
Periodic points of Logistic map with diffusion 

Akihiko Itaya and Seiji Ukai 

Department of Mathematical and Computing Science 

Tokyo Institute of Technology 

2-12-1, Ookayama Meguro-ku, Tokyo 152, Japan 

Abstract 

In this paper, we show that 'Logistic map with diffusion' has infinitely many ' 

periodic points of all period n (n = l, 2, ･ ･ ･). This map is obtained by adding the 

diffusion term to the well known Logistic equation and by discretising it in time 

semi-implicitly, and thus can serve as a nice example of the infinite-dimensional 

map which has periodic points of arbitrary high periods. Our proof is based on a 

somewhat general theorem on the existence of periodic points which can be applied 

to both multi-dimensional and infinit(~dimeusional maps. 

1. IntrOduCtiOn and main reSult. 

The periodic points of maps have been studied by many authors, mainly in the context 

of chaotic behaviors of discrete dynamical system. In particular, the theory for on,> 

dimensional maps has been fully developed with a ntimber of deep and elegant results, 
see [3] [6] [9] [10] [12] and the references therein. There are also many satisfactory results 

on periodic points of multi-dimensional maps, [11] [13] [14]. 

However, most of periodic points found so far for infinite-dimensional maps are those 

of low periods and few example are known which have periodic points of arbitrarily high 

periods. In this paper, we will present a simple example of the infinite-dimensional map 

which has infinitely many periodic points of all period n = l, 2, ･ ･ ･. It is the "Logistic 

map with diffusion" . This map exhibits chaotic characters as well, which will be discussed 

in a subsequent paper. 

Recall the famous one-dimensional Logistic map 

(1.1) x*+1 = Ax*(1 - x~) 

which can be obtained by Euler's difference scheme for the Logistic equation 

d v 
(1.2) = Av(1 - v), (v e R). 

dt 

Now consider a P.D.E which is obtained by adding the diffusion term to (1.2), 

av 
(1.3) = aAV + Av(1 - v), 

at 

l
 



where A is the Laplacian in Rd and a > o is the diffusion coefficient. The equation of 

this type is usually called Fisher's equation. Discretize (1.3) semi-implicitly in t, in the 

manner, 
(1.4) vn+1 ~ vn = aAvn+1 + Avn(1 v ) 

At 
Then, we obtain a discrete model for (1.3); 

(1.5) (r - I~)un+1 = keun(1 - un)' 
where 

AAt 
un = I + AAtvn' 

l + AAt 
/1= aAt ' 

an d 
1
 r = aAt' 

If we consider (1.5) in a domain D C Rd with an ap'propriate boundary condition, then 

it is rewritten as 

(1.6) un+1 = F(un)' 

where 
F(u) = (r - A)-1/th(u), h(u) = u(1 - u). (1.7) 

Here and hereafter, we call this map F the "Logistic map with diffusion" . Note that in 

the case of the Neumann boundary condition, (1.6) has constant solutions, and hence 

can be reduced to the one-dimensional map (1.1). Otherwise, F is essentially an infinite-

dimensional map and we cannot conclude immediately that (1.6) has the same character 
as (1.1). However, a numerical computation on (1.5) with D = [O, 1] and with the Diribhlet 

boundary condition by discretizing the Laplacian A in the central difference shows that 

(1.5) has a bifurcation diagram quite similar to that of (1.1). ' See Figure 1.1. Moreover, 

this diagram does not change essentially with the mesh size. It seems therefore that (1.5) 

with the Dirichlet boundary condition also produces infinitely many cascades of period 

doubling bifurcations and chaos, just like (1.1). 

To prove this was our original motivation of the present work, but is yet an open 

problem. Instead, in this paper, we show that (1.5) has all of n-periodic points (n = 

l, 2, ･ ･ ･) under the boundary condition 

au 
(1.8) 1 6 + eu - O x e aD ( ~ )av ~ ' ( ) 
where v is the 'unit outward normal to aD and 6 = O(x) is some given function on aD. 

The main result of this paper is, 

Theorem 1.1. Suppose that D C Rd is a bounded domain with smooth boundary aD 

and that 6 = 6(x) e [O, 1] is smooth on aD. Then there exists a number 6 > o satisfying 

the following. Ifr+ Il e llL-(D)< 6, then there exist positive numbers pl' p2 (O < pl < p2) 

such that the map (1.6) associated with the boundary condition (1.8) has infinitely many 

periodic points of all periods n = l, 2, . . ., for all pe e [l/1"l2]. 
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Remark 1.1. That u is a periodic point of F of period n means that 

u = Fn(u) 
(1.9) u ~ Fk(u) ' ',n-1, k=1,2, -

where Fn denotes the n-th iteration of the map F. In yiew of (1.5), (1.9) is equivalent to 

the set of partial differential equations, 

(r - A)ul = ph(u2), 
(r - A)u2 = kth(u3), 

(1.lO) 

n /th(ul ) ' (r - A)u = 
ui ~ uj (i ~ j), 

with the boundary condition (1.8) on ui's. Notice that it is easy to see that Fr$ has 

a fixed point u. Thus, the crucial part in the proof is the part "u ~ Fk(u) for all 

k = 1, 2, ･ ･ ･ , n T l" . On the other hand, in our proof of Theorem 1.1, it is not necessary 

that r, 6 and h aie the same for all the equations in (1.lO). 

