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Abstract

In this note, we shall show quasiconformal equivalence on the
boundaries of hyperbolic components of the tricorn. This fact is quite
different from that on the boundary of the Mandelbrot set.

1 Introduction

In this paper, we shall consider the dynamics of the family of antiquadratic
polynomials of the form :

fo(2)=2*4+¢, ceC.

The tricorn or the Mandelbar set is defined as the connectedness locus of
this family. It was founded independently by Milnor [Mill] and Rippon et
al. [Rip]. Rippon et al. considered it as an analogy with the Mandelbrot set,
the connectedness locus of the family of quadratic polynomials :

P(2)=2*4+¢, ceC.

On the other hand, Milnor founded it in the real slice of the connectedness
locus of the family of cubic polynomials :

Pa,b(z) = 2% —3a’z + b, a,b € C,

and through the study of their critical orbits, arrived at the family {f.}. In
the sense that it appears not only in the antiquadratic family but also in the
families of cubics or any more, it is said to be a universal object.
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The study of the dynamics of a family of antiholomorphic mappings goes,
to some extent, analogously as in case of the family of holomorphic mappings.
The difficulty or the difference lies in the lack of analyticity with respect to
the parameter. In fact, as is easily seen,

Qec(2) = fAz) = (2" + &>+ c = P. o P(2)

no longer depends analytically on the parameter c. Here we also remark that
f¥ is holomorphic for even k and is antiholomorphic for odd k.

For antiholomorphic or antipolynomial-like mappings, we can also show
analogous results as in Douady-Hubbard [DH2]. The first difference appears
in Lemma 7 in [DH2], which says that, on the boundary of the Mandelbrot
set, two different quadratics are never quasiconformally equivalent to each
other. We remark that this lemma plays an essential role in the proof of the
self-similarity of the Mandelbrot set. That is, it assures the continuity of the
mapping from the baby Mandelbrot set to the whole Mandelbrot set on its
boundary.

In case of the tricorn, we have a quite different result. That is, on a real
analytic arc contained in the boundaries of hyperbolic components of odd
periods of the tricorn, antiquadratics are quasiconformally equivalent to each
other. On the contrary, if an antiquadratic is quasiconformally equivalent to
another lying on a real analytic arc as above, it is contained in that arc up
to trivial affine equivalence. This is our main result. See Theorem 2.15. The
proof relies on the characterization of quasiconformal equivalence in Mané-
Sad-Sullivan [MSS] and the method of quasiconformal deformation in [DH2].
On the boundaries of hyperbolic components of even periods of the tricorn,
we conjecture that the same results as in the Mandelbrot set holds.

An abbreviated version of this paper is announced in [Nak?2].

Acknowledgment. The author would like to express his hearty thanks
to Professors M. Shishikura and S. Ushiki for their valuable suggestions.

2 Statement of Results

In this section, we give some definitions and state our main results.

Definition 2.1 z is said to be periodic if there exists a k such that f¥(zo) =
20. Minimum of such k is called its period and zy is called a k-periodic point
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of fo. In this case, we define its eigenvalue p = p(zo) by

k . .
a—gﬂz:m, if k is even.

- { |y, ifk s odd

We say zg is attracting (vesp. superattracting, repelling, indifferent) if |p| <
1 (resp. =0, > 1, =1). It is called hyperbolic if it is not indifferent.

REMARK. If k£ is odd and z¢ is a k-periodic point of f., 2o is also a k-periodic
point of Q.. Its eigenvalue A as a periodic point of @, is always non-negative:

k=1

A= (@H(z0) = [ 477 (o) f2(z0) = ol 2 0.

Definition 2.2 K(f.) = {z € C;limuc fI(2) # oo} is said to be the
filled-in Julia set of f. and its boundary J(f.) ts called the Julia set of
fe- For general polynomials, we define them in the same way. M = {c €
C;limpneo PH(0) # 00} and T = {c € C;limu_ f7(0) # oo} are called
respectively the Mandelbrot set and the tricorn. They are the connectedness
loci of the corresponding families. That is,

M = {ceC;K(P.) and J(P.) are connected},
T = {ce€ C;K(f.) and J(f.) are connected}.

