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Abstract 

In this note, we shall show quasiconformal equivalence on the 

boundaries of hyperbolic components of the tricorn. This fact is quite 

, different from that on the boundary of the Mandelbrot set. 

1 IntrOductiOn 
In this paper, we shall consider the dynamics of the family of antiquadratic 

polynomials of the form : 

f.(z) = ~2 + c c e C 

The tricorn or the Mandelbar set is deflned as the connectedness locus of 

this family. It was founded independently by Milnor [Mill] and Rippon et 
al. [Rip]. Rippon et al. considered it as an analogy with the Mandelbrot set, 

the connectedness locus of the farnily of quadratic polynomials : 

Pc(z) = z2 + c, c e C 

On the other hand, Milnor founded it in the real slice of the connectedness 

locus of the family of cubic polynomials : 

P.,b(z) = z3 - 3a z + b, a, b e C, 

and through the study of their critical orbits, arrived at the family {f.}. In 

the sense that it appears not only in the antiqu<adratic family but also in the 

families of cubics or any more, it is said to be a universal object. 
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　　　The　study　of　the　dynamics　of　afami1y　ofantiho1omorphic　mappings　goes，

to　someextent，ana1ogous1y　as1n　caseofthefami1yofho1omorphicmappings．
The　di＝駈cu1ty　or　the　d跣erence1ies　in　the1ack　of　ana1yticity　with　respect　to

the　parameter．In　fact，as　is　easi1y　seen，

Q、（・）…∫；（・）＝（・2＋ε）2＋・＝P、・鳥（・）

no1onger　depends　ana1ytica1ly　on　the　parameter　c．Here　we　a1so　remark　that

∫＝まis　ho1omorphic　for　evenたand1s　antiho1omorエ）hic　for　odd一ゐ．

　　　For　antiho1omorphic　or　antipo1ynomia1－1ike　mappings，we　can　also　show

a．na．1ogous　resu1ts　as　in　Douady－Hubbard［DH2］．The丘rst　diference　appears

in　lLemma7in［DH21，which　says　that，on　the　boundary　of　the　Mande1brot

set，two　diferent　qua－d－ratics　are　never　quasiconforma11y　equiva1ent　to　each

other．Weremarkthat　this1emmap1ays　an　essentia1ro1e　in　the　procfofthe

se1f－sim三1arity　of　the　Mande1brot　set．That　is，it　a．ssures　the　continuity　of　the

mapping　from　the　baby　Mande1brot　set　to　the　who1e　Mande1brot　set　on　its

boundary．

　　　In　case　of　the　tricom，we　have　a　quite　di任erent　resu1t．That　is，on　a　rea1

ana1ytic　arc　contained　in　the　boundaries　of　hyperbo1ic　components　of　odd

periods　of　the　tricom，antiqua．dra七ics　are　quasjconforma11y　equivaユent　to　each

other．On　the　contrary，1f’an　antiquadratic　is　quasiconformany　equiva1ent七〇

another　ly5ng　on　a　reaI　ana工ytic　arc　as　above，it　is　conta．ined　in　that　arc　up

to　trivia1a舐ne　equiva1ence．This　is　our　main　resu1t．See　Theorem2．15．The

proof　re1ies　on　the　characterization　of　quasiconfom1a1equiva1ence　in　Mai6－

Sad一一Su11ivan［MSS］and　the　method　ofquasiconforma1deformation　in［DH2］一

〇n　the　bound－aries　ofhyperbo1ic　componen七s　of　even　periods　of　the　tricorn，

we　conjecture　that　the　same　resu1ts　as　in　the　Mande1brot　set　ho1ds．

　　　An　a．bbreviated　version　of　this　paper　is　announced　in［Nak2］．

　　　Acknow1edgment．The　author　wou1d1iketo　express　his　heartythanks
to　Professors　M．Shishikuraand　S．Ushikifor　their　va1uab1e　suggesti6ns．

2　Statement　ofResu1ts

In　this　sec七ion，we　give　some　de丘nitions　and　state　our　main　resu1ts．

De丘nition2，120ゐ8α”オoろe　peザ｛o曲cゲ抗ere　e挑オ8αん卿cん肋αけま（zo）二

・。．棚η6m仙m・∫舳んい8・α〃ε〃3pεブ｛・れπれ。｛・．・αMαん一ρ・・6・伽ρ・6π左
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of fc' In this case, we define its eigenvalue p = p(zo) by 

:~Lafk f if k is odd, 
_ a~ lz='o ' 

P - if k is even. :~s~afk f 

az lz=zo' 

We say zo is attracting (resp. superattracting, repelling, indifferent) if lp[ < 

1 (resp. = O, > 1, = l). It is called hyperbolic if it is not indifferent. 

