The Bryuno condition and the Yoccoz theorem Okuyama Yuusuke Department of Mathmatics Kyoto University May 30, 1997 #### Abstract In this paper, we want to survay the proof of the Bryuno theorem, due to Yoccoz, and the Yoccoz theorem. # 1 Preparation We consider the modified continuous fraction expantion of $\alpha \in \mathbb{R} - \mathbb{Q}$. Namely for $\alpha \in \mathbb{R} - \mathbb{Q}$, we can define $\{a_n\}$, $\{\varepsilon_n\}$, and $\{\alpha_n\}$ such that a_0 is an integer which is the closest to α and $\alpha_0 = |\alpha - a_0|$ and $\varepsilon_0 = \pm 1$ which satisfies $\alpha = a_0 + \varepsilon_0 \alpha_0$ and for $n \geq 1$, a_n is an integer which is the closest to $1/\alpha_{n-1}$, $\alpha_n = |1/\alpha_{n-1} - a_n|$, $\varepsilon_n = \pm 1$ which satisfies $1/\alpha_{n-1} = a_n + \varepsilon_n \alpha_n$. Then we have $$\alpha = a_0 + \varepsilon_0 \frac{1}{a_1 + \varepsilon_1 \frac{1}{a_2 + \varepsilon_2 \frac{1}{a_3 + \cdots}}}.$$ **Definition 1.1.** We define a function $\Psi : \mathbb{R} - \mathbb{Q} \to \mathbb{R}_+ \cup \{+\infty\}$ such that $$\Phi(\alpha) = \sum_{i \ge 0} \beta_{i-1} \log \alpha_i^{-1}.$$ We call the number α a Bryuno number if $\Phi(\alpha)$ is finite. ### 2 Known results Consider a germ of holomorphic map $(\mathbb{C},0) \to (\mathbb{C},0)$ $$f(z) = \lambda z + a_2 z^2 + a_3 z^3 + \cdots$$ with multiplier λ at z=0. And we consider the case that $|\lambda|=1$ but λ is not a root of unity. Thus the multiplier λ can be written as $$\lambda = e^{2\pi i \alpha}$$ for an $\alpha \in \mathbb{R} - \mathbb{Q}$. The origin is said to be an irrationally indifferent fixed point. The linearization problem for f is whether or not there exists a local change of coordinate z = h(w) with h(0) = 0 which conjugates f to the irrational rotation $w \mapsto \lambda w$, so that $$h(\lambda w) = f(h(w))$$ near the origin. We say that an irrationally indifferent fixed point is a Siegel point or a Cremer point according as the local linearization is possible or not (cf. [1]). #### 2.1 Known results for univalent functions We define $$S:=\{f; \text{univalent map on } \mathbb{D} \text{ , } f(0)=0 \text{ , and } |f'(0)|=1\},$$ $$S_{\lambda}:=\{f\in S; \quad f'(0)=\lambda\}.$$ For $f \in S_{\lambda}$, we can define the formal linearizing map H_f which is a formal power series satisfying the following $$H_f(0) = 0$$, $DH_f(0) = 1$, $f(H_f(z)) = H_f(\lambda z)$. Let R(f) be the radius of convergence of H_f . If f is linearizable, we have R(f) > 0. If not, we define R(f) = 0. We define $$R(\alpha) := \inf_{f \in S_{\lambda}} R(f).$$ We state the known results. Theorem 2.1 (Bryuno). If $\Phi(\alpha) < +\infty$, then $R(\alpha) > 0$. Therefore all $f \in S_{\lambda}$ are linearizable at the origin. And Yoccoz proved that this result is optimal. **Theorem 2.2** (Yoccoz[2]). If $\Phi(\alpha) = +\infty$, then there exists a map $f \in S_{\lambda}$ which is nonlinearizable at the origin. Remark 2.1. In the case that f is a germ of holomorphic map of $(\mathbb{C}, 0) \to (\mathbb{C}, 0)$ with a multiplier λ at z = 0, a map $z \mapsto \frac{1}{t} f(tz)$ belongs to S_{λ} for a suitable t > 0. So the same results for f as the above theorems hold. #### 2.2 Reduction We define $$E(z) := \exp(2\pi i z),$$ $$T(z) := z + 1.