Remark 1.2. In our theorem, r must be small, that is, either a or At must be large. 

We also need to require that O is small. That is, the boundary condition (1.8) must 

be close to the Neumann boundary condition. In particular, the case of the Dirichlet 

boundary condition (6 = l) is not covered by Theorem 1.1. However, our numerical 

computation implies that the same conclusion should be true also under the Dirichlet 

boundary condition. 

3
 



Remark 1.3. It is possible to show that F has a non-trivial periodic point of period l 

(i.e fixed point of F) for all ke e [111, oo) with some ,ll > O, for all the boundary condition 

including the Dirichlet boundary condition. 
Remark 1.4. In ou; theorem, the upper bound p2 of // for which infinitely many periodic 

points exist is finite. On the other hand, it is well-known that ;h2 = oo for the one-

dimensional unimodal map like (1.1), and hence one might expect that this would be the 

case also in the multi-dimensional case. However, there is an example of two-dimensional 

unimodal map for which /l2 < +oo. Consider the two-dimensional map, 
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(1.11) F(x, y) = (1 - I/(x2 + y2), a - ,1c(x2 + y2)), (x, y e R, a, c > O), 

which may be taken as a simple two-dimensional version of the one-dimensional map, 

(1.12) f(x) = I - 1lx2, (x e R). 
(1.12) is equivalent to (1.1) while (1.11) arises if we discretize the Laplacian A of (1.5) on 

D = [O, I] with 6 = I only with 5 mesh points and then modify slightly some coefficients 

in the resulting map. To see that u2 < +oo, it sufflces to note that (1.11) has the 

one-dimensional invariant manifold, 

(1.13) cx y = c - a, 
which is globally stable for F, that is, all points (x, y) in R2 are mapped onto the line 

(1.13) by F, so that F is equivalent to the one-dimensional map, 

(1.14) g(u) = I - A(~)u2, (u e R), 

where 
A(,l) = ,1((1 + ac) - (a - c)2l/)' (1.15) 

(1.15) implies that the folding of the parameter ,l occurs and that the bifurcation diagram 

changes along with the values of a and c. Figure 1.2 shows the relation between (1.15) and 
the bifurcation diagram of (1.14) ~ith a = l. The left part of Figure 1.2 is the bifurcation 

diagram of (1.14) when A is taken independent of ,1, where the vertical axis is for A and 

the horizontal axis for u. On the other hand, the right part of Figure I .2 shows the graphs 

of (1.15) for c = 0.33. 0.39, 0.42 and 0.45 respectively, where the verticai axis is for A and 

the horizontal axis for ,1. From Figure 1.2, we can see that if c = 0.33, A(//) is less than 1 

for all ,l ~ O, that is, (1.14) has periodic points of period one and two only. Actually, the 

bifurcation diagram of (1.11) with c = 0.33 Iooks like Figure 1.3 (i). Similar reasoning 

applies with other values of c and gives Figure I .3 (ii)-(iv), showing that /12 < +oo. 

Clearly, our map F has not a one-dimensional invariant manifold, expect for the 

Neumann boundary condition, but since Figure 1.1 Iooks very similar to the bifurcation 

diagram of the one-dimensional map (1.1), it is natural to expect that F has an on'~(or 

low-)dimensional "approximate" invariant manifold. Thus, suggested by Figure 1.1, we 

are led to the following setting for proving Theorem 1.1. 

Let ~ be a non-empty bounded, closed convex subset of a Banach space Y and set 

U = Rx ~ with x e R, y e ~. We consider a map F = (f, g) with f : U ~ R, g : U H> Y 

satisfying the following. See Figure 1.4. 

(FO) f, fx e C(U, R). 

(Fl) There exists an interval I = [a, b], (o ~ a < b), such that 

(i) f(a, y) ~ b, f(b, y) ~ a, (Vy e ~), 

(ii) fx(x, y) ~ O, (Vx e I, y e ~). 

(F2) There exists an interval I = [b, d], (b < d ~ O), such that 
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(1) f(a y) > b f(b y) < a, (Vy e ~), 

(ii) f.(x,y) ~ O, (Vx e I,y e ~). 

It will be shown in S5 that under these assumptions, 

. 31 p e C(~,1), f(~(y),y) - a, (Vy e ~). 

since c(y) e I (Vy e ~), there is a c. e I such that 

(1.17) ip. = inf{~(y) I y e ~}. 

We shall further assume 

(F3) f(b, y) ~ c., 

(F4) g : (1 U I) x ~ ~ ~ is compact. 

Here and hereafter a map is said compact if it is continuous and if the image of any 

bounded set is pr(>compact. We can now state a rather general theorem for the existence 

of periodic points, which can be applied to our map (1.6). 
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Theorem 1.2. Under the conditions (FO)-(F4), F has infinitely many periodic points 

of all periods n = 1, 2, ･ ･ ･. 

