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Abstract

In this paper, we want to survay the proof of the Bryuno theorem,
due to Yoccoz, and the Yoccoz theorem.

1 Preparation

We consider the modified continuous fraction expantion of a € R — Q.
Namely for o € R — Q, we can define {a,}, {€.}, and {@.} such that a¢
is an integer which is the closest to a and oy = |a — ay| and €y = £1 which
satisfles @ = ay + g9y and for n > 1, a, is an integer which is the closest
to 1/a,-1, an = |1/0—1 — a,], €, = 21 which satisfies 1/a,—1 = a,, + &,
Then we have

a=ay+¢&y

a1+ & 1

a3+...

Qo + &9
Definition 1.1. We define a function ¥ : R—Q — R, U {+oc0} such that

&(a) = Z Bialogait.

>0

We call the number o o Bryuno number if ®(a) is finite.
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2 Known results
Consider a germ of holomorphic map (C, 0) — (C,0)
f(2) = Az 4 a2® +az2® + -

with multiplier A at z = 0. And we consider the case that |A\] = 1 but A is
not a root of unity. Thus the multiplier A can be written as

A=e™ foran a € R — Q.

The origin is said to be an irrationally indifferent fixed point.

The linearization problem for f is whether or not there exists a local
change of coordinate z = h(w) with h(0) = 0 which conjugates f to the
irrational rotation w — Aw, so that

h(Aw) = f(h(w))

near the origin. We say that an irrationally indifferent fixed point is a Siegel
point or a Cremer point according as the local linearization is possible or not

(cf. [1))-

2.1 Known results for univalent functions

We define
S := {f;univalent map on D, f(0) =0, and |f'(0)| = 1},
Sy:={f€S; f(0)=2A}

For f € S), we can define the formal linearizing map H; which is a formal
power series satisfying the following

Hy(0) =0, DH;(0)=1, f(Hs(2))=H(\z).

Let R(f) be the radius of convergence of H;. If f is linearizable, we have
R(f) > 0. If not, we define R(f) = 0. We define

Ra):= inf R(f).

We state the known results.

Theorem 2.1 (Bryuno). If ®(a) < +oo, then R(a) > 0. Therefore all
f € Sy are linearizable at the origin.
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And Yoccoz proved that this result is optimal.

Theorem 2.2 (Yoccoz[2]). If ®(a) = 400, then there ezists a map f € Sy
which is nonlinearizable at the origin.

Remark 2.1. In the case that f is a germ of holomorphic map of (C,0) —
(C,0) with a multiplier X at z =0, a map z — %f(tz) belongs to Sy for a
suitable t > 0. So the same results for f as the above theorems hold.

2.2 Reduction

We define
E(z) :=exp(2miz),
T(z) =z +1.

For o € R — @, we define

5}, :={F; holomorphic and univalent on H, FoT =T o F
and _lim (F(z) —2) = a}.

Y

Sz—+

For f € Sg(q), there exists the unique lifting of f which belongs to S,. We
define the following

Kp:={z € H; F"(z) € H (for all n > 0)} and
dp:= sup Sz € R.U{+o0}.
2eC—Kr

For proving the Yoccoz Theorem, it is sufficient to prove the following.

Proposition 2.1. If &(a) = +oo, there ezists a map F € S, such that
dF = +400.

We would like to survey the proof of this proposition.

3 The renormalization construction

Before surveying the Proposition 2.1, we would like to state about the proof
of the Bryuno Theorem, due to Yoccoz. It is based on a renormalization
construction, due to Douady and Ghys (See also [1] p8-9). Here is an outline
ofit. # € (0,1/2)NR—Q is given. There exists a sufficiently large t, > 0 such
that for all ' € 5/3, we can take a connected open set Up which is bounded
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on the left by the vertical line | := {it;t > ty}, on the right by its image F([),
and from below by the straight line I from ity and iF(ty). For z € Up, there
exists a unique number n(z) € N such that F™*)(z) € T(Ur). Then we can
define the first return map G : Up — Up (Figure 1) which satisfies that

G(z) =T 1o F"3(z),

and the uniformizing map K which is holomorphic and univalent on Ur which
satisfies that

SK(z) =0on il and K(F(z)) = K(z) + 1 on .

The last formula permits to prolong K on some domain. (Very roughly
speaking, if Sz is large, K is 1/ times expantion in the direction of the real

axis (Figure 1).) Finally we define the renormalized map G of F' such that
G=KoGoK1le S_1/8-

xA
e D

- ] L.
> o

0 B 1 Rz 0 1 /8 Rz

Figure 1: the first return map G and the uniformizing map K

4 The unrenomalization machine

The proof of the Yoccoz Theorem is based on the unrenomalization machine.
Suppose that & > A (The number A is a sufficiently large number determined
by precise estimate). We can take a smooth function 7 : R — [0, 1] which is
analytic without £1/2 and identically 0 on (—o0, —1/2] and identically 1 on
[1/2,+00). Let J : H — C be the map such that J — Aa € S,. (Ao e C,
| A a| < e, ¢; > 0 is small enough.) We define

Fo(z) = F(z+1) —1, Jy(2):= J(z+1) —iand J1(z) := Jy(2).
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And we define x : R — C such that
x(is) = () Fo(is) + (1 = n(s))h(is) (s € R).

