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Abstract

In this paper, we show that 'Logistic map with diffusion’ has infinitely many
periodic points of all period n (n = 1,2,---). This map is obtained by adding the
diffusion term to the well known Logistic equation and by discretising it in time
semi-implicitly, and thus can serve as a nice example of the infinite-dimensional
map which has periodic points of arbitrary high periods. Our proof is based on a
somewhat general theorem on the existence of periodic points which can be applied
to both multi-dimensional and infinite-dimensional maps.

1. Introduction and main result.

The periodic points of maps have been studied by many authors, mainly in the context
of chaotic behaviors of discrete dynamical system. In particular, the theory for one-
dimensional maps has been fully developed with a number of deep and elegant results,
see (3] [6] [9] [10] [12] and the references therein. There are also many satisfactory results
on periodic points of multi-dimensional maps, [11] [13] [14].

However, most of periodic points found so far for infinite-dimensional maps are those
of low periods and few example are known which have periodic points of arbitrarily high
periods. In this paper, we will present a simple example of the infinite-dimensional map
which has infinitely many periodic points of all period n = 1,2,--.. It is the “Logistic
map with diffusion”. This map exhibits chaotic characters as well, which will be discussed
in a subsequent paper.

Recall the famous one-dimensional Logistic map

(1.1) Tns1 = AZp(l — z,)
which can be obtained by Euler’s difference scheme for the Logistic equation

(1.2) % —)(l-v), (ER)

Now consider a P.D.E which is obtained by adding the diffusion term to (1.2),

(1.3) % = alAv + Av(l —v),



where A is the Laplacian in R* and o > 0 is the diffusion coefficient. The equation of
this type is usually called Fisher’s equation. Discretize (1.3) semi-implicitly in ¢, in the
manner,

(1.4) E’L‘%;ﬁ = aAvp1 + Ava(l — vp).
Then, we obtain a discrete model for (1.3);
(1.5) (r = A)uns1 = pun(1l — uz),
here
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If we consider (1.5) in a domain D C R? with an appropriate boundary condition, then
it is rewritten as

(1-6) Unyl = F(un):
where
(1.7 F(u) = (r — A) tuh(u), h(u) = u(1 — u).

Here and hereafter, we call this map F' the “Logistic map with diffusion”. Note that in
the case of the Neumann boundary condition, (1.6) has constant solutions, and hence
can be reduced to the one-dimensional map (1.1). Otherwise, F is essentially an infinite-
dimensional map and we cannot conclude immediately that (1.6) has the same character
as (1.1). However, a numerical computation on (1.5) with D = [0, 1] and with the Dirichlet
boundary condition by discretizing the Laplacian A in the central difference shows that
(1.5) has a bifurcation diagram quite similar to that of (1.1). See Figure 1.1. Moreover,
this diagram does not change essentially with the mesh size. It seems therefore that (1.5)
with the Dirichlet boundary condition also produces infinitely many cascades of period
doubling bifurcations and chaos, just like (1.1).

To prove this was our original motivation of the present work, but is yet an open
problem. Instead, in this paper, we show that (1.5) has all of n-periodic points (n =
1,2,---) under the boundary condition

Ou
(1.8) (1- 0)51—/- +0u=0, (z € 8D)
where v is the unit outward normal to 8D and 6 = 8(z) is some given function on dD.
The main result of this paper is,

Theorem 1.1. Suppose that D C R® is a bounded domain with smooth boundary D
and that 8 = 6(z) € [0, 1] is smooth on D. Then there exists a number § > 0 satisfying
the following. If r+ || 0 ||L(p)< 8, then there exist positive numbers i, pa (0 < py < pig)
such that the map (1.6) associated with the boundary condition (1.8) has infinitely many
periodic points of all periodsn = 1,2,---, for all u € [p1, pa].
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Figure 1.1

Remark 1.1. That u is a periodic point of F of period n means that

= F(u),
(1.9) {Z # Fk(:j), k=1,2,---,n-1,

where F™ denotes the n-th iteration of the map F'. In view of (1.5), (1.9) is equivalent to
the set of partial differential equations,

(((r—D)u
(r—A)u,

#h('Uq),
»u'h(u3)1

(1.10) s

(r=O)un = ph(u),
L Ui :Iéuj (7’#3)1

with the boundary condition (1.8) on u;’s. Notice that it is easy to see that F™ has
a fixed point u. Thus, the crucial part in the proof is the part “u # F*(u) for all
k=1,2,---,n—=1". On the other hand, in our proof of Theorem 1.1, it is not necessary
that r, @ and h are the same for all the equations in (1.10).