The plan of this paper is as follows. In the next section, we will give some preliminaries 

and make a reduction of our problem. The proof of Theorem I .1 is given in S3 by showing 

that Theorem 1.2 can be applied to the reduced system given in S2, and Theorem 1.2 

will be proved in S4. S5 is devoted to the proofs of (1.16) and Proposition 4.1 which are 

essentially used in S4. 
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2. PreliminarieS and reduCtiOn Of prOblem. 

Throughout this paper, Il ･ Ilp will denote the norm of LP(D) (1 ~ p ~ oo), < ', ' > the 
inner product of L2(D), and Wk'P(D) the usual LP-Sobolev space of order k. 

.Recall that D is a bounded domain of Rd with the smooth boundary aD and O = 

e(x) e [O, I] is a smooth function on aD. First, we consider the eigenvalue problem, 

(T - A)c = Icip, (x e D), {
 

(2.1) aip 
(x e aD), (1 - 6) av + eip = O, 

Let fc* be the n-th eigenvalue of the above problem and c~ be a normalized (in L2 (D)) 

ergenfunction correspondmg to n~. Since we are assuming r > o and O ~ 6(x) ~ 1, 

O < /el < ,e2 ~ /e3 ~ ' ' 

and /en HF oo when n ~ oo. Note that nl = r under the Neumann boundary condition 
(6 = O). It is well known that {ip~} is a complete orthonormal system of L2(D). In the 

following, we need the 

Lemma 2.1. nl ~> O and ,c2 ~ co with some constant co > O, as r+ ji e ll*H> O. 

Provf. This fact is rather well-known, but we will give a proof for the sake of com-

pleteness. Put 

p(x) = 6(x) 
1 - 6(x) ' 

According to the max-min principle [4] , the eigenvalue 'en is characterized by 

(2.2) /c. = sup inf {r ll u ll~ + Il Vu ll~ + J~D p(x) I u(x) 12 dcr} 

E *eEJL 
d'*E=* ll*ll2=1 

where E denotes a finite dimensional subspace of L2 (D) and dU is the usual surface 

measure on aD. Since p(x) ~: O when O ~ 6(x) < 1, we have 

'c~ ~: sup inf {r ll u jl2 + Il Vu li2} 

E *eEJL 2 2 dimE=n !1*ll2 =1 

= r+nn 
where 

n~ = sup inf 11 Vu ll~ 
E *eEl 

di~E=n ll*ll2=1 

is nothing but the n-th eigenvalue of the Laplacian with the Neumann boundary condition, 

in view of the same characterization by the max-min principle. Clearly nl = O and 772 > O. 

Take co = n2 and thus n2 ~~ co for any r and O. On the other hand, by the trace theorem 
[4] , 

foDp(x) I u(x) 12 da ~ Il p lloo JroD I u(x) I dcr 

< c ll p ll*li u ll~1(D) 
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with some constant cl > O independent of u. Since ll u ll~1(D)=fl u ll~ + 11 Vu ll~, (2.2) 

gives 

/cn < sup inf (r + cl 11 p 1100) Il u ll~ +(1 + cl ll p lloo) 11 Vu ll~ 

dimE=n llull2=1 

= r+cl ll p lloo +(1 +cl 11 p Ilco)nn' 

whence /cl ~ r + cl 11 p lloo' This completes the proof of the lemma. l 
Define the subspace Ek Of L2(D) and the orthogonal projection Pk by 

Ek = span{c1'c2,"',ck}, 

Pk :. L2(D) ~ Ek, 

for k = 1, 2, . . .. For the convenience, we set Eol = L2(D) and Poi = Id Assocrated wath 

the boundary condition (1.8), we consider the Green operator 

G = (r - A)-1. 

Lemma 2.2. PkiG : L2(D) ~ Eki is compact with 

1
 ll PkiGv ll2~ Il v ll2, Vv e L (D) 

'ck+1 

for k = O, 1, 2, . . 

This is well-known and the proof is omitted. 

In order to deal with the nonlinear term h(u) , we need LP-estimates of G. Put u = Gv, 

which solves 
(r - A)u = v, {

 
in D, 

(2.3) au 
1 o + 6u = O, on aD. ( ~ )av 

The celebrated LP-theory of elliptic equations [2] says that for all p e (1, oo) and k = 

O, l, 2, . . . 

(2.4) ' Il u llWk+2,'(D)~ Ml(ll v llWh.P(D) + 11 u llp) 

holds with a constant Ml > O depending on r, 6, D,p, k but not on v. More precisely, 

(2.5) M = M (r e D p k) l I o, , , , 
for all I r l~ ro and e e e where ro > O is any number and e is any bounded set of 
Ok+2(aD) and Ml > O depends only on ro, e, D,p and k. A simple application of this is 

Lemma 2.3. c1 e O(D) n LP(D) for all p ~ 2 with 

(2.6) M2 ~ll c1 llp~ M3 
for all r e (O,To] and 6 e e where M2 =1 D Il-P/2 and M3 > O i8 a constant depending 

only on ro > O, e and D. 
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Proof. We know ipl e L2(D) with l[ c1 I12= 1. The lower bounds comes from H6lder's 

1 =11 c1 I12~1 D Il~~ll c1 Ilp . 

