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Abstract

We show that the level set of topological entropy is simply connected
on the escape locus E~ of bimodal real cubic maps.

1 Introduction

A real cubic map f from the real line R to itself is called bimodal if it has
two distinct real critical points. A bimodal real cubic map can be normalized

after real affine conjugations as one of the following forms:

fop(z) = 23 —3a%z+b (a>0,b>0)
= —23+3a%z+b (a<0,b<0)

We remark that {+a} are critical points of f,;. Therefore the space P :=
P* U P~ where Pt := {(a,b) € R%a > 0,b >0} and P~ := {(a,b) € R%|a <
0,b < 0} can be considered as the parameter space of bimodal real cubic maps.
In the following we sometimes identify a bimodal real cubic map f, with the
corresponding point (a, b) of P. The space P can be decomposed into two com-
plementary subsets C' and E with qualitatively different dynamical behavior:
C consists of points (a,b) whose critical orbits {f7,(a)}neN {f7;(—a)}nen

are both bounded, while FE consists of points one of whose critical orbits is
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unbounded. We call C' the connectedness locus and E the escape locus respec-
tively. Put Ct:=CnNP*, C~:=CNP~,Et:=ENPtand E-:=ENP".
Then CT and C~ are simply connected and their boundaries in P* and P~
are simple arcs consisting of real semialgebraic curves (see [M]). In the paper
[K], we considered the topological entropy h(fqp) of a real bimodal cubic map
fap as a function on the parameter space P and showed that in the escape
loci ET and E~, the level set of topological entropy is simply connected. In
[K] we gave a detailed proof of this claim especially in the case of E*. Hence
in this paper we concentrate on the case of E~ and show that the level set of
topological entropy is simply connectedin E~. Before explaining the detail of
our claim, first we briefly review the definition of topological entropy following
[M-T]. For fg5 € P, the n-th lap number I( ;"b) is the number of the maximal
subintervals of R on which fg, the n-fold composite of f, is monotone. We
define the topological entropy h(fap) of fop by h(fap) := limp_ e % log I( gb)
This is well-defined and as a function on P i.e., a function A on P defined
by h(a,b) := h(fep) it is continuous (see [M-T] Lemma 12.3). Analogues
to the monotonicity of the topological entropy for the real quadratic family
Qc(z) = 22 + c(c € R) (see [M-T]), Milnor conjectured that on each con-
nected components P+ and P~ of P, the level set of the entropy function h
is connected (see [M]). Dawson, Galeeva, Milnor and Tresser considered this
problem on the connectedness locus C* in detail (see [D-G-M-T]). Our main

result in this paper is

Theorem 1.1 In the escape locus E~, the set of bimodal real cubic maps

whose topological entropy is constant is connected, in fact simply connected.
To prove this theorem, we show the following claims.

Theorem 1.2 Topological entropy is monotone along the boundary curve 0C~
of C™.

Theorem 1.3 There ezists a homeomorphism R from R* x (0,1] to E~ such
that for u € (0,1] fized, any bimodal real cubic maps in R(R*,u) are quasi-
symmetric conjugate to each other. Both ends of the ray R(R™,u) have the
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following property; one goes to infinity and the other accumurates to the bound-
ary curve 0C~ of C™.

Theorem 1.2 is an analoguous statement of the monotonicity for the quadratic
family. In fact on 0C~, one of the kneading sequences is constant. We prove
theorem 1.2 by using well known properties of kneading sequences (especially
"Intermediate Value Theorem 12.2” in [M-T]) and the combinatorial rigid-
ity of post critically finite rational maps proved by Thurston (see [D-H]). To
prove theorem 1.3, the work of Branner and Hubbard on the parameter space
of complex cubic maps is essential. They decomposed the (complex) escape
locus into stretching rays and equipotential three dimensional spheres (see [B-
H]). We consider the purely imaginary locus of their decomposition. Then rays
R_(R*,u) (u € (0,1]) in theorem 1.3 are precisely equal to stretching rays in
the sense of Branner and Hubbard. The remainder of this paper is organized
as follows. In section 2 we study the behavior of topological entropy along the
boundary curve dC~ and prove theorem 1.2. Our main tool is the kneading
theory and we reduce our claim to the monotonicity of kneading sequences
along 0C~. In section 3 after reviewing the work of Branner and Hubbard on
stretching rays, we prove theorem 1.3. The point is that the stretching defor-
mation of real bimodal cubic map commutes with the complex conjugation.