Remark 1.2. In our theorem, 7 must be small, that is, either & or At must be large.
We also need to require that 8 is small. That is, the boundary condition (1.8) must
be close to the Neumann boundary condition. In particular, the case of the Dirichlet
boundary condition (f# = 1) is not covered by Theorem 1.1. However, our numerical
computation implies that the same conclusion should be true also under the Dirichlet
boundary condition.




- Remark 1.3. It is possible to show that F' has a non-trivial periodic point of period 1
(i.e fixed point of F') for all p € [u;, 00) with some p; > 0, for all the boundary condition
including the Dirichlet boundary condition.

Remark 1.4. In our theorem, the upper bound y;, of u for which infinitely many periodic
points exist is finite. On the other hand, it is well-known that po = co for the one-
dimensional unimodal map like (1.1), and hence one might expect that this would be the
case also in the multi-dimensional case. However, there is an example of two-dimensional
unimodal map for which p; < +00. Consider the two-dimensional map,
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(111) F(z,y) = 1= p(z® +9%), a—pe(z®+4%), (z,yeR, a, c>0),
which may be taken as a simple two-dimensional version of the one-dimensional map,
(1.12) f(z)=1-pz?, (z€R).

(1.12) is equivalent to (1.1) while (1.11) arises if we discretize the Laplacian A of (1.5) on
D =[0,1] with 6 = 1 only with 5 mesh points and then modify slightly some coefficients
in the resulting map. To see that u; < +oo, it suffices to note that (1.11) has the
one-dimensional invariant manifold,

(1.13) cz—y=c-—a,

which is globally stable for F', that is, all points (,y) in R? are mapped onto the line
(1.13) by F, so that F is equivalent to the one-dimensional map,

(1.14) glu)=1- A(/"’)uzx (u€e R),
where
(1.15) M) = p((1 + ac) = (a = c)?p).

(1.15) implies that the folding of the parameter u occurs and that the bifurcation diagram
changes along with the values of a and c. Figure 1.2 shows the relation between (1.15) and
the bifurcation diagram of (1.14) with a = 1. The left part of Figure 1.2 is the bifurcation
diagram of (1.14) when X is taken independent of u, where the vertical axis is for A and
the horizontal axis for u. On the other hand, the right part of Figure 1.2 shows the graphs
of (1.15) for ¢ = 0.33. 0.39, 0.42 and 0.45 respectively, where the vertical axis is for A and
the horizontal axis for x. From Figure 1.2, we can see that if ¢ = 0.33, A(u) is less than 1
for all u > 0, that is, (1.14) has periodic points of period one and two only. Actually, the
bifurcation diagram of (1.11) with ¢ = 0.33 looks like Figure 1.3 (i). Similar reasoning
applies with other values of ¢ and gives Figure 1.3 (ii)—(iv), showing that u; < +oo0.

Clearly, our map F has not a one-dimensional invariant manifold, expect for the
Neumann boundary condition, but since Figure 1.1 looks very similar to the bifurcation
diagram of the one-dimensional map (1.1), it is natural to expect that F has an one-(or
low-)dimensional “approximate” invariant manifold. Thus, suggested by Figure 1.1, we
are led to the following setting for proving Theorem 1.1.

Let Q be a non-empty bounded, closed convex subset of a Banach space Y and set
U=RxQwithz e R,y €. Weconsideramap F = (f,g)withf: U~ R,g:U—=Y
satisfying the following. See Figure 1.4.

(FO) f,f. € C(U,R).
(F1) There exists an interval I = [a,b], (0 < a < b), such that

(i) fla,y)>0b, f(by)<a, (VyeQ),
(i) fe(z,y) <0, (Vzel,yeq).

(F2) There exists an interval I = [b, @), (b < @ < 0), such that



() f@y)>b fby) <a, (YyeQ),
(ii) fo(z,v) 20, (Vzelyeq).

It will be shown in §5 that under these assumptions,
(1.16) Ngec@), f(@W)y)=e (e

Since @(y) € I (Vy € Q), there is a ¢. € I such that

(L.17) B, =inf{(y) |y € Q).

We shall further assume.

