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Abstract

We prove the existence of global weak and classical solutions of the Stokes Ap-
proximation equations for two-dimensional compressible viscous flows. The initial
data can be arbitrarily large. This is achieved by new a priori estimates for the
pressure and the corresponding effective pressure which is defined to be the pres-

sure minus the divergence of the velocity.
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1 Introduction

The Navier-Stokes system for a compressible viscous fluid for the barotropic motion has

the form

L1) pur+u-vu)=plAu+ (p+ ) y(dive) - v P,

pe +div(pu) =0, P=P(p), z€ R*,t>0.
Here, the unknowns are the density p = p(z,t) > 0 and velocity u = u(z,t) € R", z € R",
t > 0, while P is the pressure governed by the equation of state P = p?, v > 1; u and A
are viscosity constant, g > 0, 3A + 2 > 0. div and 7 are the usual spatial divergence
and gradient and A is the Laplace operator.

The system (1.1) has been investigated most thoroughly for one-dimensional flows with
plane waves [4]-[6]. For multi-dimensional flows, local existence theorems are known for
solutions with arbitrary norm and the global existence is established for solutions close to
equilibrium states [2], [3], [11]. Recently in [12], V.A.Vaigant and A.V.Kazhikhov proved
the global existence to the periodic initial-boundary value problem with arbitrary initial
data for two-dimensional flows in the case of A\ = p#, 8 > 3. With a similar growth
condition on P(p), P.L. Lions also obtained global weak solutions in [9], but the detail of
the proof is not given there.

On the other hand, approaches to the Navier-Stokes problem have been intensively
sought with simple hydrodynamic models. One of the best-known simplifications of the

Navier-Stokes System is the Stokes approximation

pug = pAu~+ (p+ A) 7 (di -VP,
12) puc = pAu+(p+ ) v(dive) - v cE RNt 0,

pt +div(pu) =0, P = P(p),
where g = const. > 0 is the mean density. This is a good approximations for strongly
viscous fluids. For the system (1.2) the global existence is known only for the periodic
boundary condition [12], and its proof does not apply to the Cauchy problem because the
natural solutions are then such that p(z) — p as || — oo so that p and P cannot be in
L'. In this paper we prove the global existence of such weak and classical solutions to
the Cauchy problem in R? with large initial data. The estimate which replaces the L!

estimate of the pressure available in the periodic case is a bound of the pressure by the
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corresponding effective pressure *.

For simplicity, we take 7 = 1, A = 0, and study the system,

w=Au—-VP, P=P(p)=p,

(1.3)
pe +div(pu) =0, =€ R*t>0,

under the condition

(1.4) p—1, v—0 aslz|— oo

and with the initial data

(1) u(z,0) = wo(z), p(z,0) = po(z), =€ R

To state our result more precisely, we need the definitions of weak and classical solu-

tions which are similar to those given in [12].

Definition 1 A weak solution to problem (1.8),(1.5) is a pair of functions (u,p) such
that p, P(p),u, v u € L} (R? x (0,00)) and for all test functions ¢ € C$°(R? x (—o0, 0)),

(16) [, 08,0z + [ [ (06 + pu- 7 ¢)dadt =0

and

(1.7) /R ugd(-,0)dz + /0 °° /R [ude+ P(o) v+ Vu- v dldedt = 0.
hold good.

Definition 2 A classical solution to problem (1.3)-(1.5) is a pair of functions (u,p),
u € C*(R? x (0,00)), p € C*(R? x (0,00)), such that (1.3),(1.5) is satisfied everywhere
in (R? x (0, 00)).

As stated above,we shall look for a solution such that P(p) — P(p) =1 as |z| — oo.