REMARK. If k is odd and zo is a k-periodic point of fc' zo is also a k-periodic 

point of Qc' Its eigenvalue A as a periodic point of Qc is always non-negative: 

k-l 

A (Qk)'(zo) = H 4f'2j+1(zo)f23(.o) Ipj > o 

j=0 

Definition 2.2 K(f.) = {z e C;1im~_=f.~(z) ~ oo} is said to be the 
filled-in Julia set of fc and its boundary J(fc) is called the Julia set of 

fc' For general polynomials, we define them in the same way. M = {c e 

C;limn-= Pc~(O) ~ oo} and T = {c e C;lirn~_oo fc"(O) ~ oo} are called 

respectively the Mandelbrot set and the tricorn. They al'e the connectedness 

loci of the corresponding families. That is, 

M = {ce C;K(P.) and J(P.) are connected}) 

T = {c e C;K(fc) and J(f.) al'e connected} 

Definition 2.3 We define a hyperbolic component of period k of the tricorn 

by a connected component of the set 

Hk = {c e T, fc has an att7act8ng k perLoclic poznt} 

= {c = z - ~2; Izl < l/2} is the unique hyperbolic For example, H1 
component of period one. The tricorn is compact ([Rip]) and connected 

(Nakane [Nakl]) just as In the Mandelbrot set. But there are differences 

between them. 

Theorem 2.4 (Winters [Win]) We have {c [c l/4[ < e} n aT C aH 
for sufficiently small e > o. 
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REMARK. Recently Shishikura [Shi] showed that the Hausdorff dimension of 

the boundary of the Mandelbrot set is equal to two. Above theorem implies 

that the boundary of the tricorn contains a smooth arc, hence a part of 

Hausdorff dimension one. 

Definition 2.5 Let U and UI be open sets in C. An ol'ientation preserving 

homeomorphism (p : U H, U/ is called quasiconformal if its first derivatives 
in distribution sense are locally integrable and satisfies l~:~pl < kI~Y'I for 

a. - a. 
some k < 1. 

Definition 2.6 Let f and g be polynomials or antipolynomials. Suppose 
there exist open neighborhoods U and V of 11'(f) and K(g) respectively and 

a homeomorphism ~p : U -~ V satisfying Y' o f = g o ~2. Then we say 
f is topologically equivalent to g and denote f -t'p 9' Furthermore, if 

~o is quasiconformal (resp. holomorphic, affine) in U, we say f is quasi-

conformally (resp. holomorphically, affinely) equivalent to g and denote 

f -qc 9(resp. f -h.1 9' f -~ffi~e 9)' If(p is quasiconformal in U and satisfies 

~~p = O on K(f), we say f is hybrid equivalent to g and denote f -hb g. If 

~o is only a homeomorphism ~' : J(f) -~ J(g), we say f is J-equivalent to g 

and denote f -J g. 

Though it easily follolvs from the definitions: 

f -~ffi*e 9 ~ f -h.1 9 ~ f -hb g ~ f -q. g ~ f -top 9 ~ f -J g 

an inverse follows in some cases. 

Theorem 2.7 ([DH2]) Suppose K(f) and K(g) are connected. Then 

f -hb g emplies f -.ffi~~ g. 

REhlARK. Though Theorem 2.7 is shown only for polynomials in [DH2], its 

antipolynomial version can be proved simila,rly. 

For the family {f.}, we have a trivial afiine equlvalence. 

Lemma 2 8 ([Rrp] [Wm]) f , -.ffi*e f. if and only if d = cv3c for some 
j = O, I or 2. Here (v = e2'i/3 
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Definition 2.9 An element gA of a family {9A}AeA is K-stable if and only if 

there exists a neighborhood U of A in A such that gA' -K gA for any A/ e U. 

We say "structurally stable " en stead of "tol'ologtcally stable" 

For example, consider the family Pc(z) = z2 + c, c e C. 

Theorem 2.10 Pc is J-stable if and only if c e C - aM. 

Theorem 2.11 Suppose c e W, a hyperbolic component ofM. Then P. is 
quasiconformally stable if and only if c is not the cente7' of W. 

These are obtained by applying the results in [MSS] for general analytic 

families of rational mappings to the above family. 

Theorem 2.12 ([DH2]) Suppose c e aM and P., -q. P.. Then d = 

Since above theorems are used to prove the self-similarity of the Mandel-

brot set, it is important to show similar results for the tricorn. Theorem 2.12 

seems to relate to the following. 

Theorem 2.13 (Na~rshul [Nai]) The eigenvalue of an indifferent periodic 

point of a holomorphic mapping is a iopological inval'iant. 

Theorems 2.11 and 2.12 imply that Theorem 9-.13 does not hold for hy-

perbolic periodic points. The following can be proved by a similar argument 

as In [MSS]. 