(F3) (5, .1/) < Puy

(F4) g: (JUI) x Q — Q is compact.

Here and hereafter a map is said compact if it is continuous and if the image of any
bounded set is pre-compact. We can now state a rather general theorem for the existence
of periodic points, which can be applied to our map (1.6).

fixy)

/r \‘.’,“-\\
b

o
Sl
"o

Q

~

9 \ ..

Figure 1.4

Theorem 1.2. Under the conditions (F0)—(F4), F has infinitely many periodic points
of all periodsn=1,2,---.

The plan of this paper is as follows. In the next section, we will give some preliminaries
and make a reduction of our problem. The proof of Theorem 1.1 is given in §3 by showing
that Theorem 1.2 can be applied to the reduced system given in §2, and Theorem 1.2
will be proved in §4. §5 is devoted to the proofs of (1.16) and Proposition 4.1 which are
essentially used in §4.



2. Preliminaries and reduction of problem.

Throughout this paper, || - ||, will denote the norm of L?(D) (1 < p £ ), < -,- > the
inner product of L?(D), and W*?(D) the usual L?-Sobolev space of order k.

Recall that D is a bounded domain of R* with the smooth boundary 8D and 8 =
6(z) € [0, 1] is a smooth function on dD. First, we consider the eigenvalue problem,

(T—A)¢=K¢, ($€D):
(21) { (1- 9)-2—‘1’/‘- +06=0, (z € 8D),

Let k, be the n-th eigenvalue of the above problem and ¢, be a normalized (in L?(D))
eigenfunction corresponding to x,. Since we are assuming 7 > 0 and 0 < 8(z) < 1,

O<Kr <Ky <K3<L-ee

and k, — oo when n — 0o. Note that x; = 7 under the Neumann boundary condition
(6 = 0). It is well known that {¢,} is a complete orthonormal system of L?(D). In the
following, we need the

Lemma 2.1. k; — 0 and k3 > ¢ with some constant co > 0, as 7+ || 8 ||co— 0.

Proof. This fact is rather well-known, but we will give a proof for the sake of com-

pleteness. Put o)
z
ﬂ(l‘) = 1 . 9(2})

According to the max-min principle [4], the eigenvalue &, is characterized by

6 = mp B {riwig+1velg+ [ 86 v do}
dimE=n ||u]2=1

where E denotes a finite dimensional subspace of L?(D) and do is the usual surface
measure on 8D. Since B(z) > 0 when 0 < 6(z) < 1, we have

kn > sup inf {rlul}+] Vu 3}
u€E+
dimE=n ||u|l2=1
= T+
where
o= sup inf || Vu |2
E ueEL
dimE=n |[ul|2=1
is nothing but the n-th eigenvalue of the Laplacian with the Neumann boundary condition,

in view of the same characterization by the max-min principle. Clearly ; = 0 and 75 > 0.
Take ¢y = 15 and thus k3 > ¢ for any 7 and 4. On the other hand, by the trace theorem

ol
[ 6@ u@) Pds < 16l [ lu(z) P do

c1 | B llooll w 12y
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with some constant ¢; > 0 independent of u. Since || u ([} py=Il u I} + || Vu [I3, (2.2)
gives ‘

fn < sup inf, {r+ell Blloo) 1w+ +c1 1 Blleo) I| Vu [13}
dimE=n |ju|2=1
= r+c || Bllo +1+er |l B lloo)

whence &1 <7+ ¢ || B |lo- This completes the proof of the lemma. [ |
Define the subspace Ex of L?(D) and the orthogonal projection Py by

Ek = 3pan{¢1,¢2,"‘,¢k},
P, : IXD)— Ei,

for k =1,2,---. For the convenience, we set E- = L?(D) and P;- = Id. Associated with
the boundary condition (1.8), we consider the Green operator

G=(r-20)"
Lemma 2.2. PG : L?(D) — Et is compact with

1
| PEGY o< —— [[vlls, Vo € LX(D).
: . Kk

fork=0,1,2,---.

This is well-known and the proof is omitted.
In order to deal with the nonlinear term h(u), we need LP-estimates of G. Put u = Gv,

which solves

(r—=AQu=uv, in D,
(2.3 {

ou
(1- 0)5—; +0u=0, on 9D.