To this end we need
(18) vale) =0 [

* After the submission of the present paper, P.L. Lions kindly informed us about his book [10] which

P 1 |s7—1|“

2 8 —

ds.

was just in press. There,the Cauchy problem for (1.2) is also solved, but under the conditioin p — 0
(Jz| = o). Apparently, this case can be solved also by our method replacing the function ¥, (p) defined
in (1.8) below by P*~1(p), and actually, the remaining part of the proof is very similar to each other.
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Note that 14(p) > 0 for all p > 0, 14(p) ~ 1 for small p and ¥a(p) ~ %P(p)“ for large p.
Moreover, it holds that

(19) obL(0) — alp) = =1

pr—1"

Our main results are

Theorem 1 Suppose the initial data uo € WHI(R?) for any q € [2,4] and ¥4(p0) €
LY(R?) for any o € [2,4], and suppose P(p) — 1 € L*(R?), 0 < p; < po(x) < py < 00
where py, p; are constants. Then the Cauchy problem for (1.3), (1.5) with the initial data
(po, uo) has a global weak solution (p,u) and for any fired T > 0

(1.10) u € L®(0,T; WY(R?) n LU0, T; WY(R?)), for any q € [2,4]
(1.11) Yalp) € L®(0,T; L}(R?)), for any o € [2,4]

(1.12) P(p) —1€ L0, T; L%(R?), for any q € [2,4],

and there are positive constants M, M such that M < p(z,t) < M.

Theorem 2 Suppose the initial data (ug, po) satisfy the conditions of Theorem 1 and
suppose further ug € WL9(R?), P(py) — 1 € WH4(R?), for some ¢ > 2,1 > 2. Then

(p,u) of Theorem 1 is a classical solution with

o*pP

(1.13) at,@ € L®(0, T; W'—*4(R?)),
k

(1.14) %t-:-‘ € L3(0, T; W-++19(R2),

forany0 <k <L

2 A priori estimates

In this section we derive L? estimates for smooth solutions to the problem (1.3) and (1.5).
These estimates will be used to construct both classical and weak solutions. .The first
energy estimate can be obtained by multiplying the first equation in system (1.3) by u
and the second equation by ¥4(p), followed by integrating over R?:

(2.1) dii /. z[%!u(z,'t)lz + a(p(a,lde + [ |7 u(z, O dz =o0.



In the following lemma, which is a key ingredient in obtaining a priori estimates, we
derive a bound for the pressure P — 1 in term of the bound of the effective pressure B in

L*(R? x [0,T]). where B is defined in the form ([2],{13])
(2.2) B=P-1-divu.

Lemma 1 There exists a constant C > 0 and

t
[ Yalo@ 0)dz + [IIP(r) = Lgoqandr

(2.3) t
<Ol Yaloo)dz + [ 1BGe(aeydr]

holds for any ezponent o > 1 and any t € [0, T).

Proof. For o > 1, we multiply the second equation in system (1.3) by ¢/,(p) to obtain

|P — 1]
P-1

divu = 0.

7]
(24) E"pa + diV(u"/}a) +
Since divu = P — 1 — B, integrating over [0,¢] x R?, we obtain

/RZ ba(p(, 1)) dz + /Ot /R |P — 1]z

(2.5)
< /R Yalo(z,0))dz + /0 /R |P —1|""Y|B|dzdr.

According to the Young inequality a®~b < ea® + C.b* we obtain (2.3).

The main result of this section is the following.

Lemma 2 If ug € Wh(R?), v,(po) € L*(R?) for Vo € [2,4] and B(-,0) € L*(R?), then
there is a constant C(T') > 0 depending only on these norms and T > 0 such that

sup (||Bll32(g2) + Il rot ull 22 pay + lullzacrz))

ogzgg
(26) + [ (ot xot ullfaqaey + lull & wliagasy + 1| 7 Bl eyt

<o),
T « [« 3 [+
any S o0 [ OBl + 1P = Unaey + 17wl
< c(T).
T 4

(28) | el < 0.

Here (2.7) holds for any o € (2,4].
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Proof. We shall make repeated use of various standard Sobolev inequalities and em-

bedding theorems. The most basic of those is the bound
(29) [ Wwlde < o@)([ | v ulds) T

for w € WI1(R™) (see [14]). Applying Holder’s inequality in an elementary way, we then

easily derive from (2.9) the estimates
1 —2\ 1 1
(2.10) ([, wldz)t < o([ [wl([ | wlde)?

for ¢ > 2 when n = 2. (2.10) shows that uy € L*(R?) if uo € WH2(R?).