To prove that c e C(D) we apply (2 4) for p = 2 to (2.1), to get 

ll ipl llWk+2.2(D)~ Ml{,cl il c1 IIWk.2(D) + Il c1 I12} 

for all r > O. Iterate this in k = O, 2, . . ., and obtain for each even integer I > d/2 

ll ipl llwl'2(D)~ OMI Il ipl ll2 

which shows ipl e C(~) and (2.6), thanks to the Sobolev embedding theorem. [1] I 

Now we can prove the 

Lemma 2.4. Let p > d/2. Then PliG : LP(D) n L2(D) ~F C(~) is compact with 

(2.7) Il pliGv llco~ M4(ll Pliv llp + Il pliv ll2) 

for all r e (O,ro] and e e e where M4 = M4(ro, e, D,p). 

Proof. Set w = PliGv GPiv PiGPiv In vrew of Lemma 2 2 we get 

(2.8) Il w ll2~ ~-2 Il pliv ll2 ' 

On the other hand, w solves (2.3) with Pliv in place of v. Apply (2.4) for k = O and 

p = 2 to deduce 

ll w llw2,2(D) ~ Ml(ll Pliv li2 + Il w ll2) 

~ Ml(1+~-2) Il pliv jl2 (by (2 8)) 

Note that by Lemma 2.1, fe2 ~ co > o for all r > O and O. Owing to the Sobolev 
embedding theorem, we are done for d = l, 2, 3, while for d ~ 4, we get 

ll w llq~ O Il w llw2,2(D)~ M5 Il Pliv ll2, 

with any q e (2 2d ). With such a q, (2.4) yields 
' d~4 

ll w llw2,'(D) ~ Ml(ll Pliv l!q + Il w jlq) 

~ M1(ll Pliv llq +M5 Il Pliv I!2)' 

Proceeding as before, we then reach (2.7). I
 

Now, we will make some reduction of our problem. Consider the dynamical system, 

(2.9) u' = F(u) = ktGh(u). 
and decompose u as 

u = Plu + pliu = zc1 + y 
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where2＝く仙，φ1＞∈児andμ＝Pナ也∈E士，and　similar1y　br也’干メφ1＋μ’．Then（2．9）

is　decomposed　as

（11・）　／ll：鳩㍍2く軌φ…＞z一くψ2，φ1＞），

where　we　have　put

　　　　　　　　　　　　　　　　　　　　μ
　　　　　　　　　　　　　　　　λ　＝　一
　　　　　　　　　　　　　　　　　　　　κ。’

　　　　　　　　　　　　　　　　αO　＝　　〈φ言，φ1＞＝llφ111婁．

Furthermore，set

　　　　　　　　　　　　　　　　　　　　　　λ一2
　　　　　　　　　　　　　　　　　η一　＝　　　　　　　　　　　　　　　　　　　　　　4αo’

　　　　　　　　　　　　　　　　　　　　　　1　　　1
　　　　　　　　　　　　　　　　　　り二一（・一一）．
　　　　　　　　　　　　　　　　　　　　　　m　　2α0

Then（2．10）can　be　reduced　to

（λ11）　　　　　｛二1：㌫劣試1了・μ），

where
　　　　　　　　　　　　　　　　　　　　　　　　　　λ（パ2）
　　　　　　　　　　　　　　　η＝η（λ）＝λmαO：　　　　　　　　　　　　　　　　　　　　一
　　　　　　　　　　　　　　　　　　　　　　　　　　　　4

and
　　　　　　　　　　　　　　　　　　　　　　　1　　　　　　　　1
（2．12）　　　Φ（〃，μ）：＝・λ｛2＜μ，φ至＞ω十一くリ，φ言＞十一〈ツ2，φ1＞｝．

　　　　　　　　　　　　　　　　　　　　　　mαO　　　　　　　m

3．Proof　ofTheorem1．1．

In　this　section，we　wi11prove　Theorem1．1admitting　Theorem1．2．First，we　set

　　　　　　γ＝砕∩0（万）＝｛リ＝卜〈也，φ。＞φ、：也∈ム2（D）∩0（万）｝．

By　Lemma2．3，we　see　thatγ⊂ム2（D）∩0（万）．We　shall　take

　　　　　　　　　　　　　Ω＝｛ひ∈γ：llμl12≦6，　llμlloo≦κ｝

where6，κ＞0are　constants　to　be　determined1ater．Fo11owing（2．11），we　de丘ne　two

maps∫：R×Ω→児and　g：R×Ω→γas　fo11ows；

（…）　　／㈱：1二賦；1・μ），

where〃∈R　andμ∈Ω．The　main　goa1is　to　show　that　Theorem1．2app1ies　to（3．1）if

r＋l1θlloo　iS　Sma11一
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It is clear that f satisfies the condition (FO). Since 

f~(v, y) = -2nv - 2A < y, ip~ > 

and l< y,ip~ >l~ll y ll211 c1 Il211 ipl ll*~ll ipl ll* e, we see that, if n > O (A > 2), 

f < O Vv > A Il c1 Il*c, Vy e ~, 

n
 

an d 

f >0 Vv< Allc1 Il*e, Vye~, 
n
 

so that (Fl)(ii) and (F2)(ii) are satisfied if we take 

a = A Il c1 Il~ Il c1 Il* 4 Il c1 Il* and d = -a 

n mao ~ A-2 6 
Note from Lemma 2.3 that there are constants Ao > 2 and ao > o such that for all A ~ Ao 

and e > O, 

a < aoe. 