Theorem 2.14 Suppose c e W, a hyperbolic component of the tricorn. 
Then fc is J-stable. Moreover, f. is quasiconf07'mally stable if and only 

if c is not the center of W. 

Now, Iet T)V be a hyperbolic component of odd period k of the tricorn and 

co e aW. Then, there exists an indifferent k-perioclic point zo of fco'That is, 

it satisfies f.ko(zo) = zo and (f.20k)/(zo) = 1' 

Theorem 2.15 Suppose 
(f.2,k)"(zo) ~ O' (2.1 ) 

Then we have 
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1. fc f¥'qc fco for c e aW, close to co, 

2. if fc ~'qc fco' then cv c e aW for some j = O, I or 2. 

REMA RK . 

1. Note that (f2~k)u(zo) = O implies (f.20L~)m(zo) ~ O. Hence roughly speak-

ing, assumption (2.1) implies geometrically that co is not a cusp point 

of aW and dynamically that zo is persistently non-hyperbolic in the 

sense of [MSS] (see the following deflnition). 

2. From the canonical form at rationally indifferent periodic points in Ca-

macho [Cam], it follows that (2.1) is indispensable. 

3. For h = l, 

aW = = -~2;Izl= 119-} 
{
c
 

z
 

= {c = ct = e2lrit/2 - e~47rit/4; t e [O, 1)} 

is a real analytic arc and (2.1) is equivalent to the fact that co is not a 

cusp point. 

Definition 2.16 A non-hyperbolic k-periodic point zo of fco is called persis-

tent iffor each neighborhood V of zo, there is a neighborhood W of co such 

that, for each c e W, fc has in V a non-hyperbolic k-pel'iodic point. 

3 Proof of Theorem 2.14 
The proof of Theorem 9-.14 is analogdus to those of Theorems 2.10 and 2.11. 

In order to apply the A-lemma in [MSS], ¥ve regard {QC = f~} as the real 

part of a two-parameter analytic family {Qa,b(z) = Pa+bi o Pa-bi; a, b e C}. 

Then the proofs in [MSS] work for our case if the period h of W is even. 

When k is odd, we use the Schr6der functiona,1 equa,tion for a,ntiholomorphic 

mappings, which can be proved similarly. 
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Lemma 3.1 Suppose f(z) = ~;J~0=1 aj2J is antiholomorphic in a neighborhood 

of the origin and lall ~ O, 1. Then there exists a holomorphic mapping ~p(z) = 

~jo0=1 bjz3 in a neighborhood of the origin satisfying bl ~ O and f o (p(z) = 

~'(al~) . 

Suppose fc has an attracting h-periodic point zo with eigenvalue p. Then 

the Remark of Definition 2.1 says that zo is a k-periodic polnt of Qc with 

eigenvalue lpl2. We apply the argument in [MSS] to the family {Q.} and 

obtain that Q., -qc Q' for d close to c. Note that, here we use the canonical 

form : 

z H> Ipl2z (3.1) 
of the local dynamics of Q* near zo, which is obtained by the usual Schrbder 

functional equation. If we decompose this canonical form into the two fold 

iteration of the mapping : 

z H~ p2, (3.2) 
obtained in the above lemma as a canonlcal form of fc near z = zo, we get 

f., -qc f.. This completes the proof of Theorem 2.14. 

4 PrOOf Of TheOrem 2.15 
(1) Since aW consists of points c such that there exists z satisfying f~(z) = 

z, (fc2k)/(z) = 1, it is a real algebraic set and can be expressed locally by a 

real analytic arc c = ct' Hence Ft(z) E f.2<(z) is a quartic polynomial with 

real analytic parameter t and has an indifferent k-periodic point zt, depending 

real analytically on t and satisfying (Ftk)/(zt) = 1. ¥~/e can complexify t and 

make it a holomorphic parameter. Then it also follows that Ftk(zt) = zt and 

(Ftk)/(zt) = 1. Now (2.1) assures that zt is persistently non-hyperbolic. In 

fact, if (2.1) breaks, a periodic-doubling bifurcation occures. Furthermore, 

the critical orbits of Ft behave continuously with respect to t. Thus Theorem 

D in [MSS] yields that Ft -qc Fo for sufiiciently small t. Now, we have to 

show that this qc-equivalence is decomposed into f., -qc fco for real t. In this 

case, we use the local canonical form of Ft at ra,tionally indifferent periodic 

points in [Cam]. Conjugating by the affme tra,nsforma,tion : z H~ z - zt, we 

may assume zt ~ O. Then live have 

fck'(z) = pt~+at~2+ , ... Iptl = 1, 

Ftk(z) = z+btz2+..., bt = pta~~'t+~7 at, 
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Conjugating by the a~:ne transformation St : z H> zlbt, we can take bt ~ 1. 