Since A = 7 divu — rotrot u, the first equation of (1.3) can be rewritten as
(2.11) u; +rotrotu = — 7 B.
Multiplied by u, and integrated by parts over R?, this gives

(2.12) / |rotu[2dx+/ |u,|2dx—-/ Bdivudz.

2dt

On the other hand, since rot and v are orthogonal, (2.11) also gives
/ luc*de = / |'v B*dz + / | rot rot uf*dz.
R? R2 R?
Finally, since divu; = P; — B;, we get

/RzBdivutdx— —‘ia/ IB|2+/ BPdzx.

Now we can write (2.12) as

1d

(2.13) 2dt
= /R2 [Puy B — (y — 1)PBdivuldz.

[ (1B +rotuf )dx+/ (17 BI* + | rot rot uf*)dz

Here we have used the equality
(2.14) P, + div(Pu) + (y — 1)Pdivu =0,

which comes from the second equation of (1.3) with P(p) = p”.
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Next we multiply the first equation in (1.3) by u|u[?"? for an arbitrary finite ¢ > 2

and integrate over R? to obtain

d -  —
7 /R ulfdz + /R (@l v ul + g(g = 2)ul"? 7 [ul*)dz

(2.15)
= q/RZ(P — 1) div(u|u|""?)dz.

Consequently, taking ¢ = 4 in (2.15) and adding (2.13) to (2.15) we arrive at the inequality
d 2 2 4
¥ /RZ(IBI + |rot ul® + |u|*)dz
(2.16) +/2([ v B + | rot rot u|? + |u)?| v u|*)dz
R
<G [ (1P =1lluf| v ul + Plul| v Bl + P| v u||Bl)dx.

We write the right-hand side of (2.16) as C,(I;+I>+13). Applying the Schwartz inequality,

I, can be estimated as

1]

I /m [P —1||u|*|'v u|dz
LBl + 1 divuDluf*| v ulde

C [ (BFul +] 7 ufful)ds.

(2.17)

(AN

IA

It follows from the embedding inequality (2.10) with ¢ = 4 that

/R, IBI*lul’dz < ||BllZllullzs < ClIBlezll v Bllzallullzzll 7 ull 2,
1 1
/m lul| vulde < [lufllell 7 ulleell wullze < CllulllZall 7 [Pl 20l & wllza ]| 7 2.

By virtue of (2.1), we have ||ul|z2(r2y < C. Then we can bound the right side of (2.17) by

I <eallvBli: +ellull v ulllf: + esll 7 ull2ll 7 wliZe

(2.18) \ \ ) )
+C(I 7 wllzz MBIz + | 7 ullZ2 lullze),
where €;, €5, €5 are arbitrary positive numbers and C' > 0 is a constant depending only on

them. The second term can be estimated similarly as

I; < [pe(|B]+ |V ul+1)ul| v Bldz
< el v BliZ. + C(NIBIlulllZ: + lllull 7 wlll7: + |lulZ.)
< el v BllZz + ealllull v ulllfe + eall v ull2[| 7 ulfs
+C(l v ullZ[|BllZ: + | 7 wllZallullza + 1)

(2.19)
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For the third term we have

I < [ (vul+|Bl+1)|vullBlds
(2.20) < Bl 7 ulloell 9 wllze + 1BIRN ¥ ull o
+I v ull%s + B2
Note that
@21)  [IBllell v ullell v ullze < eoll v ulleell 7 ullde + CIBIGl 7 wllzz,

and ||B||2:]| 7 ullzz < C|| v Bl|z2||Bll12|| v u||z2, we then easily derive the estimates of I

as follows:

(2.22) I <el|vulbdl vl +ei v B3
+C([| v ulli: + DIIBIZ: + Cll v ull3:-

Let us take e; < g5, 62 < 3¢, and integrate (2.16) over [0,¢] with the right-hand side

estimated by (2.18), (2.19) and (2.22). Then we obtain

Jrz(|B|* + | rot u|? + |u|t)dz

+f0tfRz([ ¥ B|? + | rot rot u|? + [ul?| v u[?)dz
<efsllvulleell v ullla

+C L+ [ 7 ullZ)IBI3: + lluflie) +C

(2.23)

for any € = zg-€3 > 0. Set A(t) = || v ul|7.. From the energy equality (2.1), we have
t

(2.24) / A(r)dr < C.
0

The function y(t) and 2(t) are defined as

(225)  (®)= sup (1B Mlbagmn + 1l otul,m)Eagen + s

2(t) =V B(, )%y + llTot rot u(-, )|[72(pe)
Hlllul, Ol 7w )l Z2(r2)-
Then inequality (2.23) can be strengthened as follows: .