Definition 2.3 We define a hyperbolic component of period k of the tricorn
by a connected component of the set '

Hy = {c€T;f. has an attracting k-periodic point}.
For example, H; = {c = z — 7%;|z| < 1/2} is the unique hyperbolic
component of period one. The tricorn is compact ([Rip]) and connected

(Nakane [Nakl]) just as in the Mandelbrot set. But there are differences
between them.

Theorem 2.4 (Winters [Win]) We have {c;|c — 1/4]| < €} N 0T C 0H,
for sufficiently small € > 0.
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REMARK. Recently Shishikura [Shi] showed that the Hausdorff dimension of
the boundary of the Mandelbrot set is equal to two. Above theorem implies
that the boundary of the tricorn contains a smooth arc, hence a part of
Hausdorff dimension one.

Definition 2.5 Let U and U’ be open sets in C. An orientation preserving
homeomorphism ¢ : U — U’ is called quasiconformal if its first derivatives
in distribution sense are locally integrable and satisfies |-a%<p| < k|5"’;go] for
some k < 1.

Definition 2.6 Let f and g be polynomials or antipolynomials. Suppose
there exist open neighborhoods U and V of K(f) and K(g) respectively and
a homeomorphism ¢ : U — V satisfying ¢ o f = gow. Then we say
f is topologically equivalent to ¢ and denote f ~yp g. Furthermore, if
@ is quasiconformal (resp. holomorphic, affine) in U, we say f is quasi-
conformally (resp. holomorphically, affinely) equivalent to g and denote
f~ge g(resp. f~no Gy f ~assine 9)- If @ is quasiconformal in U and satisfies
%(p =0 on K(f), we say f is hybrid equivalent to g and denote f ~py g. If
@ is only a homeomorphism ¢ : J(f) — J(g), we say f is J-equivalent to ¢
and denote f ~j g.

Though it easily follows from the definitions:

frafsineg= fna 9= fromg=freg=fr~opg=frgg,
an inverse follows in some cases.
Theorem 2.7 ([DH2]) Suppose K(f) and K(g) are connected. Then

f~mg implies [ ~guffineg-

REMARK. Though Theorem 2.7 is shown only for polynomials in [DH2], its
antipolynomial version can be proved similarly.
For the family {f.}, we have a trivial affine equivalence.

Lemma 2.8 ([Rip],[Win]) fu ~afsine fo if and only if ¢' = w'c, for some
j=0,10r2. Herew = /3,
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Definition 2.9 An element gy of a family {gr}ren 1s K -stable if and only if
there exists a neighborhood U of A in A such that gy ~x gx for any X' € U.
We say ”structurally stable” in stead of “topologically stable”.

For example, consider the family P.(z) =22 +¢, ce C.
Theorem 2.10 P, is J-stable if and only if c € C — M.

Theorem 2.11 Suppose ¢ € W, a hyperbolic component of M. Then P, is
quasiconformally stable if and only if ¢ is not the center of W.

These are obtained by applying the results in [MSS] for general analytic
families of rational mappings to the above family.

Theorem 2.12 ([DH2]) Suppose ¢ € OM and Py ~,. P,. Then ¢ = c.

Since above theorems are used to prove the self-similarity of the Mandel-
brot set, it is important to show similar results for the tricorn. Theorem 2.12
seems to relate to the following.

Theorem 2.13 (Naishul [Nai]) The eigenvalue of an indifferent periodic
point of a holomorphic mapping is a topological invariant.

Theorems 2.11 and 2.12 imply that Theorem 2.13 does not hold for hy-
perbolic periodic points. The following can be proved by a similar argument

as in [MSS].

Theorem 2.14 Suppose ¢ € W, a hyperbolic component of the tricorn.
Then f. is J-stable. Moreover, f. is quasiconformally stable if and only
if ¢ is not the center of W.

Now, let W be a hyperbolic component of odd period % of the tricorn and
co € OW. Then, there exists an indifferent k-periodic point zy of f.,.That is,
it satisfies f£ (z0) = 20 and (f2¥)(20) = 1.

Theorem 2.15 Suppose
(F2Y'(z0) # 0. (2.1)

Then we have
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1. ferge foor for c € OW, close to co,

2. if fo ~ge feo, then wic € OW for some j = 0,1 or 2.

