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Abstract

In the paper of [NF97b] we studied the geometrical and topological prop-
erties of the moduli space of polynomial maps of degree 3 from a viewpoint
of complex dynamical systems. Making use of the discussion of [FN97] and
[NF97a], we decide the branch locus and give the “topological partition” of
the real moduli space of polynomial maps of degree 4.

1 Polynomials of degree 4
1.1 Coefficient coordinate on polynomials of degree 4
Let Poly,(C) be the space of all polynomial maps of the form

p: C—C,
p(2) = asz? + a32® + a22? + a1z 4+ a0 (ag #0).

The group 2%(C) of all affine transformations acts on Poly,(C) by conjugation:
gopog ™t €Poly(C) for ge€(C), p€ Poly,(C).

Two maps p1,p2 € Poly,(C) are holomorphically conjugate if and only if there
exists g € A(C) with gop; og~! = py. The quotient space of Poly,(C) under this
action will be denoted by My4(C), and called the moduli space of holomorphic
conjugacy classes (p) of polynomial maps p of degree 4.
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Under the conjugacy of the action of %(C), it can be assumed that any map
in Poly,(C) is “monic” and “centered”, i.e.,

p(2) = 2* + co2® + c1z2 + ¢o.

This p is determined up to the action of the group G(3) of 3-rd roots of unity,
where each 7 € G(3) acts on p € Poly,(C) by the transformation p(z) — p(nz)/n.

Let P;(4) be the affine space of all monic and centered polynomials of degree
4 with coordinate (cg, ¢y, ¢2). Then we have an three-to-one canonical projection

@ : P1(4) - My(C)

from P;(4) onto M4(C). Thus we can use P1(4) as coordinate space for M4(C)
though there remains the ambiguity up to the group G(3).

Now we introduce “multipliers’ coordinates” in M4(C) (see [Mil93]):

for each p(z) € Poly,(C), let 21, ---, 24, z5(= 00) be the fixed points of p
and p; the multipliers of 2;; u; = p’'(2;) (1 <1 < 4), and ps = 0. Consider the
elementary symmetric functions of the four multipliers,

04,1 = p1 + po + U3 + fa,

04,2 = 1fh2 + P13 + pips + pops + polbs + p3lie
04,3 = B1Mop3 + piflofia + p1f3 e -+ Po i3[04,

04,4 = 1243144

o045 =0.

Note that these are well-defined on the moduli space M,(C), since u;’s are
invariant by affine conjugacy. Applying the Fatou index theorem, we have a
linear relation ([NF97b]):

4—304,1 + 2042 — 04,3 = 0. ‘ (1)

Let 2(4) be an affine space with coordinates (041,042, 04,4), so-called mul-
tipliers’ coordinates.
We have a natural projection:

T : My(C) — T(4).
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Definition 1 Per;(u) € My4(C) is the locus of all classes having a fixed
point with multiplier 4. Similarly, Preper(,)1 is the locus of all classes having a
pre-fixed critical orbit with tale-length n # 0.

2 Comparison between Poly;(C) and Poly,(C)

Now we summarize the properties of the Poly;(C) and Poly,(C) given by [Mil92],
[NF97b] and [FN97].

2.1 Poly;(C) case
Moduli space:

¢ The moduli space M3(C) is isomorphic to the space X(3), hence it is
isomorphic to C2.

e P1(3) is a two-sheeted ramified covering of C?

Real moduli space: The real moduli space M3(R) has one-to-one correspon-
dence with R?, excepting on the symmetry locus. While on the symmetry
locus, there is two-to-one correspondence.

Multiplier’s Coordinates: (03,1,033) with the linear relation 3 — 203) +
032 =0.

Normal Forms (P1(3)): {f(z) =2 +c12+co}
Transformation formula:

o31 = —3c1 + 6,
033 = 27c3 + a(2c; — 3)?

Dynamical curves:

o Per(p): o33=(—p®+2p)os) +p° —3p

e Pery(u) :  cubic algebraic curve
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e Peri(—1) C Pery(1)

Symmetry locus: The symmetry locus coincides with the envelope of the lines
family {Per;(x)}. And it forms an irreducible algebraic curve in M3(C):

S3(03,1,033) = 405’,1 - 3603’1 + 8loz,1 + 270"3)3 — 54 = 0.
And its normal form is given by a one parameter family {23 + az}.