(2.26)

y(t)+ f§ 2(r)dr < e ffA()H|| v uffidr

(2.27)
+C [H(A(T) + Dy()dr + C.
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Applying the Schwartz inequality to the first term on the right-hand side we have

[ @) uladr
(228) < ([ Amani([ 19 ulitadn)?

<l Vullb((o,:)xm)-
Let us show that
(2.29) | 7 ullzarexo,my < CUIP — 1lzs(rexqo,my + 1)

Define ¢ and @ by

(2.30) po—Dp=P—-1, ¢(z,0)=0,
(2.31) i — Ae=0, u(z,0)=1uo(x).
Then,

(2.32) u=—-p+1i,

and by the well-known parabolic estimate, [8],

leellzacrexpo,ryy + 17 @l o crexom

(2.33)
S C|P = 1|lsrexpay, 1<B<oo,

while it is easy to see that
(2.34) | ¥ @l La(rexo,r)y < T3 || 7 woll 12 (r2)-

Thus (2.29) follows with # = 4 in (2.33) and (2.34). Taking into account Lemma 1, we

conclude that

bl 2 ¢ 4 3 ‘ 414
| A @l vulbar <o([ Ivultant <o([ 1P -1t} +c

t t 1
< O([ I1Bliudr)t + C < O([ IBIR:ll v Blizdr)} + C.
0 0
Finally, we find that

(035 ([ I1BI3l v Blsdn} < y®}([ =(r)an)} <y + [ =(r)ar
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Here we used the definitions (2.25) (2.26) and took into account the fact that y(t) is a
monotone nondecreasing function. Then, by choosing € sufficiently small, (2.27) obviously

implies the inequality
t t
(2.36) y(t) +/0 z(7)dr < C/o (A(T) + 1)y(r)dr + C.

Using the usual Gronwall inequality, we obtain that for any fixed time T, y(t) and f§ 2()dr

are bounded in [0,T]. Now we have

sup (||B||Zs + [ rot ullZz + [[ullze)
0<T<T

T
(2.37) + [ (rotrotuls + ljull v ull}s + 1| v Bla)ar
<o),
and
t t
(238) [ [ |Bltdedr < [(IBIEI v Bliidr < C(T), Ve [24)

Hence, it follows from Lemma 1 that

(239) [ LR = Dl + | updsde < €(T), Vg€ 2,4)
The inequality (2.8) can be obtained by using the embedding inequality
(2.40) [wllz=(rey < Cllwllwrars) ¢ > 2.

Now we complete the proof of Lemma 2.

3 Upper and lower bounds for the density

The estimates obtained in the preceding section permit us to establish that the density p

is bounded from below and above.

Lemma 3 If ug € W}(R?) for any ¢ € [2,4], Ya(po) € L'(R?) for any a € [2,4],
B(-,0) € L*(R?), and 0 < p; < po(z) < p2 < 00 with some constants py, ps, then for any
fized T, there ezist positive constants M(T) and M(T) such that

(3.1) 0< M(T) < p(z,t) < M(T) < o0, (z,t) € R* x [0;T).
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Proof. Introduce the Eulerian coordinates (z,t) which are related to the Lagrangean ones

(y,t) through the relations
(3.2) 2(y7) =y + [ ulz(y,s), s)ds.