The celebrated ‘Lp-theory of elliptic equations [2] says that for all p € (1,00) and k =
0’ 11 2) Y
(2.4) | w llwrszrpy < Ma(l| v flwroeoy + Il 2 [lp)

holds with a constant M; > 0 depending on 7,8, D, p, k but not on v. More precisely,
(25) Ml = MI(T0)67 D,p, k)

for all | r |< ry and § € © where 7y > 0 is any number and © is any bounded set of
C*+?(0D) and M, > 0 depends only on 7y, ©, D,p and k. A simple application of this is

Lemma 2.3. ¢, € C(D)N L?(D) for all p > 2 with
(2.6) M L|| é1 [|l,< M3

for all v € (0,79] and 6 € © where My, =| D |*~?/2 and M3 > 0 is a constant depending
onlyonry>0,0 and D. ,



Proof. We know ¢, € L2(D) with || ¢ ||a= 1. The lower bounds comes from Hélder’s
inequality

-2 z
1= ¢ [l2.<I D |'77 61 I3 -
To prove that ¢, € C(D), we apply (2.4) for p = 2 to (2.1), to get

| 61 llwr+22(0y< Mi{1 |} &1 llwe2oy + | 61 [12}
for all » > 0. Iterate this in k = 0,2, -- -, and obtain for each even integer [ > d/2
| 61 llwt2py< CMy || ¢ ||z

which shows ¢; € C(D) and (2.6), thanks to the Sobolev embedding theorem. [1] ]
Now we can prove the

Lemma 2.4. Let p > d/2. Then PG : IP(D)n L?(D) — C(D) is compact with
(2.7) I PG llo< Ma(ll Piv llp + 1} Pitv o)
for all v € (0,19 and 8 € © where My = My(r,,0, D, p).

Proof. Set w = Pj*Gv = GPjtv = P{:GPjtv. In view of Lemma 2.2, we get

1
(2.8) | wll2< Py Il Pt lz -
2

On the other hand, w solves (2.3) with Pjv in place of v. Apply (2.4) for k = 0 and
p = 2 to deduce

A

lwllweapy < Mi(ll Piofla+ [l w )
1
< M1(1+K—2) I Pioll: (by (28))

Note that by Lemma 2.1, k2 > ¢ > 0, for all » > 0 and . Owing to the Sobolev
embedding theorem, we are done for d = 1,2, 3, while for d > 4, we get

| wlle< Cllw llweay< Ms || Pio |la,
with any ¢ € (2, 22_"—4). With such a ¢, (2.4) yields

| wllwespy < My(ll Pl llg+ llwllg)
< M| Pio llg +Ms || Piv ||2).

Proceeding as before, we then reach (2.7). ]
Now, we will make some reduction of our problem. Consider the dynamical system,
(2.9) ¥ = F(u) = uGh(u).

and decompose u as
u=Pu+Ptu=zé+y



where 2 =< u, ¢, >€ R and y = Pj*u € F{, and similarly for «' = 2'¢; + 3. Then (2.9)
is decomposed as '

;o . 2 2 _ 2
(2.10) {z = Mz—a2? -2<y,¢2 > 2— <% ¢ >),

Y = Kk APLGh(u),

where we have put

= £
K1
_ 2 — 3
o = < ¢, 61 >=| ¢z
Furthermore, set
m = A=2
- 40lo ’
v = 1 (2 1
T om 20"

Then (2.10) can be reduced to

o) (V2 abae”
where
7=10) = Amag = 22 =2
and 1 1
(2.12) d(v,y) = M2 <y, >v+ ——— ¢ > +—< v, é >}

3. Proof of Theorem 1.1.
In this section, we will prove Theorem 1.1 admitting Theorem 1.2. First, we set
Y=E'NCD)={y=u—<u,¢ > ¢ :ue L*(D)nCD)}.
By Lemma 2.3, we see that Y C L?(D) N C(D). We shall take
Q={yeY:fyl<e llyllo< K}

where €, K > 0 are constants to be determined later. Following (2.11), we define two
maps f: RxQ — Rand g: Rx Q — Y as follows;

{f(v,y) = l—ﬂvz“@(v,y)y

(31) g(v,y) = K,l)\PI'LGh(u),

where v € R and.y € Q. The main goal is to show that Theorem 1.2 applies to (3.1) if
T+ || 0 ||oo is small.