$$ For $\alpha \in \mathbb{R} - \mathbb{Q}$, we define $$\hat{S}_{\alpha} := \{F; \text{ holomorphic and univalent on } \mathbb{H}, F \circ T = T \circ F \}$$ and $\lim_{\Im z \to +\infty} (F(z) - z) = \alpha \}.$ For $f \in S_{E(\alpha)}$, there exists the unique lifting of f which belongs to \hat{S}_{α} . We define the following $$K_F := \{ z \in \mathbb{H}; \ F^n(z) \in \mathbb{H} \ (\text{for all } n > 0) \} \text{ and } d_F := \sup_{z \in \mathbb{C}^{-K_F}} \Im z \in \mathbb{R}_+ \cup \{+\infty\}.$$ For proving the Yoccoz Theorem, it is sufficient to prove the following. Proposition 2.1. If $\Phi(\alpha) = +\infty$, there exists a map $F \in \hat{S}_{\alpha}$ such that $d_F = +\infty$. We would like to survey the proof of this proposition. ### 3 The renormalization construction Before surveying the Proposition 2.1, we would like to state about the proof of the Bryuno Theorem, due to Yoccoz. It is based on a renormalization construction, due to Douady and Ghys (See also [1] p8-9). Here is an outline of it. $\beta \in (0, 1/2) \cap \mathbb{R} - \mathbb{Q}$ is given. There exists a sufficiently large $t_0 > 0$ such that for all $F \in \hat{S}_{\beta}$, we can take a connected open set \mathcal{U}_F which is bounded on the left by the vertical line $\hat{l} := \{it; t > t_0\}$, on the right by its image $F(\hat{l})$, and from below by the straight line \hat{l}' from it_0 and $iF(t_0)$. For $z \in \mathcal{U}_F$, there exists a unique number $n(z) \in \mathbb{N}$ such that $F^{n(z)}(z) \in T(\mathcal{U}_F)$. Then we can define the first return map $\tilde{G} : \mathcal{U}_F \to \mathcal{U}_F$ (Figure 1) which satisfies that $$\tilde{G}(z) = T^{-1} \circ F^{n(z)}(z),$$ and the uniformizing map K which is holomorphic and univalent on \mathcal{U}_F which satisfies that $$\Im K(z) = 0$$ on \hat{l}' and $K(F(z)) = K(z) + 1$ on \hat{l} . The last formula permits to prolong K on some domain. (Very roughly speaking, if $\Im z$ is large, K is $1/\beta$ times expantion in the direction of the real axis (Figure 1).) Finally we define the renormalized map G of F such that $G := K \circ \tilde{G} \circ K^{-1} \in \hat{S}_{-1/\beta}$. Figure 1: the first return map \hat{G} and the uniformizing map K # 4 The unrenomalization machine The proof of the Yoccoz Theorem is based on the unrenomalization machine. Suppose that $\alpha > A$ (The number A is a sufficiently large number determined by precise estimate). We can take a smooth function $\eta: \mathbb{R} \to [0,1]$ which is analytic without $\pm 1/2$ and identically 0 on $(-\infty, -1/2]$ and identically 1 on $[1/2, +\infty)$. Let $J: \mathbb{H} \to \mathbb{C}$ be the map such that $J - \Delta \alpha \in \hat{S}_{\alpha}$. $(\Delta \alpha \in \mathbb{C}, |\Delta \alpha| < c_1, c_1 > 0$ is small enough.) We define $$F_0(z) := F(z+i) - i, \quad J_0(z) := J(z+i) - i \text{ and } J_1(z) := \overline{J_0(\overline{z})}.