Then we can rewrite (2.14) into the form

(3.3) Po+u-yP+yP*—yP(B+1)=0,
d1 1
(3.4) %P T ’YF(B +1) =1,

where % = g; + u - 7 is the material derivative. Solving this differential equation gives

_ P(y))exp {y f(Be(y, ), ) + 1)dr}
@5 Pl D= b ) Rexe (7 15 (B(ely, 8),5) + Ddshdr

Clearly, the lemma follows if it holds that

(3.) | [ Batw,m),7)dr < BD),

for any t € [0,T] and y € R? with some constant B(T") > 0. To prove this, let ¢ and @
be as in (2.30) and (2.31), and notice that

B = P-1-divu=P—-1+A¢p—divi=¢;, —divi
3.7 = g+u-vVo—u-ve—dvi

d
= E(,a-|-|v<p|2—z'L-vtp—divﬁ.

Integrate this along the Lagrangean coordinate, and since ¢(z,0) = 0, we have

[ Bty i = olew0,0+ [ (19 e(E@m,mF
(3.8) . ~ (xz(y,7),7) - 7 p(z(y,7),7)
— divi(z(y, 1), T))dt.

Hence,
!fot B(z(y, 7),)dr| < ”‘P||L°°(R2x(0,t))

(3.9)
+C [(I v @ll}e + lEll}e + || 7 @l o) dr.
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We shall estimate the right hand side. First, by the Sobolev theorem

IA

llell oo rex(0.67) c¢ z?ﬁ)(llw('ﬂ')”u + |7 oy 7)lze)

(3.10)

IN

C sup (llo( )llpe + llu( )llze
T€(0,t)

+lla(, 7)llze),
because 7 ¢ = —u + @. Due to (2.33) and Lemmas 1 and 2, we get
t
(3.11) o, Dllze < [ lleel, Pllzedr < Elledllzacaonony < O,

(3.12) lu(-, t)||Leqrey < C,

and clearly,

(3.13) lallze < Jluollzs.
Therefore,
(3.14) lellLe(rzx(oy < C(2).

On the other hand, again by the Sobolev theorem,

615) [ Uvetnledr <C [U7 ol DI+ 192
The last term can be estimated by (2.33) combined with Lemma 1 and 2, while
(316) [ 190D < C [t + it Dl < C(T)

by (3.12) and (3.13). Finally,

(3.17) L < [ uolmdr < Celluolyne,

and using the well-known L? — L? decay estimate of the solution of the heat equation (8],

n

- nel 1
(3.18) Na(, T lleoermy < CE2E R Jugllpagrmy, 1<p < g < oo,
we have
t t
(319) L U9 a6 lemgndr < € [ 4 v volloacueydr.

Combining these estimates proves (3.6), and hence substantiates the lemma.
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4 Existence of classical solutions

In this section we apply the a priori estimates of Sections 2-3 to complete the proof of
Theorem 2 stated in Section 1. To estimate higher derivatives of u and P, we need the
following estimate. A Similar estimate was stated in [12], but the proof is not found there.

We gives a slightly different version of it.
Lemma 4 For any ¢ > 2 we have

| v u(z, t)|| Lo (R2x[0,])

(4.1)
< C”P”Loc(RZx[O,T]) ln(l + “ \V/ P”L‘”(O,T;L#(R’))) +C,

where C > 0 is a constant depending only on q.
Proof. From the first equation in (1.3) we have

'U,(.'ZI, t) = f(: fRz K(:L‘ - E) t— T)VEP(§7 T)dfd'r

(4.2)
+ fRz K(.’L‘ e f, t)UQ(f)df,

where K(z,t) is the fundamental solution of 3% — A in R? x [0,00) given by
_ 1 |=|?
(4.3) K(I,t) = %exp {—T}.
Let ©q = {{ € R4 < |z — ¢| < d,d > 1} and from (4.2) we have
t 2
(vl < [ [ [VIK@ =&t =)(PE) - Ple,m)ldedr

(4.4) + [ IVEK(z =& =r)(P(E,T) — Plz,7)|dedr
+ [ 1K@ -6 T u(©)ldE.

We employ the standard notation for Holder norms,

z,yeR? lx - yl
z#y
for functions w : R? — R. Noting that
2
(4.6) |2 K (z,t)] < Ct 2exp {—-Ol—xt—},
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we get the following estimates.

