# The Bryuno condition and the Yoccoz theorem

Okuyama Yuusuke Department of Mathmatics Kyoto University

May 30, 1997

#### Abstract

In this paper, we want to survay the proof of the Bryuno theorem, due to Yoccoz, and the Yoccoz theorem.

# 1 Preparation

We consider the modified continuous fraction expantion of  $\alpha \in \mathbb{R} - \mathbb{Q}$ . Namely for  $\alpha \in \mathbb{R} - \mathbb{Q}$ , we can define  $\{a_n\}$ ,  $\{\varepsilon_n\}$ , and  $\{\alpha_n\}$  such that  $a_0$  is an integer which is the closest to  $\alpha$  and  $\alpha_0 = |\alpha - a_0|$  and  $\varepsilon_0 = \pm 1$  which satisfies  $\alpha = a_0 + \varepsilon_0 \alpha_0$  and for  $n \geq 1$ ,  $a_n$  is an integer which is the closest to  $1/\alpha_{n-1}$ ,  $\alpha_n = |1/\alpha_{n-1} - a_n|$ ,  $\varepsilon_n = \pm 1$  which satisfies  $1/\alpha_{n-1} = a_n + \varepsilon_n \alpha_n$ . Then we have

$$\alpha = a_0 + \varepsilon_0 \frac{1}{a_1 + \varepsilon_1 \frac{1}{a_2 + \varepsilon_2 \frac{1}{a_3 + \cdots}}}.$$

**Definition 1.1.** We define a function  $\Psi : \mathbb{R} - \mathbb{Q} \to \mathbb{R}_+ \cup \{+\infty\}$  such that

$$\Phi(\alpha) = \sum_{i \ge 0} \beta_{i-1} \log \alpha_i^{-1}.$$

We call the number  $\alpha$  a Bryuno number if  $\Phi(\alpha)$  is finite.

### 2 Known results

Consider a germ of holomorphic map  $(\mathbb{C},0) \to (\mathbb{C},0)$ 

$$f(z) = \lambda z + a_2 z^2 + a_3 z^3 + \cdots$$

with multiplier  $\lambda$  at z=0. And we consider the case that  $|\lambda|=1$  but  $\lambda$  is not a root of unity. Thus the multiplier  $\lambda$  can be written as

$$\lambda = e^{2\pi i \alpha}$$
 for an  $\alpha \in \mathbb{R} - \mathbb{Q}$ .

The origin is said to be an irrationally indifferent fixed point.

The linearization problem for f is whether or not there exists a local change of coordinate z = h(w) with h(0) = 0 which conjugates f to the irrational rotation  $w \mapsto \lambda w$ , so that

$$h(\lambda w) = f(h(w))$$

near the origin. We say that an irrationally indifferent fixed point is a Siegel point or a Cremer point according as the local linearization is possible or not (cf. [1]).

#### 2.1 Known results for univalent functions

We define

$$S:=\{f; \text{univalent map on } \mathbb{D} \text{ , } f(0)=0 \text{ , and } |f'(0)|=1\},$$
 
$$S_{\lambda}:=\{f\in S; \quad f'(0)=\lambda\}.$$

For  $f \in S_{\lambda}$ , we can define the formal linearizing map  $H_f$  which is a formal power series satisfying the following

$$H_f(0) = 0$$
,  $DH_f(0) = 1$ ,  $f(H_f(z)) = H_f(\lambda z)$ .

Let R(f) be the radius of convergence of  $H_f$ . If f is linearizable, we have R(f) > 0. If not, we define R(f) = 0. We define

$$R(\alpha) := \inf_{f \in S_{\lambda}} R(f).$$

We state the known results.

Theorem 2.1 (Bryuno). If  $\Phi(\alpha) < +\infty$ , then  $R(\alpha) > 0$ . Therefore all  $f \in S_{\lambda}$  are linearizable at the origin.

And Yoccoz proved that this result is optimal.

**Theorem 2.2** (Yoccoz[2]). If  $\Phi(\alpha) = +\infty$ , then there exists a map  $f \in S_{\lambda}$  which is nonlinearizable at the origin.

Remark 2.1. In the case that f is a germ of holomorphic map of  $(\mathbb{C}, 0) \to (\mathbb{C}, 0)$  with a multiplier  $\lambda$  at z = 0, a map  $z \mapsto \frac{1}{t} f(tz)$  belongs to  $S_{\lambda}$  for a suitable t > 0. So the same results for f as the above theorems hold.