$$ And we define $\chi:i\mathbb{R}\to\mathbb{C}$ such that $$\chi(is) := \eta(s)F_0(is) + (1 - \eta(s))J_1(is) \quad (s \in \mathbb{R}).$$ Let χ be a closed domain which is bounded on the left by the vertical line $i\mathbb{R}$, on the right by its image $\chi(i\mathbb{R})$. Grueing the bords of χ by χ , we obtain the Riemann surface which is isomorphic to \mathbb{C}^* (Figure 2). So there exists the grueing map K_0 which is continuous on χ , holomorphic and univalent on the interior of χ and satisfies the following $$K_0(\chi(is))=K_0(is)$$ $(s\in\mathbb{R})$, $\lim_{s\to+\infty}K_0(is)=0$ and $K_0(0)=1$ (Figure 2). Let R be a square of which the vertices are $\pm i/2$, $1 \pm i/2$. We define $G_0: \chi - \mathbb{R} \to \chi$ such that $$G_0(z) := \begin{cases} z - 1, & \text{if } \Re z \ge 1: \\ F_0(z) - 1, & 0 \le \Re z \le 1 \text{ and } \Im z \ge 1/2: \\ J_1(z) - 1 & 0 \le \Re z \le 1 \text{ and } \Im z \le -1/2 \end{cases}$$ and $G_1: \mathbb{C}^* - K_0(R) \to \mathbb{C}^*$ which satisfies $$G_1(K_0(z)) = K_0(G_0(z)) \quad (z \in \chi - R)$$ (Figure 2). It is easy to see that we can extend G_1 to $G_1: \hat{\mathbb{C}} - K_0(R) \to \hat{\mathbb{C}}$, and 0 and ∞ are fixed points of G_1 and $G_1'(0) = E(-1/\alpha)$, $G_1'(\infty) = E(1/\alpha')$. At last, we consider a Mobius transformation $k(z) = t \frac{z}{z-1}$ (t > 0). There exists c > 0 such that $\mathbb{D} \cap k \circ K_0(R) = \emptyset$ if $t = c/\alpha$. We define $g := k \circ G_1 \circ k^{-1}$. We can see that g is holomorphic and univalent map on $\hat{\mathbb{C}} - k \circ K_0(R)$, and 0 and t are fixed points of g such that $g'(0) = E(-1/\alpha)$, $g'(t) = E(1/\alpha')$. Therefore the map g belongs to $S_{-1/\alpha}$. We note that g has another fixed point t near the origin. Let $G \in \hat{S}_{-1/\alpha}$ be the lift of g to \mathbb{H} . We call $G \in \hat{S}_{-1/\alpha}$ be the unrenormalized map of $F \in \hat{S}_{\alpha}$. # 5 Construction of nonlinearizable map From a map $F \in \hat{S}_{\alpha}$, we can obtain a map $G \in \hat{S}_{-1/\alpha}$ by renormalization construction or unrenormalization machine. **Proposition 5.1.** Suppose $\alpha < 1/2$. By renormalization construction, we obtain the renormalized map $G \in \hat{S}_{-1/\alpha}$ of F. If there exists $n \in \mathbb{N}$ such that $F^n(z) \not\in \mathbb{H}$, there exists $m \in \mathbb{N}$ such that $0 \le m < n$ and $G^m(K(z)) \not\in \mathbb{H}$. Figure 2: the unrenormalized machine **Proposition 5.2.** Suppose $\alpha > A$. By unrenormalization machine, we obtain the unrenormalized map $G \in \hat{S}_{-1/\alpha}$ of F. The following holds. - (1) The result similar to that in proposition 5.1 holds. - (2) There exists $z_1 \in \mathbb{H}$ such that $$\Im z_1 \ge \frac{1}{2\pi} \log t^{-1} = \frac{1}{2\pi} \log \alpha - \frac{1}{2\pi} \log c$$ and $0 \le m < 2\alpha$ such that $G^m(K(z)) \notin \mathbb{H}$. **Proposition 5.3.