oo to 
l= oo,O, respecti¥'ely. By the reflection principle, A is a,nalytically continued to the 
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holomorphic universal covering map of D from the upper half plane, which will be also 

denoted by A, in particular, we see 112lmT = (T(A(T))lA/(T)[. The map A : I~: ~ D is 

nothing more than the classlcal elliptic modular function. Noting that the hyperbolic 

line {z e IHI; Reh- = l} is ma,pped onto (-oo,O) by A, one can show that the se~ment 

n/ = [T(oo),T(c)] is the shortest hyperbolic geodesrc Jommg T(oo) and T(c) m D 

Thus we can estimate a,s 
f
7
 

dT'v(oO, c) > d ¥{*,_a,p}(oo, c) = dD(T(oo), T(c)) = cr(z)Idzl 

ldzl log~ 4+t + H > I Iog(3 +Ht) + H + I Iog H 
_
f
r
y
 

t(3+t) 

= -_ Iog 9_ 2,lzl(1 Iog lzll + H) ~ 

Next, we shall explain the estimation of the injectivity radii. We remark that 
f2f C !2 does not necessa,rily imply br2f(z) ~ L!2(z), however p!2f ~ p!2 implies that 

b!2f(z) ~ infweav dJ2f(z, w) ~ infweav df2(z, w) for any simply connected subdomain 

V of !2f containing z. We shall take C ¥ [-c~, ai] as V In this case, for any x ~ 

[-oo, -oi) U (ai, +00], we have 

(2.9~) 

(x, y) = inf dD(T(x), s) = bD(T(x)). b!2f("c) ~ inf d!2f(x,y) > yeinLa] d~¥{a -a'p} 

ye[-a,a] ~ - , ' ' s>0 

No¥v we estimate I(a) = LD(-a) = LD(1 + a) for a > o. Let ~) : 11 ~ A be t,he 

inverse map of A : A ~ IHl. Since l~ is a. .Jordan domain, Carath60dory's theorem 

implies that ~) extends to a homeomorphism from ~ onto IHl. First we assume that 
O < a ~ 1. Then TO = ~'(1 + a) can be expressed by (eie + 1)/2 wit,h 7r/2 ~ 6 < 7r. 

Thus dllil(To, ~'((O, 1))) ~ dll(Tlo, ~'((-oo,O))) and the shortest hyperbolic segrnent, nl 

joining To and ~;((0,1)) = {yi;y > O} is contained In {T ~ ~; ReT ~ ~}･ Because 

A({T ~ Zl; ReT = ~}) = {z ~ IHl; [z - 11 l} rt follov!s that ID(1 + a) fA I a(z)Id l 

and A.n( is contained in {Iz - Il ~ 1}. Let v t,he loop in D obtained as the union 

of I - A.nf and its complex conjugate. Then lvl ~ I and 21(a) = fv (T(z)Idzl. Set 
ao = min lvl. Noting tha,t [dh-1 ~ (Idrl + rldel)/~/~, where z = re~6 we have 

91(a) ~ f,. Idzj > Idrl + rldel 9-lzl( - f,. 2rfi(- IogT + H) 
- Iog lzl + H) 

2 - Iog ao + H 1 9_7r log > Ioga + H + 2fi - Iog ao + H - 2fi 
7r/fi 

~ _loga + H' 

since the function h(x) = Iogx ~ 7r/x is increasing in x > o thus h(x) > h(H) > o 
for x > H. Hence I(a) ~ 7r/9-fi(- Ioga + H) for O < a ~ l. 
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In the c'ase I < a, by I(a)'= I(1/a), we have I(a) ~ 7r/9-fi(loga + H). In an~~' 

case= I(a) > 7rl2fi(1 Iogal + H). Combining this with (2.9_), we obtain 

K := min{2dc(c, oo) , 4Lc(c), 4bc(oo) } 

log(3 + t) + K ' 4+t + K fi7r fi7T 
t(3+t) 

~ min llog 
K K Iog(3 + t) + K' Iog t(4:3+_+tt) + K 

~1~7r 

10g m + K ' 

¥vhele m = max{3 + t 4+t }. By Corollary 1.3 we have the next 
' t(3+t) 