10



It is clear that f satisfies the condition (F0). Since
folv,y) = =2 — 2X <y, ¢} >

and <y, ¢? >[<|| y ll2]l ¢1 ll2ll é1 lo<Il @1 [loo €, We see that, if n > 0 (A > 2),
o wxilfle yeq

and

f30, we-ele g

: n
so that (F1)(ii) and (F2)(ii) are satisfied if we take

_ M bl _ 161 llo, _ 411 81 llo,

[ d -:"".
. " o an a a

Note from Lemma 2.3 that there are constants A\g > 2 and ag > 0 such that for all A > )
and € > 0,
(3.2) a < age.

Since |< y?, ¢1 >|<|| 1 llo € and o =|| 41 3| ¢1 [l We get

: 1 1
< 4
8(0,) | < |61 o {20 o+ Zhe
A 0
< Ml a4y g v 13
Then it holds that, for all y € Q
fray) 2 1m0 = 2l g iy
4 o
- 1- ——A”—‘b—‘L@ 61l €+ D).
Set
b=1-p.
where

p=p(0) = 28l g4, oy e 1)

Clearly by Lemma 2.3, there is a constant py > 0 such that for all A > Xy and € > 0,
(3.3) p < poe.

We must require a < b, and this is possible if

1

3.4 €< .
(3.4) ag + pPo

11



Now, we get

1 1
d(+b < A oo — 4 —¢}e,
[2(h,3)| < M1l {2151+ + —eJe
< 22| ¢1 |lo €+,
where

§=¢&(e) = ——5 (1 +aee.
Again by Lemma2.3, there is a constant & > 0 such that for all A > Ay and € > 0,
€ < &oe.
Then, we have, for A > Ag,
f(&by) = 1-nb"—&(xb,y)

1= 20200 e 420 g1 o+ o

IA

< 1- 4l(1 — po€)*A? + %{(1 — p0€)2 + 4 || 61 [loo €}A + &Loe.

This implies that there is a number X' > A, such that f(+b,y) is strictly decreasing on \
for all A > )’ and tend to —co as A — oco. Therefore, setting b = —b, we see that there
exists a number A > ) such that f(b,y) < a and f(b,y) < a for all A > X', thus f

satisfies the conditions (F1)(i) and (F2)(i).
Moreover, because b = —b > —1,

floy)—b<2- —(1 — po€)’A? + {(1 — po€)? + 41 ¢1 lloo €}X + &oe.

Then there is a number A; > A" such that f(b,y) < b’ < @, for all A > A;. For such A, f
satisfies the condition (F3). Thus, we have shown that there is a constant \; > 2 such

that f satisfies the condition (FO)—(F3) for all A > )\, if € satisfies (3.4).
Next, to check the condition (F4), we must estimate g.

Lemma 3.1. Foranyve IUT andy €,

| g(v,y) lo < /\ {M(1)+(1+2K)}

(3.5)
l9(v,9) lo < /\K1M4{2M(1) + (14 2K)(e + K" rer)}

withp =2 for d =1,2,3 and some p > d/2 for d > 4, where
(3.6) M® = MO()) = Mg(X? +8)

with Ms = Ms(T‘o, 9, D)

12



Proof. By Holders’s inequality, we get for any p > 2 and y € §2,

lyll, < llylle”llyll3< K ver,
L 2
I 1, = llyl2,< KX P

Recall the decomposition u = z¢; +y and z = 1/(2ag) + mv. Then, forv e TUT,

Il u® ||, 2Pl 6% llp +2 1 2 [l dav llp + 11 97 I,
(12 Il 61 ll2p + 1l 9 ll25)?

2() 2 Pl 1 113, + 1 v 113,)

MO 4ok -2)er

INIA A

IA

where we have used

1
2|z Il gu lIZ,< 2(2— +m)? || 6 15,5 5 12 — (W +8)Mf = MO

which comes from Lemma 2.3. Noting that
PlGh(u) = PGy — PGu?,

we conclude the lemma with the aid of Lemmas 2.2 and 2.4. n
Now we are ready to choose € and K. Take a A\, > A; and fix it. Recall M) = M()())

given by (3.6). Now we put
1
€ = Z—AzM(l)()\g)ﬂ)
o
K = 3MMM3(\)e
with a small ¢y > 0 chosen so that