Topological partition: The real moduli space is divided into the following
four parts Rg, R1, K2, R3. And its boundary curves are the following
dynamical curves:

Pery(1), Perp(1), Preper(;)l, Preper(;2, Symmetry locus

2.2 Poly,(C) case

Moduli space: The number of the inverse images of the space £(4) under the
map ¥ is 0, 1, 2, or co. The space P;(4) is a three-sheeted ramified covering
of C?

Multiplier’s Coordinates: (04,1,042,04,4) with linear relation 4 — 3041 +
2042 — 043 =0

Normal Forms (P1(4)): {f(2) = 2* + c22® + c1z + co}

Transformation formula:

o4, = —8c1+12 (2)

o142 = 4¢3 — 16coca + 18c2 — 60c + 1 + 48 (3)

044 = 16coch + (—4ck 4 8ci)cs — 128chcs + (144coc? — 288cocy
+128cp)cg — 27ct + 108¢3 — 144c? + 64c; + 256¢3 (4)

Dynamical curves:

U (Pery(p) @ pu* — ganp® + ouop® + (3041 — 2042 —p + 044 =0
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Symmetry locus: The symmetry locus is a proper subspace of the envelope of
the plane family {Per;(u)}. The symmetry locus Sy in My(C) forms the
following algebraic curve:

041 =S
042 = 3(35 —4)(s +4)/32
044 = —(3s — 4)3(s — 12)/4096.

And its normal form is given by a one parameter family {z* + az}-

Remark A. F. Beardon [Bea90] studies symmetries of Julia sets. He gave a
sufficient and necessary condition for the Julia set of two polynomials P and @
are same. There are significant relations between symmetries of Julia sets and
the symmetry locus ([FN]).

3 Branch locus

In the case of cubic polynomials, the envelope of the line family {Per;(u)},
coincides with the symmetry locus ([NF97b}). But, in the case of polynomials of
degree 4, the symmetry locus is the proper subspace of the envelope ([NF97al).

In fact, the images of the surfaces Per;(u) are easily obtained by using the
linear relation (1):

U(Pery () : p* — oa1p® + o4op® + (3041 — 2042 — 4)p + 044 = 0.

And a defining equation of the envelope of {U(Per;(u))}, is

ENV :
540 L + (—8logp — 27044 — 135)0 | + (36042 - 144042 - 1008)04 1+
(- 404 2 +3600% 5+ (14404, 4+2976)cr4 2+57604 4-}-4192) o2 hate 16004 2=
217603 »+(—38404,4—6400) 04,2 — 1280044 —5376) 04,1 + 1607 5 +44803 5 +
(—12804 4+2176)a4 9+(25604,4+3840) 04 2+25604 4+ 76804, 4—}-2304 = 0.

This defining equation is obtained by seeking the common factor of ¥(Per;(u))
and %\I’(Perl (u)) where the singular factor ¥(Per;(1)) is removed.
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A defining equation of the symmetry locus satisfies a defining equation of
ENV. o

To say more intuitively, the symmetry locus corresponds with the condition
that the equation Per;(u) has triple root, while the envelope corresponds with
the condition of double root.

In the case of polynomials of degree 4, the envelope deeply concerns the
branch locus.

In this paper, branch locus is defined the locus where the number of inverse
images is not two.

Theorem 1  The branch locus is characterized as follows;
branch locus = {041 —4 =0} UENV.

Before proving this theorem, we need “inverse problem” described in [NF97a]
(Proposition 2): for any (o4,1,042,04,4) given, there exists (co,c1,c2) satisfying
the transformation formula or not.

Proposition 2 in [NF97a] The composition ¥ o & : Pi(4) —
(4) is not surjective: this map has no inverse image for any point
on the “punctured” curve &:

(04,1,042,044) = (4,5,5%/4— 25+ 4),s # 6.

