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Abstract 

We show that the level set of topological entropy is simply connected 

on the escape locus E- of bimodal real cubic maps. 

1 Introduction 

A real cubic map f from the real line R to itself is called bimodal if it has 

two distinct real critical points. A bimodal real cubic map can be normalized 

after real afiine conjugations as one of the following forms: 

fa,b(x) := x3 - 3a2x + b (a > O,b~O) 

:= -x3+3a2x+b (a < O,b ~ O) 

We remark that {~a} are critical points of fa,b. Therefore the space P := 

p+ U P- where P+ := {(a, b) e R2la > O, b ~ O} and P- := {(a, b) e R2la < 

O, b ~ O} can be considered as the parameter space of bimodal real cubic maps. 

In the following we sometimes identify a bimodal real cubic map fa,b with the 

corresponding point (a) b) of P. The space P can be decomposed into two com-

plementary subsets C and E with qualitatively different dynamical behavior: 

C consists of points (a, b) whose critical orbits {fa~b(a)}neN {fa~b(-a)}ne:N 

are both bounded, while E consists of points one of whose critical orbits is 
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unbounded. We call C the connectedness loc'us and E the escape loc'us respec-

tively. Put C+ := C n p+, C- := Cn p-, E+ := E n p+ and E- := E n p-. 

Then C+ and C- are simply connected and their boundaries in P+ and P-

are simple arcs consisting of real semialgebraic curves (see [M]). In the paper 

[K], we considered the topological entropy h(fa,b) of a real bimodal cubic map 

fa,b as a function on the parameter space P and showed that in the escape 

loci E+ and E-, the level set of topological entropy is simply connected. In 

[K] we gave a detailed proof of this claim especially in the case of E+. Hence 

in this paper we concentrate on the case of E- and show that the level set of 

topological entropy is simply connectedin E- . Before explaining the detail of 

our claim, first we briefly review the deflnition of topological entropy following 

[IVI T] For fa b ~ p the n th lap numbel' l(fa~b) is the number of the maximal 

Subintervals of R on ¥vhich fa~b the n-fold composite of fa,b is monotone. We 

define the topological entropy h(fa,b) of fa,b by h(fa,b) := IimnH>00 ~ Iog l(fa~b)' 

This is well-defined and as a function on P i.e., a function h' on P defined 

by h(a,b) := h(fa,b) it is continuous (see [M-T] Lemma 12.3). Analogues 

to the monotonicity of the topological entropy for the real quadratic family 

Qc(x) = x2 + c (c e R) (see [M-T]), Milnor conjectured that on each con-

nected components P+ and P- of P, the level set of the entropy function h 

is connected (see [M]). Dawson, Galeeva, Milnor and Tresser considered this 

problem on the connectedness locus C+ in detail (see [D-G-M-T]). Our main 

result in this paper is 

Theorem 1.1 In the escape locus ET, the set of b'imodal real cubic maps 

whose topolog'ical entropy is constant is connected, in fact simply connected. 

To prove this theorem, we show the following claims. 

Theorem 1.2 Topological ent7'opy is monotone along the boundary curve aC-

of C- . 

Theorem 1.3 There exi3ts a homeomol:phism R fl'om R+ x (O, I] to E- such 

tha,t for u ~ (O, I] fixed, any b'imodal real cubic maps in R(R+ u) are quasi-

symmetric conjugate to each othe7'. Both 'ends of the 1'ay R(~t+ u) have the 
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following propertyj one goe3 to infir7,ity and the othel' accumu7'ates to the bound-

a7'y cu7've aC- of C-. 

Theorem 1.2 is an analoguous statement of the monotonicity for the quadratic 

family. In fact on aC- , one of the kneading sequences is constant. We prove 

theorem 1.2 by using well known properties of kneading sequences (especially 

"Inteunediate Value Theorem 12.2" in [M-T]) and the combinatorial rigid-

ity of post critically flnite rational maps proved by Thurston (see [D-H]). To 

prove theorem 1.3, the work of Branner and Hubbard on the pararrLeter space 

of complex cubic maps is essential. They decomposed the (complex) escape 

loCLIS into stretching rays and equipotential tlu'ee dimensional spheres (see [B-

H]). We consider the purely imaginary locus of their decomposition. Then rays 

R_ (R+ u) (u ~ (O, I]) in theorem 1.3 are precisely equal to stretching rays in 

the sense of Branner and Hubbard. The remainder of this paper is organized 

as follows. In section 2 we study the behavior of topological entropy along the 

boundary curve aC- and prove theorem 1.2. Our main tool is the kneading 

theory and we reduce our claim to the monotonicity of kneading sequences 

along aC-. In section 3 after reviewing the work of Branner and Hubbard on 

stretching rays, we prove theorem 1.3. The point is that the stretching defor-

mation of real bimodal cubic map cornmutes with the ccunplex conjugation. 