#### 2.2 Reduction

We define

$$E(z) := \exp(2\pi i z),$$
  

$$T(z) := z + 1.$$

For  $\alpha \in \mathbb{R} - \mathbb{Q}$ , we define

$$\hat{S}_{\alpha} := \{F; \text{ holomorphic and univalent on } \mathbb{H}, F \circ T = T \circ F \}$$
 and  $\lim_{\Im z \to +\infty} (F(z) - z) = \alpha \}.$ 

For  $f \in S_{E(\alpha)}$ , there exists the unique lifting of f which belongs to  $\hat{S}_{\alpha}$ . We define the following

$$K_F := \{ z \in \mathbb{H}; \ F^n(z) \in \mathbb{H} \ (\text{for all } n > 0) \} \text{ and } d_F := \sup_{z \in \mathbb{C}^{-K_F}} \Im z \in \mathbb{R}_+ \cup \{+\infty\}.$$

For proving the Yoccoz Theorem, it is sufficient to prove the following.

Proposition 2.1. If  $\Phi(\alpha) = +\infty$ , there exists a map  $F \in \hat{S}_{\alpha}$  such that  $d_F = +\infty$ .

We would like to survey the proof of this proposition.

### 3 The renormalization construction

Before surveying the Proposition 2.1, we would like to state about the proof of the Bryuno Theorem, due to Yoccoz. It is based on a renormalization construction, due to Douady and Ghys (See also [1] p8-9). Here is an outline of it.  $\beta \in (0, 1/2) \cap \mathbb{R} - \mathbb{Q}$  is given. There exists a sufficiently large  $t_0 > 0$  such that for all  $F \in \hat{S}_{\beta}$ , we can take a connected open set  $\mathcal{U}_F$  which is bounded

on the left by the vertical line  $\hat{l} := \{it; t > t_0\}$ , on the right by its image  $F(\hat{l})$ , and from below by the straight line  $\hat{l}'$  from  $it_0$  and  $iF(t_0)$ . For  $z \in \mathcal{U}_F$ , there exists a unique number  $n(z) \in \mathbb{N}$  such that  $F^{n(z)}(z) \in T(\mathcal{U}_F)$ . Then we can define the first return map  $\tilde{G} : \mathcal{U}_F \to \mathcal{U}_F$  (Figure 1) which satisfies that

$$\tilde{G}(z) = T^{-1} \circ F^{n(z)}(z),$$

and the uniformizing map K which is holomorphic and univalent on  $\mathcal{U}_F$  which satisfies that

$$\Im K(z) = 0$$
 on  $\hat{l}'$  and  $K(F(z)) = K(z) + 1$  on  $\hat{l}$ .

The last formula permits to prolong K on some domain. (Very roughly speaking, if  $\Im z$  is large, K is  $1/\beta$  times expantion in the direction of the real axis (Figure 1).) Finally we define the renormalized map G of F such that  $G := K \circ \tilde{G} \circ K^{-1} \in \hat{S}_{-1/\beta}$ .



Figure 1: the first return map  $\hat{G}$  and the uniformizing map K

# 4 The unrenomalization machine

The proof of the Yoccoz Theorem is based on the unrenomalization machine. Suppose that  $\alpha > A$  (The number A is a sufficiently large number determined by precise estimate). We can take a smooth function  $\eta: \mathbb{R} \to [0,1]$  which is analytic without  $\pm 1/2$  and identically 0 on  $(-\infty, -1/2]$  and identically 1 on  $[1/2, +\infty)$ . Let  $J: \mathbb{H} \to \mathbb{C}$  be the map such that  $J - \Delta \alpha \in \hat{S}_{\alpha}$ .  $(\Delta \alpha \in \mathbb{C}, |\Delta \alpha| < c_1, c_1 > 0$  is small enough.) We define

$$F_0(z) := F(z+i) - i, \quad J_0(z) := J(z+i) - i \text{ and } J_1(z) := \overline{J_0(\overline{z})}.$$