Proof of outline of “inverse problem” Fix a point (04,1, 04,2, 044) € £(4).
The following equation is obtained by substituting the equation (2) to (3) of
transformation formula:

9 3 3
403 — 16cocg = —049 — 3—2—02’1 - 4—04:1 + 5 (5)
Let V be the value of the right hand of the relation (5):
1
V= -3-5(—320‘472 + 90‘2,1 + 240’4’1 - 48) ‘ (6)

2— .
8"“ and cp = 0. Then ¢y is

First we start the case of V = 0. We put ¢; = !
a one of the solutions of the equation given by (4):

10485765 — 409604,4 — 2704 | + 43205, — 144007 | + 179204, — 768 = 0.
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It is important that the coefficient of the ¢} term does not vanish.

Second, we assume that V # 0. From the relation (5), if there exists inverse
images then we have co # 0. Therefore dividing (3) by cg, and substituting it
into (4) we obtain the following equation:

A +Bc3+C=0 (7)
where

A =262144 (04,1 — 4)2,

B =1024(12804 + (—1440% | + 384041 — 256) 042 — 512044 + 27075
—5760% ; + 128004, — 768),

C = —(32042 — 90% | — 2404, +48)°.

Here, we will make sure that the above equation (7) have solution(s) ¢y in the
cases of A # 0 or B # 0. Now we note that C = (32V)3 # 0.

1. If A # 0 or B # 0 then the equation (7) has solution(s) co. Substituting
these ¢y to (3), ¢ is also obtained. The parameter ¢; depends only on o4,1.

2. f A=0and B =0, then we have 04 =4 and 044 = (02,2 — 8042 +16)/4.
Now, suppose the equation (7) has solution(s) c;. Substituting above two
conditions into the transformation formula, we have a relation 4¢g— c% = 0.
As this relation is a factor of the left hand of the equation (5), it contradicts
to the condition C # 0.

Therefore there is not a solution ¢y satisfying the equation (7).

We remark that if C is also 0 (that is (04,1,04,2,04,4) = (4,6,1) ) then there
are infinitely many inverse images (cg,c1,c2) = (c3/4,c1,c). However, in
this case, we mention again V' = 0.

Therefore the equation (7) always has solution(s) cg, except for (041,042, 044) =
(4,5,5%/4—25+4), s # 6. If there is solution(s) cp, substituting these ¢ to (3
co is also obtained. The parameter c¢; depends only on o4 ;.

Making use of this proof, we prove Theorem 1 as below.

Proof of Theorem 1 If V =0, then c; = 0 or 4¢o — c3 = 0.
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e In the case of co = 0 and 4cy — ¢ = 0:

The points (0, c1,0) correspond with the symmetry locus on £(4) and the
number of the inverse image is one. Hence these points (symmetry locus)
belong to the branch locus and it is already known that the symmetry
locus is a proper subspace of ENV.

e In the case that one of ¢ or 4cy — c3 is equal to zero:

1. In the case of c; = 0 and 4cg — c3 # 0:
We have ¢; = (12 — 04,1)/8 and ¢ is a root of the equation

1048576¢3 —409604 4 — 27074 , +432075 | —14400% , +179204,1 — 768 = 0.

The above equation have three roots ¢y = k, kw, kw?, however, these
three maps (cg, ¢1, ¢c2) € P1(4) belong to same conjugacy class.
2. In the case of ¢ # 0 and 4cy — ¢4 = 0:

The one parameter family {(c3/4,1,ca)}¢, corresponds to one point
(4,6,1) € Z(4). Only on this point, there are infinitely many inverse
images.

For the other points (c3/4,c1,c2), we know that there is only one
inverse image (conjugacy class) by using the same argument as above
case 1.

Putting together above two cases, there are two inverse images except for
the point (4,6,1). The point (4,6,1) belongs to the symmetry locus (of
course it belongs to the ENV). Although this point does not belong to
the “branch locus”, we treat this point is an element of the branch locus
in meaning that the number of inverse images is not two.

On the other hand, if V' # 0 then the equation Ac§ + Bc} + C = 0 is obtained
from the inverse problem. This equation has multiple roots if and only if A =0
or discriminant = 0. A = 0 means 04,1 = 4 and the discriminant = 0 coincides
with the defining equation ENV.

At last, we note that the exceptional curve £ is included in the plane o4 ; = 4.
Therefore there are two inverse images except for 04,1 =0 or on ENV. 1
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4 Real moduli space

4.1 coordinates of real moduli space

Let Poly,(R) be the set of real polynomials of degree 4. Then it is easily shown
that the parameters o4; (1 <7 < 4) are all real. But “real inverse problem” is
not so easy.