In section 4 we prove theorem 1.1 by using results of the previous sections. 

2 MOnOtonlClty alOng the bOundary curVe aC-

First we review the definitions and notations of the kneading theory for bi-

modal real cubic maps fa,b for (a,b) ~ E-. Let ~] be the set of maps from 

N U {O} to the set of symbols {Il,CL,12,CR,1:3} i.e., consisting of maps 

A : N U {O} ~ ~], A = (ao, al, ' ' ' ,an, ' ' ')' We define the order structure 

on ~] as follows; flrst we assume that 11 < CL < 12 < CR < 13･ A finite 

sequence of symbols {11, 12, 13} is called even if it contains even number of-

symbols 11 and 13. For A = (ao,al, ' ' ') and ~ = (bo,bl, ' ' ') of ~, we say 

that A is smaller than ~ and denote it by A < B if there exists r~ ~E N such 
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that .4ln = Bl consrstmg of symbols {II 12 13} and an < bn if Aln is even, 
n 

or an > bn if Aln is not even, where .4ln is the first finite subsequence of .4 of 

length n. For a bimodal map f = fa,b' Iet a map If : R ~F ~) be defined by 

If(x) = (io(x),il(x), ' ' ' ,in(x), ' ' ') where in(x) = Il if fn(x) < a, in(x) = CL 

if fn(x) = a, in(x) = 12 if a < fn(x) < -a, in(x) = CR if fn(x) = -a and 

in(x) = 13 if -a < fn(x). The sequence If(x) is called the itinerary of x 

fol' the map f. This map If is order preserving; If(x) < If(x/) implies that 

x < x/ and x < x/ means that If(x) ~ If(xl). Especially we call the itinerary 

of both critical values If(f(CL)) and If(f(CR)) the kneading sequences of f 

and denote them by KL(f) and KR(f) respectively. 

Next we consider dynamical properties of maps of the boundary aC- of C- . 

The boundary curve aC- is a simple arc consisting of the following two semi-

algebraic curves: 

, I := {(a,b)ep-lb=-2(~+a )2 l
 

' 6~ 
S2 := {(a,b) ep-]b=-2a +a l, -1 ~a~-~} 

S1 consists of maps whose critical points are both bounded and which have a 

2-periodic orbit whose multiplier is equal to 1. On the other hand S2 consists 

of maps whose critical points are both bounded and one of whose critical values 

is a 2-periodic point. Because aC- is parametrized by its a-coordinate, for 

(a, b) of aC- we denote the corresponding map fa,b' its kneading sequences 

KL(fa,b) and KR(fa,b) by fa' KL(a) and KR(a,) respectively. 

Lemma 2.1 Fol' (a,b) ofaC-, KL(a) = (1113)00. Fol' (a,b) ofS1' KR(a) = 

(1113)00. Fol' (a, b) of S2, KR(-1) ~ KR(a) ~ KR(-~)-

P1'oof. From the graph of fa,b in S1 ' by direct calculations, we can conclude 

that fa(a) < 2a < a and fa2(a) > -2a > -a,. This means that KL(a) = 

(1113)00. On the other hand fa(~a) < 2a < a and f~(-a,) > -a. This shows 

that KL(a) = (1113)oo. From the graph of fa,b in S2, we can calculate that 

fa(a) = a, - I and fa2(a,) = -2a which means KL(a,) = (1113)oo. On the other 
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hand KR(-~) = (1113)oo and Klz(-1) = (1311)00. From the deflnition of the 

ordering of ~, KR(-1_6) is the biggest while KR(-1) is the smallest in S2. 

Lemma 2.2 (see [M-T]) 

Let al' a2 and ao be point3 of [-1, -~] ,w'ith al < a2 aud satzsfyeng 

KR(al) > KR(a,o) > KR(a2). The71' thel'e exists a, point b 'ir2, (al' a,2) such that 

KR(b) = KR(ao). 

P1'oof. Suppose that any a e (al'a2) does not satisfy KR(a) = KR(a,o). 