In section 4 we prove theorem 1.1 by using results of the previous sections.

2 Monotonicity along the boundary curve 0C~

First we review the definitions and notations of the kneading theory for bi-
modal real cubic maps f, for (a,b) € E~. Let T be the set of maps from
N U {0} to the set of symbols {I,Cr,Is,Cr, I3} ie., consisting of maps
A:NuU{0} - %, A = (ag,a1, **,an, ). We define the order structure
on ¥ as follows; first we assume that I; < Cp < Iy < Cr < I3. A finite
sequence of symbols {I1, I3, I3} is called even if it contains even number of-
symbols I; and I3. For A = (ag,a1,---) and B = (bg, b1, -+) of T, we say
that A is smaller than B and denote it by A < B if there exists n € N such
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that Al, = B|n> consisting of symbols {1, I, I3} and a, < b, if A|, is even,

or an > by if Ain is not even, where A|, is the first finite subsequence of A of
length n. For a bimodal map f = fu4, let a map Ir : R — ¥ be defined by
I1(z) = (ig(2),11(z), - -, in(x), - - ) Where in(z) = I if f*(z) < a, in(z) = Cy
if fM(z) =a,in(z) =L ifa < f*(z) < —a, ix(z) = Cr if f*(z) = —a and
in(z) = I3 if —a < f*(z). The sequence If(z) is called the itinerary of z
for the map f. This map Iy is order preserving; Ir(z) < If(z') implies that
z < 2’ and z < 2’ means that If(z) < Ir(z'). Especially we call the itinerary
of both critical values I¢(f(Cr)) and If(f(Cg)) the kneading sequences of f
and denote them by K (f) and Kg(f) respectively.

Next We consider dynamical properties of maps of the boundary dC~ of C~.
The boundary curve dC~ is a simple arc consisting of the following two semi-

algebraic curves:

g = ﬂmwePTb:—%§+¥ﬁ,—%§a<m
Sy = {(a,b) e P|b=~2a>4+a—-1, -1 SaS—%}

S1 consists of maps whose critical points are both bounded and which have a
2-periodic orbit whose multiplier is equal to 1. On the other hand S, consists
of maps whose critical points are both bounded and one of whose critical values
is a 2-periodic point. Because dC~ is parametrized by its a-coordinate, for
(a,b) of 0C~ we denote the corresponding map fop, its kneading sequences
K1 (fop) and Kr(fap) by fo, Kr(a) and Kg(a) respectively.

Lemma 2.1 For (a,b) of 0C~, Kr(a) = (I1I3)*®. For (a,b) of S1, Kr(a) =
(I113)*®. For (a,b) of Sa, Kr(—1) > Kr(a) > Kr(—3%)-

Proof. From the graph of fqp in 51, by direct calculations, we can conclude
that f,(a) < 2a < a and f2(a) > —2a > —a. This means that K (a) =
(I I3)%°. On the other hand f,(—a) < 2a < a and f2(—a) > —a. This shows
that K (a) = (I1I3)*°. From the graph of f,; in Sy, we can calculate that
fola) = a—1 and f2(a) = —2a which means Ky (a) = (I;I3)*. On the other
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hand KR(——%) = (I1I3)* and Kgr(—1) = (I3[;)*. From the definition of the
ordering of ¥, K R(—%) is the biggest while Kg(—1) is the smallest in Ss.