REMARK.

1. Note that (f2*)"(z0) = 0 implies (f2F)"(20) # 0. Hence roughly speak-
ing, assumption (2.1) implies geometrically that ¢ is not a cusp point
of W and dynamically that z; is persistently non-hyperbolic in the
sense of [MSS] (see the following definition).

2. From the canonical form at rationally indifferent periodic points in Ca-
macho [Cam], it follows that (2.1) is indispensable.

3. For k=1,

oW = {c=z-2%|z|=1/2)
= {c=c =e"™)2 - "4, € [0,1)}

is a real analytic arc and (2.1) is equivalent to the fact that ¢y is not a
cusp point.

Definition 2.16 A non-hyperbolic k-periodic point zq of fe, is called persis-
tent if for each neighborhood V of zq, there is a neighborhood W of ¢y such
that, for each c € W, f. has in V a non-hyperbolic k-periodic point.

3 Proof of Theorem 2.14

The proof of Theorem 2.14 is analogous to those of Theorems 2.10 and 2.11.
In order to apply the A-lemma in [MSS], we regard {Q. = f?} as the real
part of a two-parameter analytic family {Q.s(2z) = Paybi © Pa—bi;a,b € C}.
Then the proofs in [MSS] work for our case if the period k& of W is even.
When k is odd, we use the Schroder functional equation for antiholomorphic
mappings, which can be proved similarly.
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Lemma 3.1 Suppose f(z) = 32, a;7’ is antiholomorphic in a neighborhood
of the origin and |a,| # 0,1. Then there exists a holomorphic mapping ¢(z) =
Y b;z? in a neighborhood of the origin satisfying by # 0 and f o p(z) =
w(a1z).

Suppose f. has an attracting k-periodic point zp with eigenvalue p. Then
the Remark of Definition 2.1 says that zp is a k-periodic point of @), with
eigenvalue |p|>. We apply the argument in [MSS] to the family {Q.} and
obtain that Qu ~g4 Q. for ¢’ close to c. Note that, here we use the canonical
form :

z e |p|*2 (3.1)
of the local dynamics of Q). near zo, which is obtained by the usual Schroder
functional equation. If we decompose this canonical form into the two fold
iteration of the mapping :

z 1+ pZ, (3.2)
obtained in the above lemma as a canonical form of f, near z = zp, we get
fer ~qe fe. This completes the proof of Theorem 2.14.

4 Proof of Theorem 2.15

(1) Since OW consists of points ¢ such that there exists z satisfying f*(z) =
z, (f2*¥)(z) = 1, it is a real algebraic set and can be expressed locally by a
rea] analytic arc ¢ = ¢;. Hence Fi(z) = f2(z) is a quartic polynomial with
real analytic parameter ¢ and has an indifferent k-periodic point z;, depending
real analytically on ¢ and satisfying (F)'(z;) = 1. We can complexify ¢ and
make it a holomorphic parameter. Then it also follows that Ftk(zt) = 2z, and
(FF)(2;) = 1. Now (2.1) assures that 2 is persistently non-hyperbolic. In
fact, if (2.1) breaks, a periodic-doubling bifurcation occures. Furthermore,
the critical orbits of F; behave continuously with respect to £. Thus Theorem
D in [MSS] yields that F; ~g Fp for sufficiently small ¢. Now, we have to
show that this qc-equivalence is decomposed into f., ~g fe, for real t. In this
case, we use the local canonical form of F} at rationally indifferent periodic
points in [Cam]. Conjugating by the affine transformation : z — z — z;, we
may assume z; = 0. Then we have

ffg(z) = piz+at22+“': Iptlzla
Ftk(z) = z+4b2t+ .., by = p@; + P,
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Conjugating by the affine transformation S; : z — z/b;, we can take b, = 1.
In this case f£ is transformed into :

.
St_lo cktoSt(z) = ptb_tz+dt22+...
t
b
= F+dF+ .., dt=%_‘7‘
t

Let ¢(2) = —1/z. Then
e toS; o ff oS 0p(2) =2 +d +O(1/z|).
On the other hand, since we have, from the argument in [Cam)]
oS oFfoS 0p(z)=2+14+0(1/|2]),

it follows that d; + d; = 2Re(d;) = 1. Conjugating by the affine transfor-
mation : z — 2z + Im(d;)i/2, we may take d; = 1/2, independent of . We
carry out this procedure for real ¢, which becomes a real analytic parameter.
Next we complexify it and make it a holomorphic parameter. Then, by the
same argument as in [Cam]|, we get the desired qc-equivalence : fo, ~gc fo,
for sufficiently small ¢.