Put M := {a e [al'a2][KR(a) > KR(ao)} and P := {a ~ [al'a2][KR(a) < 

KR(ao)}. Then al e M and a2 e p. Because [al' a2] is connected, if both of 

M and P are open, then there exists b e (al' a2) such that KR(b) = KR(ao) 

, a contradiction. In the following we show the openness of M. For any 

element d e M, we ¥vill show that we can take an open neighborhood U of 

d in [al' a2] which is contained in It~1. Since KR(d) = dl' d2, ' ' ' > KR(ao) = 

there exists the smallest i C N with di ~ a,i. When di ~ CL and a,1' a,2, ' ' ', 

di ~ CR, we can take U as U := {a ~ [al'a2]IKR(a)li = KR(d)li}･' Hence 

in the following we assume that di = CL Or di = CR. If di = CL, then 

KR(d) = DOL(Ill3)oo where D is a finite sequence of symbols 11' 12 and 13' 

In this case we remark that KR(ao)ii = Dll if D is even and KR(ao)li = D12, 

DCR or D13 if D is not even. Then there is an open neighborhood U of d such 

that for any element a of U, KR(a) = Dll(III.3)00 or KR(a) = D12(111,3) oo 

which is bigger than KR(ao). If di = CR, then KR(d) = (DCR)oo where D 

is a finite sequence of symbols ll' 12 and I.3. Then by lemma 11.5 in [M-T], 

there exists an open neighborhood U of d such that for any element a of 

U KR(a) (D12)oo (DCR)oo or (D13)00. We claim that KR(ao) does not 

satisfy (D12)oo < KR(a,o) < (DCR)oo if D is even. If KR(ao)li = D11 or 

KR(a,o)li = DCL, this is obvious. Assume that KR(ao)li = D12. Suppose that 

(D12)oo < KR(ao). Then the i-th shift ~i(KR(a,o)) of KR(ao) is bigger than 

KR(ao). On the other hand KR(ao)]i = D12 iurplies that fi(ao) < -ao which 

means that (7i(KR(ao)) ~ KR(ao) , a contradiction. We also claim that KR(ao) 

does not satrsfy (D13)oe < KR(a,o) < (DCR)oo if D rs not even Assume 
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that KR(ao)li = D13. Suppose that (DI.3)00 < KR(ao). Then (7i(KR(ao)) > 

KR(ao). On the other hand KR(ao)li = D13 implies that -ao < fi(ao) which 

means that (7i(KR(ao)) ~ KR(ao), a contradiction. Hence there is an open 

neighborhood U of d in [al'a2] ¥vhich is contained in M. By using similar 

arguments we can also prove the openness of P. 

Lemma 2.3 (see [D-H]) 

If al and a2 of [-1, -~] satisfy conditions that fanl (~a,1) = al' fan2(_a2) = a2 

for some n e N and KR(a,1) = KR(a,2), then al = a2' Similal'ly if al and a9_ 

of [-1, -~] satisfy conditions that fanl (~al) = -al' fan2 (_a2) = -a2 for some 

'rh e N and KR(a,1) = KR(a2), then al = a,2' 

Proof. Because fal and fa2 are elements of S2, one of their critical values 

fai (ai) is a 2-periodic point for i = 1, 2. Then the assumption shows that fal 

and fa2 are post critically finite maps i.e., critical orbits are finite sets. The 

condition KR(al) = KR(a2) Ineans that fgl(~a,1) < fakl(~al) if and only if 

f~2 (-a2) < fak2 (~a2). Therefore there exists an orientation preserving hcune-

omorphism ap frcnn R := R U {oo} to itself sending post critical set of fal to 

that of fa2 in order. Moreover there exists an orientation preserving home-

omorphism ~r from C := C U {oo} to itself whose restriction to R is nf) and 

preserves the upper and lower half planes respectively. Next we define an ori-

entation preserving hcnneomorphism ~~ from C to itself as follows; Considering 

fal and fa2 as rational maps from C to itself, f~l(It) decomposes C into 6 

cells. We can take a unique branch of fa21 o ~~ o fal which preserves this cell 

decomposition, and denote this Inap ~). Then the map ~) satisfies the following 

conditions; 

(1) ~) sends post critical set of fal to that of fa2 in order. 

(2) ~r o fal = fa2 o ~. 

(3) ~r and ~) are isotopic relative to the post critical set of fal' 

These conditions mean that as rational maps, fal and fa2 are equivalent in the 

sense of Thurston, and they are PSL2 (C)-conjugate by theorem I of [D-H]. 

Hence we conclude that a.1 = a2. 
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Proposition 2.1 The kneading sequence KR(a) is monotonely decreasing alor7,g 

the bo'undary curve aC-. 