Since j< y2, c1 >l~ll c1 Il* c2 and ao =11 c1 Il~~II c1 Il*, we get 

l ~(~a,y) I ~ A Il c1 Il~ {2a+ml_ao + ~6}c 

~ A Il ipl ll* I Il*c+1}6 
mao {3 Il c 

Then it holds that, for all y e ~ 

A Il c1 Il* 
f(~a,y) ~ I - na2 - {3 Il c1 Il* e + l}c 

m ao 
4A Il ipl ll* 

(4 Il c1 Il* c + l)c = l- A-2 
Set 

b = I - p. 

where 
p = p(c) = 4A Il ipl ll~ (4 Jl ipl ll* 6 + 1)e. 

A-2 
Clearly by Lemma 2.3, there is a constant po > o such that for all A ~ Ao and c > O, 

(3.3) p ~ poc. 
We must require a < b, and this is possible if 

6< . ao + po 

ll 



Now, we get 

l ~)(~b,y) I ~ A Il c1 Il- {2 1 b I + I + ~e}e, 

m ao 
< 2Allipl llooc+~, 

where 
~ = ~(c) - 4A Il ipl ll*(1 + aoc)6 

A-2 
Again by Lemma2.3, there is a constant ~o > O such that for all A ~~ Ao and 6 > O, 

~ ~ ~oe. 

Then, we have, for A > Ao, 

f(~b, y) = I - nb2 - ~(~b, y) 

A(A - 2) 
(1 - poc)2 + 2A Il ipl lloo c + ~06 < l-

1
 

l
 ~ I - ~(1 - poe)2A2 + ~{(1 - Poc)2 + 4 Il c1 Iloo c}A +~06. 

This implies that there is a number AI > Ao such that f(~b, y) is strictly decreasing on A 

for all A ~ A' and tend to -oo as A ~ oo. Therefore, s_etting b = -b, we see that there 

exists a number Au > A' such that f(b, y) < a and f(b, y) < a for all A ~~ X', thus f 

satisfies the conditions (Fl)(i) and (F2)(i). 

Moreover, because b = -b ~ -1, 

f(b y) b < 2 - ~(1 - p06)2A2 + ~{(1 - P06)2 + 4 Il c1 Iloo e}A + ~oe. 

Then there is a number Al > Au such that f(b, y) < b' < ~. for all A ~: Al' For such A, f 

satisfies the condition (F3). Thus, we have shown that there is a constant Al > 2 such 

that f satisfies the condition (FO)-(F3) for all A > A1 if e satisfies (3.4). 

Next, to check the condition (F4), we must estimate g. 

Lemma 3.1. For any v e I U I and y e ~, 

(3.5) Il 9(v,y) I12 ~ A;e_;{M(1) + (1 + 2K)6}, 2 2 

ll 9(v,y) Ilco ~ AnlM4{2M(1) + (1 + 2K)(6+Kl-;6;)} 

with p = 2 for d = 1, 2, 3 and some p > d/2 for d ~ 4, where 

(3.6) M(1) = M(1)(A) = M6(A2 + 8) 

with M6 = M6(ro, e, D). 

12 



　ProoヅBy　H61ders，s　inequa1ity，we　get　for　anyρ≧2andツ∈Ω，

　　　　　　　　　　　　　　　　　　2　　　　2　　　　　　　　　　　11μl1、≦l1沽・1lリllξ≦κ1■書・書，

　　　　　　　　　　llμ211、一11ツll；、≦K2（1一会）・書．

RecaI1the　decomposition仙＝zφ1＋リand　z：1／（2αo）十m仏Then，for〃∈1U1’，

　　　　　　　　11也211。≦1・1211φ言11ρ十21・ll1φ。ひllρ十11リ211ρ

　　　　　　　　　　　≦（1・lllφ。ll。。十11リll。ρ）2

　　　　　　　　　　　≦2（1・1211φ・ll；ρ十11μll；ρ）

　　　　　　　　　　　≦〃（・）十2K2（1一会）。書，

where　we　have1ユsed

　　　　　　　　　　　　　1　　　　　　　　　1　　　　　21・1211φ111姜1・2（瓦・・）211φ・1l；1・爾（λ2・8）”ξ一”（1）

which　comes　from　Lemma2．3．Noting　that

　　　　　　　　　　　　p汁Gん（也）二叶Gザ叶ω2，

we　conc1ude　the1emma　with　the　aid　of　Lemmas2．2and2．4．　　　　　　　　　　　　　■

　Now　we　are　ready　to　choose6andκ．Take　aλ2≧λ1and丘x　it．Recall〃（1〕＝〃（1）（λ）

given　by（3．6）．Now　we　put

　　　　　　　　　　　　　　　　　1　　　　　　　　　　　　　・：2一λ。〃（1）（λ。）・。，

　　　　　　　　　　　　　　　　　CO
　　　　　　　　　　　　　K＝3λ。〃。〃（1）（λ。）・。，

with　a　sma1160＞0chosen　so　that

　　　　　　　　　　　　　　1
　　　　　　　　　　　6く　　　　　　　　　　　　一　　　　　　　　　，　　　　　　　　　　　　　α〇十ρO
（3・7）　　　　（1＋2κ）・≦〃（・）（λ、），