Theorem 2 1 For c < 2 the Fatou set !2 of fc(z) = z2 + c satisfies 

L!2 > fi7T 
' - Iogm+ H= 

l -4c+1 w/LeT'e m = ma,x{~/~~, v/1:~Z(Vl~~-3) } and H = r(~)4147T2 = 4.3768796 

On t,he other hand, it is relatively ea.sy to obtain an upper boLmd for Lc' For 

simplicity, we assume that c < -2 again and use the same not,ation as above. Let 
n/ = f~~ > o, then one can observe that 

fc(x) = x2 + c < ~2 + c = -(y 

for x e (-~!,7), thus (-nr,~') C !2c' This says that the a,nnulus A = C ¥ ([n/,oi] U 

[-a, -~]) separates the .Julia set .Jc' By definit,ion, we have llrff2. > m(A). Here vL'e 

note that A is conformally mapped to Teichmtiller's extremal domain C ¥ ([=rl' O] U 

[r2,+0O]) by t,he M6bius transformation T(z) = ~~~ where rl = (a! - nr)/9-cv and 

r2 = 9-n//(ce - ~'). It is kno¥vn tha,t 7n(A) = 9_kt( rl/(7'1 + r2)), where ~(r) denotes 

the modulus of C.r6tzsch's extrema.1 domain I~) ¥ [O, r] for O < r < I a,nd this clua,ntity 

satisfies the follo~ving (cf. [6]): 

log (1 + r~)2 < pt(r) < Iog 2(1 + ~/1~') < Iog ~ and 

l - r 7r2 ( = )
 

pL(r)kt I + T 9_ 

In particular, we obtain 

( = 2 )
 

m(A)=2pt CU~7 7r 
(~ + ~' pt(nf/cli) 

Combining these ¥vith Thoerem 1.1, we get 
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Theorem 2.2. For c < -2, the Fatou set f2c of f(*") - '2 + c satisfies 
-" 

L!2. ~ 7r2 7r ~l 2- = ) ( , A[!2 < 2~ (~~ p
t
 - .) a 

where c~ = (1 + fr~~)/9- > 9- and ~ = rr~; > o. 

･ = V~7~(1 +0(e)) Since (c~-rf)/(c~+7) = 1/9-r~+0(lcl-1) as c ~~ -oo and yla 
7T2 as c := ' (1 + o(1)) as c ~ -oo and -c - 2 ~ +0, we can see that LJ1?. < log l*l 

L!2. ~ IogT;(1 + o(1)) as c = -c - 2 ~> +0. 

3. ESTIMATE BY GREEN'S FUNCTION 

In this section, we explain an est,imat,e of the uniform perfectness constant by 

C*reen's function, which is ¥¥'ea,ker than one in the previous section but easier to make 

in most cases. Let, f(z) = cozd + ' ' ' + cd_1z + cd be a polynomial of degree d ~ 2 

and (2 the immediate basin of oo. (More genera,lly, f ma"v be a rational map with a. 

super attra,ctive fixed point zo such that f-1(zo) n !2 = {zo}, where !2 denotes the 

immediate basin of zo') 

As is well-known (cf. [2]), Green's function g(z) = G(z,oo) of !2 wit,h pole at oo 

can be expressed by 
9(z) = nli~m*d n log Ifn(z)l 

Since g(z) = Iog lzl + (d - l)-1 Iog~ Icoi + o(1) as z ~> oo we know that Cap(Jf) 

1/ d-Vl/T~flcol･ We also note that the follo¥ving functional ecluation: 

(3.1) 9(f(z)) = d ' g(z). 
On the other hand, by ~'lyrberg's theorem (cf. [14]), C.reen's function G(z,a) of 

the doma,in !~ ¥vith pole at a can be written by 

. - ~'(O)z G(p(z)=a) = ~ Iog 1 

7er z - ~r(O) 

where p : l) ~ !2 is a holomorphic universal co¥'ering of f2 with p(C) = a and F its 

cover t,ransformation group. For a, w = p(z) ~ !2 with z ~ I) there exists a ~f ~ F 