P1'oof. We assmne that there exist' al < a2 in [-1, -~] such that KR(al) < 

KR(a2). If KR(al) = (ACR)oo where .4 is a flnite sequence of symbols ll' 12 

and 13, then KR(a2) > KR(al) > KR(-1_6) by lemma 2.1. Lemma 2.2 shows 

that there exists b ~ (a2, -1_6) such that KR(b) = KR(al) which contradicts to 

lemma 2.3. If KR(a,1) = ACL(Ill3)oo ¥vhere .4 is a finite sequence of symbols 

I1'12 and 13, similar argurrLents also hold. Finally if KR(al) is an infinite 

sequence of ll' 12 and 13,then the condition that KR(al) < KR(a2) implies 

that there exists bl e (al'a2) such that KR(bl) = (AOR)oo or AOL(Ill3)00 

where A is a finite sequence of symbols 11,12 and 1.3. Then from lemma 

2.1, KR(-1) > KR(bl) > KR(al) and lemma 2.2 shows that there exists 

b2 ~ (-1, al) such that KR(b2) = KR(bl) which contradicts to lemma 2.3. 

Theorem 2.1 The topological entl'opy h(a) 'is monotonely decl'easing along 

the boundary curve aC-. 

Proof. Frowl lemma 2.1 and proposition 2.1, it is enough to show that for al 

and a2 of [-1. - ~] ¥vith a,1 < a2, KR(al) ~ KR(a2) implies l(fanl) ~ l(fan2) 

for all n ~ N.. Moreover by using the fact that l(f~) is equal to the number 

of finite sequences of symbols 11 ' 12 and 13 which is equal to If. (x)In for scnne 

point x ~ R, it is enough to prove the following; under the assumption that 

KR(al) ~ KR(a,2), for x e R and a finite sequence A of symbols ll' 12 and 13 of 

length n with If.2 (x)In = A, then there exists z e R SLlcll that If.1 (z)In = A. 

We prove this claim by induction on n. It is trivial for the case of n =' 1. We 

assume that it holds for n = k and there exist x ~ R and a finite sequence A 

of length k + I with If.2 (x)Ik+1 = A. We separate our arguments for the cases 

A = II~, A = 12~ and A = 13B where ~ is a finite sequence of symbols 11' 12 

and 13 of length k. First we consider the case of A = IIE;. The induction 

hypothesis shows that there exists y e R such that If.1 (y)Ik = B. From the 

graph of fal ' we can assume that y > al - I and there exists z < al Such that 

fal (z) = IJ' Therefore If.1 (z)lk+1 = II~ = A. Next we consider the case of 
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A = 13B. The induction hypothesis shows that there exists y e R such that 

If~1 (y)Ik = ~. If?j < fal (~al)' then there exists -al < z such that fal (z) = y. 

If y ~ fal(~al)' then If.1 (y) ~ KR(al)' and ~ ' ' ' = If~2(fa2(x)) ~ KR(a2) 

and KR(a,1) ~ KR(a,2) means that KR(al)lk = ~ ¥vhich implies that we may 

assume that ~ < fal (~al)' Therefore If.1 (-')lk+1 = 13B = A. Finally we treat 

the case of A = 12~. The induction hypothesis shows that there exists y ~ R 

such that If.1 (y)Ik = B. Then (Ill3)00 = KL(a,1) ~ If.1 (y) = B ' ' ' implies 

that we may assume that y > fal (al)' If IJ ~ fal (~al)' then If.1 (y) ~ KR(al) 

= If.2(fa2(x)) ~ KR(a2) ~ KR(a,1) means that KR(al)lk = ~ and B ' ' ' 

which implies that we may assume that y < fal (~al)' Therefore there exists 

al < z < a Such that fal (z) = y and If~1 (z)lk+1 = 12~ A 

3 Stretchlng rayS In the eSCape lOCuS E-

First of all we briefly review the work of Branner and Hubbard on the struc-

ture of the parameter space of complex cubic maps. After complex affine 

conjugations, every complex cubic map f : C ~ C can be written as 

fa,b(z) = z3 - 3a2-. + b (a, b e C) 

Therefore we can take C2 as the parameter space P(3) of complex cubic maps. 

We decompose P(3) into two complementary subsets the connectedness locus 

C(3) and the escape locus E(3). The connectedness IOCuS C(3) consists of cubic 

maps whose filled-in Julia set Kf is connected and the escape locus E(3) is 

the complement of C(3). For a c.ubic map f e p(3), we deflne the function 

gf : C ~~ R+ U {O} by gf(z) := Iim I n := Iog+(If' (z)1) where log+(Izl) 
n~oo a" 

max{O, Iog(!zl)}･ Then gf is the Green function of the filled-in .Julia set Kf 

¥vhich measures the escape rate to infinity. In the parameter space we consider 

a function G : P(3) ~ R+U{O} defined by G(f) := 'rTLax{9f(-a), gf(a)}. Then 

G is continuous, C(3) = G-1(O) and for sufficiently large r > o, we can show 

that G-1 (r) is homeomorphic to the three dhnensional sphere S3. Now we have 

prepared for deflning stretching rays; The map Is : C ¥ D ~ C ¥ D (s e R+) 