　　　　　　　　　　　（1＋2K）（・十K1一書・葦）≦〃（・）（λ、），

can　ho1d．By　virtue　of　Lemma2．1，there　is　a　numberδo＞0such　that

　　　　　　　　　　　　0≦κ1≦60，　　　κ2≧co＞0，

if　r＋1■θII。。≦δo．Hence　Lemma3．1yie1ds

　　　　　　　　　　　　　　　　　　1　　　　　　　　　　l19（ω，μ）ll。≦2一λ。・。〃（1）（λ。）＝・，

　　　　　　　　　　　　　　　　　　CO
　　　　　　　　　　119（・，μ）ll。。≦3λ。・。〃。〃（1）（λ。）＝κ，

which　asserts　that　g　fu1丘11s（F4）．　　　　　　　　　　　　　　　　　　　　　　　　　　　　　■
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4. PrOOf Of TheOrem 1.2. 

In this section, we will give a proof of Theorem 1.2. Let F = (f, g) be as in Theorem 1.2 

and let {(xk, yk) e R X ~ : k = l, 2, . . . , n} be an n-periodic orbit of F. Then, 

(x2,y2) = (f(xl'yl)'9(xl'yl))' 

(4.1) = (f(xn-1'yn-1)'9(xn-1'yn-1))' (xn' yn) 

(xl'yl) = (f(xn'yn)'9(xn'yn))' 

which can be rewritten as 

n 

xl = f(f(. . . f(f(xl'yl)'y2),""yn)' 

n-l 

yl = 9(f(f(...f(f(xl'yl)'y2),"',yn l)'y~), 

(4.2) y2 = 9(xl'yl)' 
y3 = 9(f(xl'yl)'y2), 

n-2 

yn = 9(f(f( f(f(xl'yl) y2),"',yn-2],yn-lj' 1 ¥ 
~ 

Set ~n = ~ x ~ x x ~ and define the map fn R X ~n ~ R as 

n 

(4.3) fn(x y(n)) f(f( f(f(x yl) y2), ' ' ' ,y~), 

where x e R, yk e ~ and y(n) = (yl' y2, ' ' ' , yn)t e ~n. Also, define gn : R x ~n ~ ~n as 

g(fn l(x y(n-1)),yn)' 
g(x, yl)" 

(4.4) 9n(x, y(n)) = g( f (x, yl)' y2) , 

g( fn-2 (x, y(n-2)), yn-1)' 

Then (4.2) can be written shortly as 

f
 

(4.5) = fn(xl'y(n)), xl 
y(n) = gn(xl'y(n)). 

The following proposition is a key ingredient in proving Theorem 1.2. 

Proposition 4.1. Let f satisfy the conditions (FO)-(F3). Then, 

(i) for any n = 1, 2, . . ., 

(4 6) 31Pn e C(~n I) pn(y(n)) fn(Pn(y(n)) y(n)), (Vy(n) e ~n), 
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(ii) for any k = l, 2, . . . , n - 1, 

fklpn(y(n)), y(k)) e I, (Vy(k) e ~k). (4.7) 

Since the proof of this proposition is rather lengthy, we defer it to the next section 

and here, we complete the proof of Theorem 1.2, admitting Proposition 4.1. Define the 

map Kn : ~" ~ ~n by 
Kn(y(n)) = gn(Pn(y(n)), y(n)). (4.8) 

Since pn e C(~n, I), and since (4.7) holds, Kn is a compact map from ~n into itself, 

because so is g by the condition (F4). Furthermore, ~n is a bounded, closed, convex 

set of Yn. Therefore Schauder's fixed point theorem applies and Kn has a fixed point 
~(n) = (gl' ~2, ' ' ' , y~n) e ~n, that is, g(n) satisfies 

~l = 9(fn-1(Pn(~(n)),~(n-1)),~n)' 

~2 = 9(pn(~(n)),gl)' 

(4.9) y~3 = 9(f(pn(~(n)),~l)'y~2), 

~n = 9(fn-2(Pn(g(n)),~(n-2)),~n-1)' 

This and (4.6) show that (pn(g(n)), g(n)) e R x ~~ solves (4.2). Therefore, (pn(~(n)), ~l) e 

R x ~ is a candidate of n-periodic point of F. On the other hand, thanks to (4.7) and 
since pn(g(n)) e I, it holds that, for all k = 1, 2, . . . , n - 1, 

fk(Pn(~(n)), ~(k)) > O > pn(~(n)) 

holds, which implies that (pn(~(n)),~l) cannot be a k-periodic point of F for all k = 

1, 2, . . . , n - 1. Thus we are done. l 

5 PrOOfS Of (1.16) and PrOpOSltlOn 4 1 

Proof of (1.16). 