Lemma 2.2 (see [M-T])

Let a1, a2 and ag be points of [—1,—%] with a1 < ag and satisfying

Kpg(ay) > Kgr(ag) > Kgr(ag). Then there exists a point b in (a1,as) such that
Kg(b) = Kg(agp)-

Proof. Suppose that any a € (a1, as) does not satisfy Kg(a) = Kr(ao).
Put M := {a € [a1,a2]|Kgr(a) > Kgr(ap)} and P := {a € [a1,a2]|KRr(a) <
Kr(ag)}. Then a; € M and ap € P. Because [a1,a2] is connected, if both of
M and P are open, then there exists b € (a1, az) such that Kz(b) = Kgr(ap)
, a contradiction. In the following we show the openness of M. For any
element d € M, we will show that we can take an open neighborhood U of
d in [aj, ag] which is contained in M. Since Kg(d) = di,ds, -+ > Kg(ag) =
ai,a9,- -+, there exists the smallest ¢ € N with d; # a;. When d; # Cp and
d; # Cr, we can take U as U := {a € [a1,a2]|Kr(a)|; = Kr(d)|;}." Hence
in the following we assume that d; = Cp or d; = Cgr. If d; = Cr, then
Kgr(d) = DCr(I113)*™ where D is a finite sequence of symbols Iy, Iy and I3.
In this case we remark that Kr(ao)|; = DI if D is even and Kg(ag)|; = DIy,
DCpgor DI3 if D is not even. Then there is an open neighborhood U of d such
that for any element a of U, Kgr(a) = DI (I113)*® or Kgr(a) = DL(I113)®
which is bigger than Kg(ag). If d; = Cg, then Kg(d) = (DCg)® where D
is a finite sequence of symbols I1, I and I3. Then by lemma 11.5 in [M-T],
there exists an open neighborhood U of d such that for any element a of
U, Kr(a) = (DI3)®,(DCg)® or (DI3)*®. We claim that Kg(ag) does not
satisfy (DI2)*® < Kg(ao) < (DCgr)*® if D is even. If Kg(ag)|; = DI or
Kr(ag)|; = DCy, this is obvious. Assume that Kr(ag)|; = DIs. Suppose that
(DI)*® < Kr(ag). Then the i-th shift o*(Kg(ao)) of Kr(ag) is bigger than
Kr(ag). On the other hand Kg(ag)|; = DI, implies that f*(ag) < —ag which
means that o*(Kg(ag)) < Kgr(ao), a contradiction. We also claim that Kg(ag)
does not satisfy (DI3)* < Kpg(ag) < (DCg)*® if D is not even. Assume
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that Kg(ag)|; = DIs. Suppose that (DI3)® < Kg(ag). Then o*(Kg(ap)) >
Kg(ag). On the other hand Kg(ao)|; = DI3 implies that —ag < f*(ag) which
means that o*(Kg(ag)) < Kgr(ao), a contradiction. Hence there is an open
neighborhood U of d in [a1, ap] which is contained in M. By using similar

arguments we can also prove the openness of P.

Lemma 2.3 (see [D-HJ)

If a1 and ay of [-1, —é] satisfy conditions that f7 (—a1) = a1, f7 (—a2) = as
for some n € N and Kg(a1) = KR(ag); then ay = aq. Similarly if a1 and as
of [-1, —%] satisfy conditions that f7! (—a1) = —a1, fg,(—a2) = —ag for some

n € N and Kgr(a1) = Kg(a2), then a; = as.

Proof. Because f,, and f,, are elements of Sy, one of their critical values
fa; (a;) is a 2-periodic point for ¢ = 1,2. Then the assumption shows that fg,
and fg, are post critically finite maps i.e., critical orbits are finite sets. The
condition Kg(a1) = Kg(az) means that f (—a1) < f¥ (—a1) if and only if
fi,(—a2) < f¥ (—ag). Therefore there exists an orientation preserving home-
omorphism 9 from R := R U {co} to itself sending post critical set of f,, to
that of f,, in order. Moreover there exists an orientation preserving home-
omorphism ¥ from C := C U {0} to itself whose restriction to R is % and
preserves the upper and lower half planes respectively. Next we define an ori-
entation preserving homeomorphism @ from C to itself as follows; Considering
fa, and f,, as rational maps from C to itself, fa‘il(l?t) decomposes C into 6
cells. We can take a unique branch of fa_,zl o Wo f, which preserves this cell
decomposition, and denote this map ®. Then the map ® satisfies the following
conditions;

(1) ® sends post critical set of f,, to that of f,, in order.