102 



(where D is the closed disk) given by Is(z) := ~ ･ Izls is a quasi-conformal 

diffeomorphism commuting with fo(z) = _'3. Every f e p(3) is conjugate to 

fo on Uf := {z ~ Cl9f(z) > G(f)} l)y the analytic isomorphism (pf satisfying 

~of~z) ~F I as z HF oo. Let (TS denote the f-invariant ahnost complex structure 

on C satisfying 

s { (y _ (Iso~)f)'(cro) onUf 

cro on Kf 
where ~o denotes the standard complex structure. Then the Measurable Rie-

mann Mapping Theorem tells us that there exists an analytic isomorphisln 

Fs : (C, ~s) L> (C, cro). We can uniquely choose Fs satisfying fs := FsofooF~1 

a monic, centered and Is o (pf o F~1 tangent to the identity. at oo. We call 

R(f) := {fsls e R+} the stl'etching 1'ay thl'ough f. Since G(fs) = sG(f), the 

stretching ray intersects G-1 (r) in the exactly one point for any r e R+. One 

of the main result of [B-H] is that for any 'r e R+, the map from R+ x G-1('r) 

to E(3) sending (s, f) to fs is a homeomorphism. As a corollary of this result, 

G-1(r) is homeomorphic to S3 for any r ~ R+ . 

Now we are ready to prove theorem 1.3. First we consider the purely imaginary 

locus (~¥sP(3) of P(3) consisting points (a,b) of P(3) where a and b are both 

purely imaginary nurrLbers. The restriction of G to E(3) n~p(3) shows that for 

Sufficiently large r > o, G-1(r) n(~¥sP(3) ~i S1 and G-1('r) n~E- ~: (O, I] ¥vhere 

(~¥'E- := {(ia,ib) ~ (~¥sP(3)1(a,, b) ~ E-}. Because the quasi-confounal diffeo-

morphism Is and a cubic map fa b ~ ~P(3) commute wrth the map z h> z 

the stretching ray R( f) through f e E(3) nc~~'p(3) is contained in E(3)n'¥s'~P(3) . 

In particular fcr f ~ E- the streching ray R(f) is contained in E-. Therefore 

for any r ~ R+, both isomorphisms R+ x (G-1('r) n (~:~p(3)) (~ E(3) n c~¥;p(3) 

and R+ x (G-1(r) n E-) ~: E- hold and they unply theorem 1 3 

4 Conclusion 

We give a proof of theorem 1.1. Because topological entropy is topological 

invariant, theorem 1.3 shows that for any u e (O, I], topological entropy is 

constant along the stretching ray R(R+ tl'). Let lu be the set of accumulation 
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points of R(R+ tl') on aC-. Then it is easy to check that lu is closed and 

connected in aC-. Moreover for any u, v e (O, I] with u < v, the intersection 

of lu and lv is empty or at most one point. Since topological entropy is 

continuous on P-, it is constant on lu U R(R+ u). Moreover it is monotone 

decreasing along aC- by. theorem 2.1, h(fl) ~ h(f2) for any. fl e R(R+ u) 

and f2 e R(R+ v). This shows that in the escape locus E-, the level set of 

topological entropy is simply connected. 

References 

[B] B.Branner, Cubic polynomials: Turning around the connectedness locus. 

Topological Methods in Modern Mathematics (1993), 391-427. 

[B-H] B.Branner and J.H.Hubbard, The iteration of cubic polynomials, Part 

1. Acta Math. 160(1988), 143-206. 

[D-C.-M-T] S.P.Dawson, R.Galeeva, .J.IVlilnor and C.Tresser, A Monotonicity 

Conjecture for Real Cubic Maps. Real and Complex DynarrLical Systems. 

Edited by B.Branner and P Hjorth NATO ASI Series C464 (1995), 165-183. 

[D-H] A.Douady and .J.H'.Hubbard, A proof of Thurston's topological charac-

terization of rational maps. Acta ~/Iath. 171(1993),263-297. 

[K] Y.Komori, h/Ionotonicity of the topological entropy on the real escape loci, 

in preparation. 

[M] .J.Milnor, Remarks on iterated cubic maps. Experimental ' Math. 

l (1992) ,5-24. 

[M-T] .J.Milnor and ¥V.Thurston, On iterated maps of the interval. Springer 

LNM 1342 (1988),465-563. 

l04 