Now we discuss the following real inverse problem for a while: for any
(04,1,04,2,044) € R? given, whether there exists (co,c1,co) € R3 satisfying the
transformation formula or not.

Fix any (04,1,04,2,044) € R3. For the case V = 0 it is clear from a proof of
inverse problem that there exists suitable (cg, c1, c2) € R3.

In the case of V # 0, put ¢ = t. If the discriminant D = B? — 4AC of the
quadratic equation (7) of ¢ variable is negative, then any root is not real number.

Here, the discriminant D is as follows:

D = 5403 1 —27(3042+04,4+5)05 1 +36(0% ,—4042—28)03 | +4(—03 o+
9003 5 + (36044 + 744) 042 + 14404 4 + 1048)02 1 + 32(~50% , — 6807, +
(—1204,4 — 200)042 — 40044 — 168)041 + 16(0] 5 + 28035 + (—8a,4 +
136)07% 5 + (16044 + 240)042 + 1603 4 + 48044 + 144).

Therefore, for 04,1 << —1 this discriminant is negative and c; € C\ R. Hence we
conclude that for suitable (04,1, 042,04,4) € R?, we can not find a real polynomial
corresponding to this coordinate. Precise arguments are written in [NF97a).

Under the conjugacy of the action 2(R), it can be assumed any map in
Poly,(R) is in the suitable branch of the real part of P;(4). Note that this
correspondence makes bijective map. Hence M4(R) ~ R{P;(4)} ~ R3.

From now on, to carry out topological partition, we use the real part of P;(4),
denoted by RPi1(4), and the real (co, c1, c2)-space.

4.2 Topological Partition

At first, we will divide real (cg, c1, c2)-space into two parts; the maps with three
real critical points and the maps with one real critical point and a pair of complex
conjugate critical point.
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Figure 1: Rg to R4, for the case of Poly,(R).
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Let p(z) be a monic and centered polynomial of degree 4 with real coefficients,
ie., p(z) = z* + c22® + 17 + ¢g. The discriminant of the equation p'(z) =
423 + 2cox + co = 0 is given by D = —(c3 + %—gcg). Hence, a map p(z) have
a pair of complex conjugate critical points if and only if p(z) in the region
{(co, c1,¢2); ¢ + &2 > 0}.

Next, we give a topological partition on this space. For map p € RP1(4), if
the real filled-in Julia set of p is a single point then it is said that p in the class
Ro. Let J be the smallest closed interval which contains the real filled-in Julia
set of p. For p € Ry, it is said that p belongs to the class R, if the graph of p
intersected with .J x .J has n distinct components [Mil92]. In this case, 0 < n < 4.

The boundary curves which give the above partitions are as follows:

o Peri(1): {—=16cocs+ (4c? —8c1+4)ci+128c3ck + (—144coc? +288coct —
144co)co + 27¢t — 108¢3 + 162¢? — 108¢; — 256¢3 + 27 = 0}

e Preper(yl: {—256¢3 — 256c3c3 + (128coc} + 256coc1 + 4096¢0)ch +
(—16ct — 64c3 — 3776¢2 — T168c1 + 40963 — 4096)c§ + (—5632cfc? —
11264 c3c1 —28672c3)c3 +(2016coct +8064cocs +38912¢oc? +57344cqcr —
24576¢5 + 32768co)ch + (—216c§ — 1296¢ — 17856¢ — 59648¢3 +
(38912¢3 — 49152)c? + (77824c3 — 24576)cy + 98304c3 — 16384)c3 +
(—27648c3ct — 110592c3c3 — 175104c3c? — 139264c3e1 + 65536¢5 —
81920¢3)c3+(7776cocS+46656coc3+96768coci +73728cocs +(—T73728¢h~
147456¢0)c? +(—147456c§— 147456 o) c; —131072c¢f)co —729c8 — 58321 —
27216¢§ — 76032¢3 + (13824c3 — 145152)ch + (55296¢3 — 165888)c} +
(—73728¢3 — 110592)c? — 163840c3c; — 65536¢§ = 0}

e Preper(y)l : the degree of this defining equation is 33 with respect to co,
44 with respect to ¢1, and 47 with respect to co.
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