€< -
(3.7) 1+ 2K)e < MO (),
(1+2K)(e+ K" 5er) < MD()y),

can hold. By virtue of Lemma 2.1, there is a number §; > 0 such that
0 < k1 < 6, K2 > ¢ >0,

if 7+ || 6 ||oo< do. Hence Lemma 3.1 yields

1
| g(v,9) [z < 26)\2€0M(1)(/\2) =g,
I 90,9) oo < 3heeMiMD () = K

which asserts that g fulfills (F4). =

13



4. Proof of Theorem 1.2.

In this section, we will give a proof of Theorem 1.2. Let F' = (f, g) be as in Theorem 1.2
and let {(zk,yx) € RxQ:k=1,2,---,n} be an n-periodic orbit of F. Then,

(372, v2) = (f(z1,1), 9(z1, Z/l));
“y () = (F(Encts o), 6t 3n),
(xh yl) = (f(xmyn)vg(xmyn)),

which can be rewritten as

f —
z; = f(f("'f(f(xlyyl),w%"'ayn)7
n—1
i = g(f(f(.. F(F(@1,91),92),- - - Un=1): ¥n),
(4.2) {2 = g(zy,y),
Y3 = g(f(x17y1)1y2)7
Lvn = 9(F(F(. . f(f(z1,11),%2), - ) Un—2), Un—1)-

n

e s,
Set Q" =0 x 0 x---x Q and define the map f, : RxQ* - R as

(n) :
(43) fn(l';y " ) - f(f( .- f(f(zy y1)1y2)’ o ‘1yn)7
where z € R, yr € Q and y™ = (y1, 72, -+, ¥n)t € Q. Also, define g, : R x Q" — Q" as

g(fn—l(xa y("—l)), yn)a
. 9(1?,1/1),
(44) g,,(x, y(n)) = g(f(x) yl)a yﬁ))
9(fa-2(2, "), yn1)-
Then (4.2) can be written shortly as

s = fn(xlvy(n))a
45 )
(45) {y‘"’ = ga(z1,5™).

The following proposition is a key ingredient in proving Theorem 1.2.
Proposition 4.1. Let f satisfy the conditions (FO)—(F3). Then,
(i) foranyn=1,2,---,
(4.6) 3p, € CONT), Paly™) = falpa@™),s™), (7™ € Q")

14



(ii) forany k=1,2,---,n—1,
(4.7) Felon@™),y™) e I, (V™ e Q).

Since the proof of this proposition is rather lengthy, we defer it to the next section
and here, we complete the proof of Theorem 1.2, admitting Proposition 4.1. Define the
map K, : Q" = Q" by
(4.8) Ka(y™) = ga(pa(y™), y™).

Since p, € C(Q", ), and since (4.7) holds, K, is a compact map from Q" into itself,
because so is g by the condition (F4). Furthermore, Q" is a bounded, closed, convex
set of Y. Therefore Schauder’s fixed point theorem applies and K, has a fixed point
7™ = (1,72, - . ., Tn) € O, that is, §(™ satisfies

gl = g(fn—l(pﬂ(g(n))a g(n—l)), gﬂ):
Y2 9(pn (™), 71),
(4.9) ¥ 9(f (2a(T™), 1), B0,

I = g(fa2(pa(@™), §2), Gn-r).

This and (4.6) show that (p,(§™), 7™) € R x Q" solves (4.2). Therefore, (p,(7™), %) €
R x (1 is a candidate of n-periodic point of F. On the other hand, thanks to (4.7) and
since p,(§™) € I, it holds that, for all k =1,2,---,n — 1,

Fe@a (@), 55 > 0 > pa(5™)

holds, which implies that (p,(§™),#1) cannot be a k-periodic point of F for all k =
1,2,---,n — 1. Thus we are done. |

5. Proofs of (1.16) and Proposition 4.1.

Proof of (1.16).

By the Intermediate Value Theorem and by (F2)(i), there is a @(y) € I such that
f(@w),v) = a, (Yy € Q). This @(y) is unique in I by (F2)(ii). To prove that G(y) is
continuous, let {y,} C Q be a sequence satisfying y, — y, (n = 00). We shall prove
that @(y,) — @(y). Suppose this be not the case. Then, there exists a subsequence
{yn,} such that | G(yn,) — @(y) |> € for all k = 1,2,---, with some £ > 0. Since I is
closed and bounded in R, there exists a subsequence {y,,k,} and (}3 # @(y) € { such that
B(Yn,) = @, (k' = 00). Now by the definition of @, we have F(#(Yny)s Yn,,) = a, and
therefore f(,y) = a by (F0). Hence, the uniqueness of @(y) implies that & = @(y),
which is a contradiction. Thus, @ is continuous in . : m

Proof of Proposition 4.1.
The proof of Proposition 4.1 will be based on the following lemma.