And we define  $\chi:i\mathbb{R}\to\mathbb{C}$  such that

$$\chi(is) := \eta(s)F_0(is) + (1 - \eta(s))J_1(is) \quad (s \in \mathbb{R}).$$

Let  $\chi$  be a closed domain which is bounded on the left by the vertical line  $i\mathbb{R}$ , on the right by its image  $\chi(i\mathbb{R})$ . Grueing the bords of  $\chi$  by  $\chi$ , we obtain the Riemann surface which is isomorphic to  $\mathbb{C}^*$  (Figure 2). So there exists the grueing map  $K_0$  which is continuous on  $\chi$ , holomorphic and univalent on the interior of  $\chi$  and satisfies the following

$$K_0(\chi(is))=K_0(is)$$
  $(s\in\mathbb{R})$ ,  $\lim_{s\to+\infty}K_0(is)=0$  and  $K_0(0)=1$ 

(Figure 2). Let R be a square of which the vertices are  $\pm i/2$ ,  $1 \pm i/2$ . We define  $G_0: \chi - \mathbb{R} \to \chi$  such that

$$G_0(z) := \begin{cases} z - 1, & \text{if } \Re z \ge 1: \\ F_0(z) - 1, & 0 \le \Re z \le 1 \text{ and } \Im z \ge 1/2: \\ J_1(z) - 1 & 0 \le \Re z \le 1 \text{ and } \Im z \le -1/2 \end{cases}$$

and  $G_1: \mathbb{C}^* - K_0(R) \to \mathbb{C}^*$  which satisfies

$$G_1(K_0(z)) = K_0(G_0(z)) \quad (z \in \chi - R)$$

(Figure 2). It is easy to see that we can extend  $G_1$  to  $G_1: \hat{\mathbb{C}} - K_0(R) \to \hat{\mathbb{C}}$ , and 0 and  $\infty$  are fixed points of  $G_1$  and  $G_1'(0) = E(-1/\alpha)$ ,  $G_1'(\infty) = E(1/\alpha')$ . At last, we consider a Mobius transformation  $k(z) = t \frac{z}{z-1}$  (t > 0). There exists c > 0 such that  $\mathbb{D} \cap k \circ K_0(R) = \emptyset$  if  $t = c/\alpha$ . We define  $g := k \circ G_1 \circ k^{-1}$ . We can see that g is holomorphic and univalent map on  $\hat{\mathbb{C}} - k \circ K_0(R)$ , and 0 and t are fixed points of g such that  $g'(0) = E(-1/\alpha)$ ,  $g'(t) = E(1/\alpha')$ . Therefore the map g belongs to  $S_{-1/\alpha}$ . We note that g has another fixed point t near the origin. Let  $G \in \hat{S}_{-1/\alpha}$  be the lift of g to  $\mathbb{H}$ . We call  $G \in \hat{S}_{-1/\alpha}$  be the unrenormalized map of  $F \in \hat{S}_{\alpha}$ .

# 5 Construction of nonlinearizable map

From a map  $F \in \hat{S}_{\alpha}$ , we can obtain a map  $G \in \hat{S}_{-1/\alpha}$  by renormalization construction or unrenormalization machine.

**Proposition 5.1.** Suppose  $\alpha < 1/2$ . By renormalization construction, we obtain the renormalized map  $G \in \hat{S}_{-1/\alpha}$  of F. If there exists  $n \in \mathbb{N}$  such that  $F^n(z) \not\in \mathbb{H}$ , there exists  $m \in \mathbb{N}$  such that  $0 \le m < n$  and  $G^m(K(z)) \not\in \mathbb{H}$ .



Figure 2: the unrenormalized machine

**Proposition 5.2.** Suppose  $\alpha > A$ . By unrenormalization machine, we obtain the unrenormalized map  $G \in \hat{S}_{-1/\alpha}$  of F. The following holds.

- (1) The result similar to that in proposition 5.1 holds.
- (2) There exists  $z_1 \in \mathbb{H}$  such that

$$\Im z_1 \ge \frac{1}{2\pi} \log t^{-1} = \frac{1}{2\pi} \log \alpha - \frac{1}{2\pi} \log c$$

and  $0 \le m < 2\alpha$  such that  $G^m(K(z)) \notin \mathbb{H}$ .

**Proposition 5.3.** In other cases, By renormalization construction, we obtain the renormalized map  $G \in \hat{S}_{-1/\alpha}$  of F. Then the result similar to that in proposition 5.1 holds.