(2) In order to prove the latter part, we apply an antiholomorphic version
of the method of quasiconformal deformation used in the proof of Theorem
2.12 in [DH2]. Let ¢ : U — V be the qc-equivalence : po f, oo™ = f..

Consider the Beltrami form g = %o uj—i. Define another Beltrami form
on K(fe),

- a(p
Ho = Uo% by
vo= { on C — K(fa).

Let m = ||golleo = ||¢tl]eo < 1. Then, for any ¢t € (—1/m,1/m), there exists
a unique quasiconformal mapping &, : C — C satisfying

0% _ o, @,(0)=0, lLim &y(2)/7 = 1. (4.1)
a@t z—00

e

[w]

Note that ®; depends real analytically on ¢. Denote the standard conformal
structure by oo. For general conformal structure ¢, we denote by &, the
conformal structure that gives the same Riemannian metric as o but differs
from it only in the orientation. Put o = ¢*og and oy = ®}o,.
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Lemma 4.1 We have (®; 0 f., 0 ®;7')*0q = &5. That is, ®; 0 f,, 0 ®;" is
anttholomorphic in C.

PROOF. Since 03 = gpon C — K(f,), ®; is conformal there and hence
®, 0 f,, o ®;* is antiholomorphic there. On K(f,,), we have

foo = fLp 00 =" floo=¢"05 =7,

which implies

fCO,E . U _ %TLE (4 2)
fco,f—-uofco _tugOch. ’
for real t. This means
f:offt = 0y.
Then, we have
(310 fur 087V 00 = &} 00 = 8] = 31 o, = .
This completes the proof. 0

Note that Lemma 4.1 does not hold for non-real ¢ since (4.2) is no longer
true for non-real t. This causes the major difference from Theorem 2.12.
From the property (4.1), ®; o f., o ® ! turns out to be an antipolynomial
of degree two, of the form f.;). Now we have shown the existence of a real
analytic arc : ¢ = ¢(t),t € (=1/m,1/m), in c-plane satisfying

C(O) = Cg, Qt : fc(t) ~agc fCQ) (Dl c 99—1 : fc(l) ~hb fc- (43)
Here the last equivalence relation in (4.3) follows from the fact :
(@100 )00 = " 1®l0g = "o = 0y,

on K(f,). Then Theorem 2.7 implies f.1) ~asfine fe. From Lemma 4.1,
we have ¢(1) = w’c,j = 0,1 or 2. On the other hand, from Theorem 2.13,
it follows ¢(t) € dW,t € (—1/m,1/m), which yields the desired result. This
completes the proof of Theorem 2.15. O
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5 Further remarks

By using the argument of (2) in the preceding section, we get a similar result
for a hyperbolic component W of even period k. Suppose ¢ = ¢o € OW 1is
not on the boundary of any hyperbolic component of odd period. Then there
exists an indifferent k-periodic point z = zg of f,, with multiplier A.

Theorem 5.1 Suppose that such a point ¢ having an indifferent k-periodic
point with the same multiplier )\ is isolated near ¢ = co. Then

fe ~qe feo implies ¢ = wieg for some j = 0,1 or 2.

REMARK. Recently, the assumption of Theorem 5.1 turns out to be satisfied.
Hence Theorem 5.1 holds on the boundary of every hyperbolic component of
even period off the boundary of hyperbolic component of odd period. Details
will be published Nakane-Schleicher [NS].

Conjecture 5.2 Suppose cg € 9T is off the boundaries of hyperbolic compo-
nents of odd periods. Then the conclusion of Theorem 5.1 holds.

There is an another, direct proof of Theorem 2.15, by virtue of the theory of
Ecalle cylinder. See [NS]. '
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