Lemma 5.1. Let f be a map satisfying the conditions (FO)—(F3). Let @, be asin (1.17)
and let f, be a map defined by (4.3) from R x Q" into R. Then for each even integer
n=2k, k=1,2,-.., the following holds.
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(HO)» fn, fos € C(R x Q" R).
(H1), There are two maps ¢, and d, € C(Q, I) satisfying the following.
(1) a < cp(u) < dp(u) < b, (Vu € Q).
(i) falea(u)0) < Bor  faldaw)w) 25, (Vue ),
(iii) foz(z,u) >0, (Vu € Q", z € I,(u)),
where
(5.1) Lo(w) = [ea(u), da(w)] C 1.
(H2),, There are two maps ¢, and d, € cQr, I ) satisfying the following.
(i) b < dn(u) < &,(u) < &, (Yu € Q).
(i) fa(Gn(u),u) < @s,  faldn(u)u) 26, (VueQ),
(iil) fnz(z,u) <0, (Vu € Q", z € I,(u)),
where
(5.2 Fa(u) = [da(u), ()] C T

Proof. We prove this lemma by induction. First, consider the case n = 2 and set
u = (y1,y2) € Q2. It is clear that f, satisfies the condition (HO),. By the Intermediate
Value Theorem and by (F1), for each y € 2, there exist ¢(y), ¢(y) € I such that

floy)y) = b (Vyeq),
flo(y),y) = a, (YyeQ).

These ¢(y), ©(y) are unique in I and that @, ¢ € C(Q,I) can be proved in the same way
as in the proof of (1.16). Note that by the condition (F1)(ii), ¢(y) < <p(y) for all y € Q.
Then the conditions (F1)(i) and (F3) imply that

(5 3) f2(¢(y1)’ ’LL) f(f(¢(y1)) yl): y2) = f(b) y2) S Ps (Vu € 92),
' fale(n),v) F(fle()v) v2) = fla,y2) 2 b, (Vue Q?).

On the other hand, it is clear that f(z,y) € I if y € Q and z € [¢(y), o(y)] C I, and
therefore it holds that

(5'4) f2,:c(x7u) = f:(.’L‘, yl)fz(f(iﬂ, yl)’y2) ->- O’ (\'/u € QZ,Z' € [¢(y1)’ tp(y1)])-
Now, putting

cw) = é(yn),
d2(u) = (1)

will prove (H1),.
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Similarly, we can show the existence of a unique map ¢ € C(Q,T) which satisfies

f(‘z)(y))y) = b, (Vy € Q)

Then, with & (u) = @(y;) and dy(u) = @(y;) where @ is as in (1.16), we see that (H2), is
fulfilled as well. Thus we proved the lemma for n = 2.

Next, assume that (HO), ~ (H2), are true for some n = 2k. In the sequel, we use
the notation

w=(u,z) € Q" x O = Q"2
Since by definition (4.3),
fn+2($:w) = f2(fn(xau)1 z)

holds, it follows from (HO); and (HO), that f,, satisfies the condition (HO),42. Again
by the Intermediate Value Theorem, and from (H1),, there exist ¢{w), o(w) (Vw € Q"*?)
such that for any w = (u,z) € Q"%

d(w), o(w) € I(u),
(5.5) fn(d(w), u) = c2(2),
falp(w), u) = da(2).

Similarly by (H2),, there are ¢(w), @(w) (Vw € Q™+2) such that such that

$(w), B(w) € I(w),
(5'6) fn(¢(w)7 u) = c2(z),
fn(¢(w), u) = d2(z)'

As before, ¢, ¢ are unique and in C(Q", I) while ¢, @ are unique and in C(Q*, I). By the
condition (H1),(ii), we have

frs2($(w), w)

f2(fn(¢(w)’ u)a z)
fa(e2(2), 2)
@ss

IA

and also

fZ(fn((p(w)x u)v z)
fa(dz(2), 2)
b.

fara(p(w), w)

AV

Similarly, it holds that )
(5.7) far2(d(w),w) < @,
fﬂ+2(¢(w))w) > b.