(2) To fo, = fo 0 B.

(3) ¥ and ® are isotopic relative to the post critical set of f,,.

These conditions mean that as rational maps, f,, and f,, are equivalent in the
sense of Thurston, and they are P.SLy(C)-conjugate by theorem 1 of [D-H].

Hence we conclude that a1 = as.
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Proposition 2.1 The kneading sequence Kg(a) is monotonely decreasing along

the boundary curve 0C~.

Proof. We assume that there exist a; < ag in [-1, —%] such that Kg(a;) <
Kg(a2). If Kg(a1) = (ACR)™ where A is a finite sequence of symbols I1, I»
and I3, then Kg(as) > Kgr(a1) > KR(—%) by lemma 2.1. Lemma 2.2 shows
that there exists b € (ag, —%) such that Kg(b) = Kg(a1) which contradicts to
lemma, 2.3. If Kr(a1) = ACL(I113)*®° where A is a finite sequence of symbols
I, I and I3, similar arguments also hold. Finally if Kg(a;) is an infinite
sequence of I1, I and I3,then the condition that Kg(a1) < Kg(az) implies
that there exists by € (a1, az) such that Kgr(b;) = (ACR)™® or ACL([1I3)*®
where A is a finite sequence of symbols I1,Is and Is. Then from lemma
2.1, Kr(—1) > Kg(b1) > Kgr(a1) and lemma 2.2 shows that there exists
by € (—=1,a1) such that Kg(by) = Kg(b1) which contradicts to lemma 2.3.

Theorem 2.1 The topological entropy h(a) is monotonely decreasing along
the boundary curve 0C™.

Proof. From lemma 2.1 and proposition 2.1, it is enough to show that for a;
and ap of [-1. — %] with a1 < az, Kgr(a1) > Kr(ap) implies I(f7) > I(f2,)
for all n € N. Moreover by using the fact that {(f7) is equal to the number
of finite sequences of symbols Iy, I and I3 which is equal to Iy, (z)[, for some
point z € R, it is enough to prove the following; under the assumption that
Kpg(a1) > Kg(ag), for z € R and a finite sequence A of symbols Iy, I and I3 of
length n with Iy, (z)|n = A, then there exists z € R such that Iy, ()|, = 4.
We prove this claim by induction on n. It is trivial for the case of n = 1. We
assume that it holds for n = k and there exist z € R and a finite sequence A
of length k+1 with Iy, (z)|k+1 = A. We separate our arguments for the cases
A=I1B,A=1,B and A = I3B where B is a finite sequence of symbols I, I,
and I3 of length k. First we consider the case of A = I1B. The induction
hypothesis shows that there exists y € R such that Iy, (y)[z = B. From the
graph of f,,, we can assume that y > a; — 1 and there exists z < a; such that

foy(2) = y. Therefore Iy, (2)[k4+1 = LB = A. Next we consider the case of
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A = I3B. The induction hypothesis shows that there exists y € R such that
It, W)k = B. Ify < fo;(—a1), then there exists —a; < z such that f4, (2) = y.
If y > fo,(~a1), then Iy, (y) > Kr(a1), and B+ = I, (fo,(2)) < Kr(a2)
and Kg(a1) > Kg(ag) means that Kg(a1)|x = B which implies that we may
assume that y < fg, (—a1). Therefore Iy, (2)|k4+1 = I3B = A. Finally we treat
the case of A = I»B. The induction hypothesis shows that there exists y € R
such that Iy, (y)[x = B. Then (I1[3)* = Kp(a1) < Iy, (y) = B--- implies
that we may assume that y > fo, (a1). Ify > fo,(—a1), then Iy, (y) > Kr(a1)
and B--- = Iy (fa;(z)) < Kr(a2) < Kg(a1) means that Kg(a1)lx = B
which implies that we may assume that y < fo,(—a1). Therefore there exists

a1 < z < —ay such that fo,(2) =y and Iy, (2)|g41 = LB = A.