** In other cases, By renormalization construction, we obtain the renormalized map $G \in \hat{S}_{-1/\alpha}$ of F. Then the result similar to that in proposition 5.1 holds. # 5.1 Construction of $\{F_n\}_{n\in\mathbb{N}}$ By the modified continuous fraction expantion of $\alpha \in \mathbb{R} - \mathbb{Q}$, we obtain $$\{a_n\}_{n>0}, \{\alpha_n\}_{n>0} \text{ and } \{\varepsilon_n\}_{n>0} \quad (1/\alpha_n = a_{n+1} + \varepsilon_{n+1}\alpha_{n+1}).$$ For $F \in \hat{S}_{\alpha}$, $n \in \mathbb{N}$ and $\varepsilon \in \{+1, -1\}$, we define the operator $T_{n,\varepsilon} : \hat{S}_{\alpha} \to \hat{S}_{\alpha\varepsilon+n}$ such that $$T_{n,\varepsilon}(F)(z) = \begin{cases} F(z) + n, & \text{if } \varepsilon = +1: \\ -\overline{F(-\overline{z})} + n & \text{if } \varepsilon = -1. \end{cases}$$ For all $n \in \mathbb{N}$, we construct a map F_n belonging to \hat{S}_{α} by the following procedure. - (1) $F_{n,n+1}(z) := z + \alpha_{n+1} \in \hat{S}_{\alpha_{n+1}}$ - (2) Suppose we have constructed $F_{n,l+1} \in \hat{S}_{\alpha_{l+1}}$ $(0 \leq l \leq n)$. Let $\tilde{F}_{n,l+1} := T_{\alpha_{l+1},\epsilon_{l+1}}(F_{n,l+1}) \in \hat{S}_{1/\alpha_l}$. Then We are able to obtain a map $G_{n,l} \in \hat{S}_{-\alpha_l}$ by renormalization when $1/\alpha_l \leq A$, or by unrenormalization when $1/\alpha_l > A$. And we define a map $F_{n,l} := T_{0,1}(G_{n,l}) \in \hat{S}_{\alpha_l}$. - (3) Since $\alpha = a_0 + \varepsilon_0 \alpha_0$, we can define $F_n := T_{a_0,\varepsilon_0}(F_{n,0}) \in \hat{S}_{\alpha}$. ### 5.2 The end of construction We extract the subsequence from $\{F_n\}_{n\in\mathbb{N}}$ which converges locally uniformly to a limit F on \mathbb{H} , and we underestimate d_F . Lemma 5.1. If α is not a Bryuno number, there exists $\mathcal{I}(\alpha) \subset \mathbb{N}$ which is an infinite set and satisfies the following: For all $0 \leq n' \leq n$ with $n', n \in \mathcal{I}(\alpha)$, there exist $$m(n',n) \in \mathbb{N}$$ and $z(n',n) \in \mathbb{H}$ such that $$m(n',n) < C(n')$$ ($C(n')$ depends on only n'), $$\Im z(n',n) > \frac{1}{2\pi} \sum_{i=0}^{n'} \beta_{i-1} \log \alpha_i^{-1} + Const. \text{ and }$$ $$F_n^{m(n',n)}(z(n',n)) \notin \mathbb{H}.$$ Fix $n' \in \mathcal{I}(\alpha)$. It follows that - Since $\{m(n',n)\}$ is bounded, there exists a number m(n') appearing in it in infinite times. - We can consider that $\{z(n',n)\}$ is also bounded. So there exists the accumulation point z(n'). We can extract the subsequence from $\{F_n\}_{n\in\mathbb{N}}$ converging locally uniformly on \mathbb{H} to the limit F which possesses the following property: for all $n'\in\mathcal{I}(\alpha)$, it follows that $F^{m(n')}(z(n'))\notin\mathbb{H}$. On the other hand, by the lemma 5.1, we have $$\Im z(n') \ge \frac{1}{2\pi} \sum_{i=0}^{n'} \beta_{i-1} \log \alpha_i^{-1} + \text{Const.}$$ Considering n' tend to $+\infty$, we have $d_F = +\infty$. Therefore the proposition 2.1 holds. # References - [1] MILNOR, J. Dynamics in one complex variable, Stony Brook IMS Preprint (1990). - [2] YOCCOZ, J. C. Thèorém de Siegel, nombres de Bruno et polynômes quadratiques, Astérisque, 231 (1996), 3–88.