By the Intermediate Value Theorem and by (F2)(i), there is a ~(y) e I such that 

f(~(y),y) = a, (Vy e ~). This ~(y) is unique in I by (F2)(ii). To prove that ip(y) is 

continuous, Iet {y*} C ~ be a sequence satisfying y~ ~ y, (n ~~ oo). We shall prove 

that c(y~) ~ ~(y). Suppose this be not the case. Then, there exists a subsequence 
{y*k} such that I ~(y~k) - ip(y) l> e for all k = 1,2, . . ., with some c > O. Since I is 

closed and bounded in R, there exists a subsequence {y*k, } and ~ ~ ~(y) e I such that 

~(y*k,) ~ ~, (k' ~ oo). Now by the definition of ~, we have f(~(y*k,),y*h,) = a, and 

therefore f(ip,y) = a by (FO). Hence, the uniqueness of ~(y) implies that ip = ~(y), 

which is a contradiction. Thus, ip is continuous in ~. I 

Proof of Proposition 4.1. 
The proof of Proposition 4.1 will be based on the following lemma. 

Lemma 5.1. Let f be a map satisfying the conditions (FO)-(F3). Let ip. be as in (1.17) 

and let f~ be a map defined by (4.3) from R x ~" into R. Then for each even integer 

n = 2k, k = 1, 2, . . ., the following holds. 
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(HO)~ f~, f~,* e C(R x ~", R). 

(Hl)~ There are two maps ch and d~ e C(~", I) satisfying the following. 

(i) a < c*(u) < d~(u) < b, (Vu e ~~). 

(ii) f~(c~(u),u) ~ ~., f*(d~(u) u) > b (Vu e ~~) 

(iii) f~,.(x,u) ~ O, (Vu e ~", x e I*(u)), 

where 

(5.1) I*(u) = [c~(u), d~(u)] C I. 
(H2) There are two maps e~ and d~~ e C(~",1) satisfymg the followm9 

(i) b < d~(u) < ~"(u) < a, (Vu e ~~). 

(ii) f~(~h(u),u) ~ ~., f~(d~(u),u) ~ b, (Vu e ~ ) 

(iii) f~,.(x,u) ~ O, (Vu e ~", x e I~(u)), 

where 

(5.2) I~(u) = [d~(u), ~"(u)] C I. 
Proof. We prove this lemma by induction. First, consider the case n = 2 and set 

u = (yl'y2) e: ~2. It is clear that f2 satisfies the condition (HO)2' By the Intermediate 

Value Theorem and by (F1), for each y e ~, there exist c(y), ~(y) e I such that 

f(ip(y),y) = b, (Vy e ~) 

f(~'(y),y) = a, (Vy e ~). 

These c(y), V'(y) are unique in I and that c, ~ e C(~, I) can be proved in the same way 

as in the proof of (1.16). Note that by the condition (F1)(ii), c(y) < ~(y) for all y e ~. 

Then the conditions (F1)(i) and (F3) imply that 

(5.3) f2(c(yl)'u) = f(f(ip(yl)'yl)'y2) = f(b,y2) ~ ip., (Vu e ~ ) 
f ({p(yl) u) = f(f(p(yl)'yl)'y2) = f(a,y2) ~ b, (Vu e ~2):' 

On the other hand, it is clear that f(x, y) e I if y e ~ and x e [c(y),~'(y)] C I, and 

therefore it holds that 

(5.4) f2,'(x,u) = f.(x,yl)f (f(x yl) y2) > o (Vu e ~ x e [c(y ) p(y )]) 

Now, putting 

c2(u) = ip(yl)' 

d2(u) = {p(yl) 

will prove (H1)2' 
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Similarly, we can show the existence of a unique map c e C(~, I) which satisfies 

f(c(y), y) = b, (Vy e ~). 

Then, with ~2(u) = c(yl) and d2(u) = ~(yl) where ~ is as in (1.16), we see that (H2)2 is 

fulfilled as well. Thus we proved the lemma for n = 2. 

Next, assume that (HO)* - (H2)~ are true for some n = 2k. In the sequel, we use 

the notation 
w = (u, z) e ~" x ~2 = ~"+2 

Since by definition (4.3) 

f~+2(x, w) = f2(f~(x, u), z) 

holds, it follows from (HO)2 and (HO)~ that f*+2 satisfies the condition (HO)~+2' Again 

by the Intermediate Value Theorem, and from (H1)*, there exist c(w), ~(w) (Vw e ~"+2) 

such that for any w = (u, z) e ~"+2 

ip(w), fP(w) e I~(u), 

(5.5) f~(ip(w), u) = c2(z), 
f~({p(w), u) = d2(z). 

Similarly by (H2)*, there are ip(w), ~(w) (Vw e ~"+2) such that such that 

c(w), ip(w) e I~(u), 

(5.6) f*(ip(w), u) = c2(z), 
f~(ip(w), u) = d2(z). 