3 Stretching rays in the escape locus E~

First of all we briefly review the work of Branner and Hubbard on the struc-
ture of the parameter space of complex cubic maps. After complex affine

conjugations, every complex cubic map f: C — C can be written as
fap(2) = 2% —3a%24b (a,b € C)

Therefore we can take C? as the parameter space P(3) of complex cubic maps.
We decompose P(3) into two complementary subsets the connectedness locus
C(3) and the escape locus E(3). The connectedness locus C(3) consists of cubic
maps whose filled-in Julia set Ky is connected and the escape locus E(3) is
the complement of C(3). For a cubic map f € P(3), we define the function
gs : C = R U {0} by gf(2) := limneo 7 logy (|f™(2)]) where log, (|2]) :=
maz{0, log(|z|)}. Then gy is the Green function of the filled-in Julia set Ky
which measures the escape rate to infinity. In the parameter space we consider
a function G : P(3) — RTU{0} defined by G(f) := maz{gs(—a), g¢(a)}. Then
G is continuous, C(3) = G71(0) and for sufficiently large r > 0, we can show
that G~1(r) is homeomorphic to the three dimensional sphere S3. Now we have

prepared for defining stretching rays; The map I, : C\ D = C\ D (s € R¥)
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(where D is the closed disk) given by Is(z2) := ]f[ - |z|® is a quasi-conformal
diffeomorphism commuting with fo(z) = 23. Every f € P(3) is conjugate to

foonUs:={z € Clgs(2) > G(f)} by the analytic isomorphism ¢y satisfying
ps(2)

z

— 1 as z = 0. Let 0, denote the f-invariant almost complex structure

on C satisfying

__[ togpr(on) onTy
$ ) on K¢

where gy denotes the standard complex structure. Then the Measurable Rie-
mann Mapping Theorem tells us that there exists an analytic isomorphism
F;: (C, o5) = (C, g9). We can uniquely choose Fj satisfying f; := Fyo foo F; !
a monic, centered and s o 5o F~ ! tangent to the identity at co. We call
R(f) := {fs|s € R*} the stretching ray through f. Since G(fs) = sG(f), the
stretching ray intersects G™1(r) in the exactly one point for any » € Rt. One
of the main result of [B-H] is that for any r € R*, the map from R+ x G~1(r)
to E(3) sending (s, f) to fs is a homeomorphism. As a corollary of this result,
G~(r) is homeomorphic to S3 for any r € Rt.

Now we are ready to prove theorem 1.3. First we consider the purely imaginary
locus SP(3) of P(3) consisting points (a,b) of P(3) where a and b are both
purely imaginary numbers. The restriction of G to E(3)NSP(3) shows that for
sufficiently large r > 0, G™H(r)NSP(3) ~ S and G~ 1(r)NSE~ ~ (0, 1] where
SE™ = {(ia,ib) € SP(3)|(a,b) € E~}. Because the quasi-conformal diffeo-
morphism /s and a cubic map fo.€ SP(3) commute with the map z — —Z,
the stretching ray R(f) through f € E(3)NSP(3) is contained in E(3)NSP(3).
In particular for f € E~ the streching ray R(f) is contained in E~. T hgrefore
for any r € R*, both isomorphisms R* x (G~1(r) NSP(3)) ~ E(3) N SP(3)
and Rt x (G7Y(r) N E~) ~ E~ hold and they imply theorem 1.3.

4 Conclusion

We give a proof of theorem 1.1. Because topological entropy is topological
invariant, theorem 1.3 shows that for any u € (0,1], topological entropy is

constant along the stretching ray R(R™Y, u). Let I, be the set of accumulation
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points of R(R*,u) on 8C~. Then it is easy to check that I, is closed and
connected in dC~. Moreover for any u,v € (0,1} with u < v, the intersection
of I, and [, is empty or at most one point. Since topological entropy is
continuous on P, it is constant on I, U R(R*,u). Moreover it is monotone
decreasing along C~ by theorem 2.1, h(fy) < h(f2) for any f; € R(R*,u)
and fo € R(R*,v). This shows that in the escape locus E~, the level set of

topological entropy is simply connected.
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