As a consequence, f,4o satisfies the conditions (H1),42 and (H2),, if we set

cn+2((1.U)) = ¢((’LU)),
dnyo(w) = o(w),
(59 a(w) = B(w),

dn+2(w) = (;7(11))-
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Note that
(5.9) Lipa(w) = [eny2(w), dnya(w)] C Ln(w),
. Inpo(w) = [dn+2(w), 5n+2(w)] C I,(u).

Moreover, from (5.5), (5.6) and the conditions (H1),(iii), (H2),(iii), it follows that
fr(z,u) € I(2), (Vw € Q"2 z € I9(w) U Iy (w)).

So, by (H1),(iii), (H2),(iii), (H1).(iii), (H2),(iii), (5.1), (5.2) and (5.9), it follows
that

faroz(@,w) = fas(2,u) fou(falz,u),2) 20,  (Yw € Q™2 1€ Lhya(w)),
and that
Frt22(3,0) = fao(@, W) fou(fa(z,u),2) €0, (Vwe Q™2 1€ Li(w)).
This completes the proof of Lemma 5.1. u

Proof of Proposition 4.1(i).

‘We continue to use the same notations as in the proof of Lemma 5.1. First, we consider
the case of n = 2k, (k = 1,2,3,---). From the condition (H2),(ii), (5.6) and (5.8), we
have

falta(w),w) £ @ <b<E(w),
fa(Gny2(w),u) = co(2) > 0.
Then, there is a unique _
(5.10) Pn(v) € (Gui2(w), &(w)) C In(u)
such that
Pn(u) = fn(pn(u),u)

for all u € Q", by the Intermediate Value Theorem and (H2),(ii),(iii). Also, by the
contradiction argument as in the proof of (1.16), we can show that p, is continuous in Q".

Next, we consider the case n =2k +1 (k =1,2,3,---). By (5.6) and the definition of
¢, and with the notation w = (v,y) € Q¥+ x Q,

foer1(Corsa(w),v) = f(fa(Cors2(w), u),y)
(5.11) = f(&(2),y)
= f(¢(y),y) =b>0.

Also, by (H2)4(ii), (5.6) and (5.8), there is a dy1(v) € [dar(u), darsa2(w)) such that
(5.12) For(does1(v),u) = b.

Then we can see that

Frea(daes1(v),v) = F(far(daria(v),0),9)

(5.13) = f(b,y) < @ <b < dpes1(v).
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In addition, we see that

(514) f2k+1,z(zav) = f2k,z($,u)fz(f2k($;u),y) 2 0)

for all z € [dg41(v), Gaxra(w)] C Tk (u), because for(z,u) € [c2(2),b] C I for such z. Then
(5.11), (5.13) and (5.14) imply that there exists a unique

(5.15) Poks1(v) € (daks1(v), Eakaa(w)) C Ioi(w)
satisfying
P2k+1(v) = fars1(P2r41(v), v), (Vo € Q%+,
The continuity of pax4; in Q%+! can be proved by the same way as (1.16). [
Proof of Proposition 4.1(ii).
We again use the same notation as in the proof of Lemma 5.1, that is, w = (u,2) €

Q2 x 2. Also, we will use the notation ¥™ = (y1,42, -+, ys). Note that u = y*). First,
we consider the case n = 2k. Since (5.10) holds, by (5.5), (5.9) and (H1),,(iii), we have

(516) fm(pn(u)ay(M)) € [62(2)1d2(z)] C 11 Vm = 274) 6,"',“—2.
Also, by the condition (F1)(ii) and (5.16), we see that, for all m = 2,4,6,---,n — 2,

fm+1(pn(u)1 y(m+1)) = f(fm(pn(u)7 y(m))’ y)
[f(dg(Z), y)7 f(c2(z)1 y)]
= [a,b]=1

m

and, it holds that
f(pna(w),v) € [f(d2(2),9), f(&(2), )] = [a,8] = 1,

because p,(u) € I,(uv) C L(z).
Next, we consider the case n = 2k + 1. Since (5.15) holds, we can show similarly as
above that
fm(p2k+1(v)1y(m)) EIa (m: 172a"'2k—1)'

Moreover, by (5.6), (5.12), (5.15), and (H2)4(iii),
For(P2r41(v), w) € [for(Gorra(w), w), for(dak1(v), w)] = [e2(2),b] C I.

Thus we are done. ]
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