Such that df2(w a) = d~)(z ~/(O)) = arctanh ~~~~ . therefore 

' ' ' l-ry(o). ' 
G(w, a) ~ Iog I - nf(O)z = _ Iogtanh(dr2(w,a)), 

- - n/(O) 
" 

ecluivalently, 

d!2(w a) ~ -~ Iogtanh(G(w a)/9) 
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For simplicit~_', we a,ssume that f(b-) = fc(b~) = z2 +c ¥vith c out,side the Mandelbrot 

set in the secluel. In this case, O and its backward orbit under f form the set of critical 

points for Green's funct,ion ~c(*~) = G.(z, oo), thus we can see tha,t the subdomain 

!2/ = {z e !~f,gc(') > g (O)} rs slmplv connected 

Now we considel the Bottchel cooldrnate ~ of f at oo I e , ~)(z) = IimnH'oe(f~(*-))-d~~ 

satisfying the functional equation ~)(f(z)) = nf)(z)2, by ¥vhich ~) can be analytically 

contlnued near any point zo so far as ~)/ is ah･eady defined near f(zo)' Therefore, 
~, = '~b op can be ana,lytically continued to a holomorphic map from I)) t,o itself, where 

p : I)) ~ f2 is a universal covering map of !2 ¥vith p(O) = oo. Let V be the connected 

component of p~1(f2/) containing O and s : !2f ~> V the inverse map of plv. We note 

that fP(V) = { zl < e~9'(o)}. 

Since !2/ is simply connected, any nontrivial loop ~f passing through c must, escape 

from !2/, thus it contains t¥vo part,s 71 and 72 both of which start from c and end 
at some points in a!2' and entirely contained in !2=J. Since J~)(s(c))1 = e~9'(') 'and 

9c(c) = 2gc(C) by (3.1), ~ve can estimate a,s 

gc(~j) = gl))(s.^/j) ~ eu~(~'(s.~'j)) ~ dl)(e~9'(c). e~9'(o)) 

1 tanh gc(c) /2 1 tanh gc(O) 
2 Iog tanh g (O)/2 = ~ ~ tanh g (O)/2' = ~ c log c 

Thus ¥ve have bc(c) ~ (gc(~'I) + ~'(nf2))/2 ~ ~ log ~~~~99fo~i2' In the same fashon, we 

obtain bc(oo) ~, --12 Iogtanhgc(O)/2. Summing up th;se esitimat,es, we obtain the 

following result, by Corollary 1.3. 

Theorem 3.1. Let f2c be t/te Fatou set of a quadratic polynomial f.(z) = z2 + c with 

c outside the Mandelbrot set. If we denote Green's fu,nction of S~c with pole at oo by 

9c(z), we ha,ve the following estl;matei 

tanh gc(O) 1 2 L!2. ~ ~ Iog = - Iog 
tanh gc(O)/9- 2 1 + tanh2 (gc(O)/2) ' 

Flnally, ¥ve make some comparison between the above est,imates and known result,s. 

By Theorem 1.6, Theorems 2.1 and 3.1 produces the following ineclualities. 

fi log -9 

(3.3) H-dimJc > and ~ 7r(10gm + H) + filog3' 

log 2 

(3.4) H-dimJc > ~ 27T2 Io L~~~~~g~2L+10 3' , / g tanh9'(o)/2 g 

_~~~~i_ , where m = max{fr~~, } and c < 2 m (3.3) and c ~ )vt in (3.4). 
l-4c( 1-4c-3) 
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On the other hand, Ransford [10] proved the followingr estimate for any c e C¥ )vt: 

10g -9 < H-dimJc < Iog 2 
9c(O) + Iog2 ~ ~ gc(O) + (e~9'(o) + 1)-1 Iog9-' 

Note that GJvt(c, oo) = gc(c) =: 9-gc(O), where Gjvt is Green's function of the exterior 

of the Mandelbrot set with pole a,t oo. Since gc(O) = ~GJvf(c, oo) = ~ Iog lcj + o(1) a,s 

c H> oo (cf. [2]). we see that H-dimJ = ~~~~~2lo 2(1 + o(1)) at QO. On the other hand 

(3 3 ields that H-dim J > 2~~ as c ~~ -oO which is rather good estimate. But ~ ' ) y , c - log cl ' 
(3.4) yields only that H-dimJc ~ Iog217T2vl~~[lcl as c ~> oO. 
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