# 5.1 Construction of $\{F_n\}_{n\in\mathbb{N}}$

By the modified continuous fraction expantion of  $\alpha \in \mathbb{R} - \mathbb{Q}$ , we obtain

$$\{a_n\}_{n>0}, \{\alpha_n\}_{n>0} \text{ and } \{\varepsilon_n\}_{n>0} \quad (1/\alpha_n = a_{n+1} + \varepsilon_{n+1}\alpha_{n+1}).$$

For  $F \in \hat{S}_{\alpha}$ ,  $n \in \mathbb{N}$  and  $\varepsilon \in \{+1, -1\}$ , we define the operator  $T_{n,\varepsilon} : \hat{S}_{\alpha} \to \hat{S}_{\alpha\varepsilon+n}$  such that

$$T_{n,\varepsilon}(F)(z) = \begin{cases} F(z) + n, & \text{if } \varepsilon = +1: \\ -\overline{F(-\overline{z})} + n & \text{if } \varepsilon = -1. \end{cases}$$

For all  $n \in \mathbb{N}$ , we construct a map  $F_n$  belonging to  $\hat{S}_{\alpha}$  by the following procedure.

- (1)  $F_{n,n+1}(z) := z + \alpha_{n+1} \in \hat{S}_{\alpha_{n+1}}$
- (2) Suppose we have constructed  $F_{n,l+1} \in \hat{S}_{\alpha_{l+1}}$   $(0 \leq l \leq n)$ . Let  $\tilde{F}_{n,l+1} := T_{\alpha_{l+1},\epsilon_{l+1}}(F_{n,l+1}) \in \hat{S}_{1/\alpha_l}$ . Then We are able to obtain a map  $G_{n,l} \in \hat{S}_{-\alpha_l}$  by renormalization when  $1/\alpha_l \leq A$ , or by unrenormalization when  $1/\alpha_l > A$ . And we define a map  $F_{n,l} := T_{0,1}(G_{n,l}) \in \hat{S}_{\alpha_l}$ .
- (3) Since  $\alpha = a_0 + \varepsilon_0 \alpha_0$ , we can define  $F_n := T_{a_0,\varepsilon_0}(F_{n,0}) \in \hat{S}_{\alpha}$ .

### 5.2 The end of construction

We extract the subsequence from  $\{F_n\}_{n\in\mathbb{N}}$  which converges locally uniformly to a limit F on  $\mathbb{H}$ , and we underestimate  $d_F$ .

Lemma 5.1. If  $\alpha$  is not a Bryuno number, there exists  $\mathcal{I}(\alpha) \subset \mathbb{N}$  which is an infinite set and satisfies the following: For all  $0 \leq n' \leq n$  with  $n', n \in \mathcal{I}(\alpha)$ , there exist

$$m(n',n) \in \mathbb{N}$$
 and  $z(n',n) \in \mathbb{H}$ 

such that

$$m(n',n) < C(n')$$
 ( $C(n')$  depends on only  $n'$ ), 
$$\Im z(n',n) > \frac{1}{2\pi} \sum_{i=0}^{n'} \beta_{i-1} \log \alpha_i^{-1} + Const. \text{ and }$$

$$F_n^{m(n',n)}(z(n',n)) \notin \mathbb{H}.$$

Fix  $n' \in \mathcal{I}(\alpha)$ . It follows that

- Since  $\{m(n',n)\}$  is bounded, there exists a number m(n') appearing in it in infinite times.
- We can consider that  $\{z(n',n)\}$  is also bounded. So there exists the accumulation point z(n').

We can extract the subsequence from  $\{F_n\}_{n\in\mathbb{N}}$  converging locally uniformly on  $\mathbb{H}$  to the limit F which possesses the following property: for all  $n'\in\mathcal{I}(\alpha)$ , it follows that  $F^{m(n')}(z(n'))\notin\mathbb{H}$ . On the other hand, by the lemma 5.1, we have

$$\Im z(n') \ge \frac{1}{2\pi} \sum_{i=0}^{n'} \beta_{i-1} \log \alpha_i^{-1} + \text{Const.}$$

Considering n' tend to  $+\infty$ , we have  $d_F = +\infty$ . Therefore the proposition 2.1 holds.

# References

- [1] MILNOR, J. Dynamics in one complex variable, Stony Brook IMS Preprint (1990).
- [2] YOCCOZ, J. C. Thèorém de Siegel, nombres de Bruno et polynômes quadratiques, Astérisque, 231 (1996), 3–88.