In this case fckt is transformed into : 

St-1 o fc~ o St(z) = Ptbt~ 
_ + dt22 + b
t
 

= ~ + dt~2 + ..., d - atbt 

t b~t2 

Let Y;(z) = -1/z. Then 

~o o S o fct o S o (p(z) = ~ + dt + O(1/IzD-

On the other hand, since we have, from the argument in [Cam] 

(p~1 o S,1 o Ftk o St o (p(z) = z + I + O(11lzl), 

it follows that dt + dt = 9_Re(dt) = l. Conjugating by the affine transfor-

mation : z H~ z + Im(dt)i/2, we may take dt E 1/2, independent of t. We 

carry out this procedure for real t, whlch becomes a real analytic parameter. 

Next we complexify it and make it a holomorphic parameter. Then, by the 

same argument as m [Cam] we get the deslred clc equrvalence fct ~qc fco 

for sufflciently small t . 

(2) In order to prove the latter part, we apply an antiholomorphic version 

of the method of quasiconformal deformatlon used in the proof of Theorem 
2.12 in [DH2]. Let (p : U -~ V be the qc-equiva,1ence : ~p o fco o fP~1 = fc' 

~:e = ud-~'~. Deflne another Beltrami form Consider the Beltrami form pt = a~p 
d z 

pto = u0~ by 

{
 

u on Ji'(fco)' 
uo - O on C - I¥'(J~o)' 

Let m = llpolloe = Il~lloo < 1. Then, for any t e (-1/m, llm), there exists 

a unique quasiconformal mapping ~t : C H. C satisfylng 

a~t ~) (O) O zli_.moo ~ (z)/z = 1. (4.1) 
a~)t = t~ 

Note that ~t depends real analytically on t. Denote the standard conformal 

structure by (70' For general conformal structure cr, ¥ve denote by ~, the 

conformal structure that gives the same Riemannian metric as (T but diff~rs 

from it only in the orientation. Put (T = Y"(70 a,nd (7t = ~~(To' 
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Lemma 4.1 We have ~t o fco o ~~1 '(To = ao' That is, ~;t o fco o ~)~1 is )
 

(
 antiholomorphic in C. 

PROOF Smce at = (TO on C - K(fco)' ~)t rs conformal there and hence 
~t o fco o ~!~1 is antiholomorphic there. On K(fco)' we have 

fcoa fcoY) ao ~o'f'(To (p (TO = ~~, 

which implies 

f.o'i _ ~~ tuo (4.2) 
fco'i u o fco tu o fco 

for real t. This means 

fcocrt = at' 

Then, we have 

~)' Ifc'o(Tt = ~~~~1~i~= ~' Icr a (~)t o fco o ~~l)'(To = t~ 

This completes the proof. [] 

Note that Lemma 4.1 does not hold for non-real t since (4.2) is no longer 

true for non-real t. This causes the major difference from Theorem 2.12. 
From the property (4.1), ~t o fco o ~~1 turns out to be an antipolynomial 

of degree two, of the form fc(t)' Now we have shown the existence of a real 

analytic arc : c = c(t),t e (-1/m, 1/m), in c-plane satisfying 

c(O) = co ~'t : fc(t) ~ f ~l o ~0~1 : fc(1) ~hb fc' (4.3) 

' qc co' 
Here the last equivalence relation in (4-.3) follo¥vs from the fact : 

(~'1 o ~p~1)'CTO = (p'~l~1(To (~' Icr Uo 

on K(fco)' Then Theorem 9-.7 implies fc(1) ~"ffine fc' Frorn Lemma 4.1, 

we have c(1) = cv3c,j = O, I or 2. On the other hand, from Theorem 2.13, 

it follows c(t) e aW,t e (-1/m, 1lm), which yields the desired result. This 

completes the proof of Theorem 9-.15. [] 
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5 Further remarks 
By using the argument of (2) in the preceding section, we get a similar result 

for a hyperbolic component W of even period k. Suppose c = co e aW is 

not on the boundary of any hyperbolic component of odd period. Then there 

exists an indifferent k-periodic point z = zo of fco with multiplier Ao. 

Theorem 5.1 Suppose that such a point c having an indifferent k-periodic 

point with the same multiplier Ao is isolated nea7' c = co. Then 

fc ~qc fco waplies c cv co for some j = O, I or 2. 

REMARK. Recently, the assumption of Theorem 5.1 turns out to be satisfied. 

Hence Theorem 5.1 holds on the boundary of every hyperbolic component of 

even period off the boundary of hyperbolic component of odd period. Details 

will be published Nakane-Schleicher [NS]. 

Conjecture 5.2 Suppose co e 6T is off the boundal'ies ofhyperbolic compo-

nents of odd periods. Then the conclttsion of Theol'em 5.1 holds. 

There is an another, direct proof of Theorem 1)-.15, by virtue of the theory of 

Ecalle cylinder. See [NS]. 
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