Let x be a closed domain which is bounded on the left by the vertical line
iR, on the right by its image x(iR). Grueing the bords of x by x, we obtain
~ the Riemann surface which is isomorphic to C* (Figure 2). So there exists
the grueing map Ky which is continuous on x, holomorphic and univalent on
the interior of x and satisfies the following

Ko(x(is)) = Ky(1s) (s €R), ligl Ko(is) = 0 and K,y(0) =1

(Figure 2). Let R be a square of which the vertices are +¢/2, 1 +4/2. We
define Gy : x — R — x such that

z—1, if Rz > 1
Go(2) == Fo(2) =1, 0<Rz<1land Sz >1/2:
Ji(z)—1 0<Rz<1land $z<—1/2

and G; : C* — Kj(R) — C* which satisfies
Gl (I({)(Z)) = I(U(GU(Z)) (Z X — R)

(Figure 2). It is easy to see that we can extend G to Gy : C — Ky(R) — C,
and 0 and oo are fixed points of G; and G} (0) = E(—1/a), Gi(o0) = E(1/d).
At last, we consider a Mobius transformation k(z) = t-%5 (¢t > 0). There
exists ¢ > 0 such that DNko Ky(R) = §if t = ¢/a. We define g := koG1ok™L.
We can see that g is holomorphic and univalent map on C — ko K (R), and
0 and t are fixed points of g such that ¢'(0) = E(—1/a), ¢'(t) = E(1/d).
Therefore the map g belongs to S_;/,. We note that g has another fixed point
t near the origin. Let G € 5'—1/& be the lift of g to H. We call G € 5'_1/c, be

the unrenormalized map of F' € S,,.

5 Construction of nonlinearizable map

From a map F' € S,, we can obtain a map G € S_.y/, by renormalization
construction or unrenormalization machine.

Proposition 5.1. Suppose a < 1/2. By renormalization construction, we
obtain the renormalized map G € S_y/o of F'. If there exists n € N such that
F™(z) ¢ H, there exists m € N such that 0 < m < n and G"(K(z)) ¢ H.
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Figure 2: the unrenormalized machine

Proposition 5.2. Suppose o > A. By unrenormalization machine, we ob-
tain the unrenormalized map G € S_y), of F. The following holds.

(1) The result similar to that in proposition 5.1 holds.

(2) There exists z; € H such that
1 _ 1 1
Sz1 > %logt = %loga— %logc

and 0 < m < 2a such that G™(K(z)) ¢ H.

Proposition 5.3. In other cases, By renormalization construction, we ob-
tain the renormalized map G € S_y;q of F'. Then the result similar to that
in proposition 5.1 holds.

5.1 Construction of {F),},en
By the modified continuous fraction expantion of & € R — (), we obtain
{an}nzl.h {an}nZU and {gn}nZU (1/an = Qny1 +5n+1an+1)-

For F € S’m n € N and ¢ € {+1,—1}, we define the operator T, : S'a —

Saesn such that

F(z) +n, ife=+1

Tn.,f(F)(Z) = {_m_}-n ifE = —1.

For all n € N, we construct a map F,, belonging to S, by the following
procedure.
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(1) F;z,n+1(z) =z+ qntl S éﬂ,,+1~

(2) Suppose we have constructed F,, 41 € S'am (0 <1< n). Let Foper =

Turorieres (Frnirr) € 5’1/0,. Then We are able to obtain amap G, € S_g,
by renormalization when 1/ey < A, or by unrenormalization when
1/og > A. And we define a map F,; :=T1(Gry1) € Se,-

(3) Since o = ap + €y, we can define F, := Ty, o, (Fny) € S,.

5.2 The end of construction

We extract the subsequence from {Fn}neN which converges locally uniformly
to a limit F' on H, and we underestimate dg.

Lemma 5.1. Ifo is not a Bryuno number, there ezists (o) C N which is an
infinite set and satisfies the following: For all 0 < n' < n withn',n € I(a),
there exist

m(n',n) € N and z(n',n) € H
such that

m(n',n) <C(n') (C(n') depends on only n'),

’

1 n
Sz(n',n) >3- Zﬁiﬁl log ;! + Const. and
i=0

F:ln(n’,n) (Z(’nl) TL)) g H.
Fix n' € Z(a). It follows that

e Since {m(n’,n)} is bounded, there exists a number m(n’) appearing in
it in infinite times.

s We can consider that {z(n',n)} is also bounded. So there exists the
accumulation point z(n’).

We can extract the subsequence from {F,},en converging locally uniformly
on H to the limit F' which possesses the following property : for all n' € Z(«),

it follows that F™(*)(z(n')) € H. On the other hand, by the lemma 5.1, we
have

’

1 n
Sz(n') > o Zoﬁi_l log o; ' 4 Const.

Considering n' tend to 4+00, we have dp = +oco. Therefore the proposition
2.1 holds.
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