As before, ip, ~ are unique and in C(~", I) while ip, ~ are unique and in O(~", I). By the 

condition (Hl)2(ii), we have 

f~+2(c(w) w) = f2(f~(c(w),u),z) 

= f2(c2(z),z) 

<_ ~*, 

and also 

f*+2({p(w) w) = f2(f~({p(w),u),z) 

= f2(d2(z),z) 

~ b. 

Similarly, it holds that 

(5.7) f*+2(c(w),w) ~ ~,, 
f~+2(~(w),w) ~ b. 

As a consequence, f*+2 satisfies the conditions (H1)*+2 and (H2)*+2 if we set 

c~t+2(w) = ip(w), 

d~+2(w) = (p(w), 

(5.8) ~~+2(w) = ~(w), 
d*+2(w) = ip(w). 
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Note that 
(5.9) In+2(w) = [c*+2(w),d~+2(w)] C In(u), 

I~~+2(w) = [d~~+2(w),~n+2(w)] C I~*(u). 

Moreover, from (5.5), (5.6) and the conditions (H1)~(iii), (H2)~(iii), it follows that 

f (x u) e 12(z), (Vw e ~~+2 x e I~n+2(w) U In+2(w)). 

So, by (Hl)2(iii), (H2)2(iii), (H1)n(iii), (H2)n(iii), (5.1), (5.2) and (5.9), it follows 

that 

fn+2,x(x, w) = f~,*(x, u)f2,:c(f~(x, u), z) ~ O, (Vw e ~n+2 x ~ In+2(w)) 

and that 

f~+2,x(x, w) = fn'x(x, u)f2,'(f~(x, u), z) ~ o, (Vw e ~~+2 x e I~+2(w)) 

This completes the proof of Lemma 5.1. l 
Proof of Proposition 4.1(i). 

We continue to use the same notations as in the proof of Lemma 5.1. First, we consider 

the case of n = 2k, (k = 1, 2, 3, . . .). Frorn the condition (H2)*(ii), (5.6) and (5.8), we 

h ave 

f~(~(u),u) ~ ~' < b < ~n(u), 

f~(~"+2(w),u) = c2(z) > o. 

Then, there is a unique 

(5.10) p~(u) e (~n+2(w), ~n(u)) C In(u) 
such that 

p*(u) = fn(P~(u), u) 

for all u e ~" by the Intermediate Value Theorem and (H2)n(ii),(iii). Also by the 

contradiction argument as in the proof of (1.16), we can show that pn is continuous in ~". 

Next, we consider the case n = 2k + I (k = 1, 2, 3, . . .). By (5.6) and the definition of 

c2, and with the notation w = (v, y) e ~2k+1 x ~, 

f2k+1(~2k+2(w),v) = f(f2k(~2k+2(w),u),y) 

(5.11) = f(c~2(z),y) = f(c(y),y) = b > O. 

Also, by (H2)2k(ii), (5.6) and (5.8), there is a d2k+1(v) e [d2k(u), d2k+2(w)) such that 

f2k(d2k+1(v), u) = b. (5.12) 

Then we can see that 

(5.13) f2k+1(d2k+1(v),v) = f(f2k(d2k+1(v),u),y) 
= f(b,y) ~ ~. < ~ < d~2k+1(v). 
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In addition, we see that 

(5.14) f2k+1'x(x, v) = f2k,'(x, u) f:c(f2k(x, u), y) ~ O, 

for all x e [d2k+1(v), ~2k+2(w)] C 12k(u), because f2k(x, u) e [c2(z), b] C I for such x. Then 

(5.11), (5.13) and (5.14) imply that there exists a unique 

(5.15) P2k+1(v) e (d2k+1(v), ~2k+2(w)) C 12k(u) 

satisf ying 

P2k+1 (v) = f2k+1(P2k+1(v), v), (Vv e ~2k+1). 

The continuity of p2k+1 m ~2k+1 can be proved by the same way as (1.16). l 

Proof of Proposition 4.1(ii). 
We again use the same notation as in the proof of Lemma 5.1, that is, w = (u, z) e 

~2k x ~2. Also, we will use the notation y(~) = (yl' y2, ' ' ' , y~). Note that u = y(2k). First, 

we consider the case n = 2k. Since (5.10) holds, by (5.5), (5.9) and (H1)m(iii), we have 

f~(p~(u), y(~)) e [c2(z), d2(z)] C I, Vm = 2, 4, 6, . . . , 

Also, by the condition (Fl)(ii) and (5.16), we see that, for all m = ' ' , n - 2, 2,4,6, . 

fm+1(P*(u),y(~+1)) = f(f~(p~(u),y(m)),y) 

e [f(d2(z),y),f(c2(z),y)] 

= [a,b] = I. 

and, it holds that 

f (p*(u), y) e [f(d2(z), y), f(~2(z), y)] = [a, b] = I, 

because p*(u) e I*(u) C 12(z). 

Next, we consider the case n = 2k + 1. Since (5.15) holds, we can show similarly as 

above that 
f~(p2k+1(v), y(m)) e I, (m 1, 2, . . . 2k - 1). 

Moreover, by (5.6), (5.12), (5.15), and (H2)2k(iii), 

f2k(P2k+1(v), w) e [f2k(~2k+2(u), w), f2k(d2k+1 (v), w)] = [c2(z), b] C I. 
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