[ o, < ) forn o (o= yp, mdear

t ‘:, t roo Ta+1 7,2
. < -c= -
(4.7) < C{/o /0 +/0 /d } = exp { Cr}drdToiliEg(P( v T
< C(1+1t%) sup (P(-,7)ed™®, VO<a<l,
<7<t
and
: ro o — €
< —_— oo 2
ATy R T Se—
t rd p r
(48) S C‘/(; -/iy ﬁeXp{—C;‘}d’rdT”P“Lm(Rzx[o'q)

< Cl|Pllze(raxio nd.

The conclusion of the lemma will then follow by taking d = max {1, sup Loo(rexo,7)) (P T))a}y
and using the Soblev inequality

2
(4.9) (P)a £C||V Pllpere, oa=1- P p>2.

This lemma allows us to derive estimates of higher derivatives of « and p.

Lemma 5 If uy and py satisfy the assumption of Theorem 2 in section 1, then there is a

constant C(T) > 0 depending on these norms in the space indicated there and on T > 0

such that
8*P(p)

. P kg g2y <
(4.10) oiltlgT “ ET [l ka(R?) S Cc(T)
and

%y
(4.11) ”ﬁ”w'“-km((o,T)sz) < C(T).

Proof. Differentiation of the second equation of (1.3) with respect to the space variables
z yields the equation

ov P
ot

(4.12) +(u-Y)VP+ (VP -Y)ut+vydivuy P+yPydive =0.
Multiplying this by r| 7 P|""2y P for r > 2, and integrating over R? give the inequality

AR

(4.13)
< C(IV* g rey + (I 7 llzmqraxiop + DIl 7 Pllz-(z2y),
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with the help of Lemma 3. Then for the non-negative function

(4.14) Cy(t) = Sup, | 7 Pl (r2),

we obtain by integrating (4.13) over (0, t),

(415) 5e(®) S 4(0) +C [ 4 (r)[1+1n(1 + 4 (7)) dr + C.
Here we used Len;ma 4 and the estimate (cf, (2.33)).

(4.16) luell - (rexory) + 1726l (r2xomy) < C + | 7 Pllor(r2x(omy)-
(4.15) gives immediately a bound for y,(t), and consequently (4.16) yields
(4.17) Nuell - (r2x 01y + 19 ull - (R2x 07y <

while the second equation of (1.3) leads to

(4.18)

7]
— |- <C.
OEEIS)TH gt 1LT(R?) =

Proceeding with further differentiations, we obtain the series of estimates (4.10) and

(4.11). .

Lemma 6 is now sufficient to construct smooth global solutions to (1.3) for arbitrary

large initial data. See [11].

5 Existence of weak solutions

For proving the existence of weak solutions, let (pp, uo) be initial data as described in
Theorem 1 and 75 = Js(z) be the standard mollifier, and define
(5.1) Po=Js*po, UQ= js * Uo.
Then there is a smooth global solution (g%, u®) of (1.3) with initial data (p§,u§), thanks
to Theorem 2. The a priori estimates of lemmas 2 and 4 then apply to show the
Lemma 6 There exist a subsequence 6 = 6, — 0 such that:

% — p  weakly in L9((0,T) x R?) Vg, 1<¢g< o0

P(p’) = P weakly in LI((0,T) x R?) Vg, 1<g<oo

u’* - u  weakly in L2(0, T; WH2(R?))

B% — B weakly in L*(0,T; W'?(R?))
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with some limits p, P, u, B.

Now we show that the limit pair (p, v) is indeed a weak solution of (1.3) with initial data
(po, uo). First, we show that {uf} and {B?} are compact sets in the space L*(0, T; L2(£2))
for any bounded open set 2 C R?. To this end, we need

Lemma 7 {uf} and {Bf} are bounded in L*(0,T; W~12(Q2)) for any open set Q in R?.
Proof. From (1.3) we have that

(wd, 8)] = (B — v P(s"), 4)]
(5.2) =1 [ (Ve v ¢ - (P(") — 1) div ¢)da]
< (I llwragan + 1) = U)oy Vb € W (@),

In the same way, note that B satisfies
(5.3) B;— A B = P, = —div(Pu) — (y — 1)Pdivu,

we have,

(B!, 8)| = (& B® — div(P(p*)u’) — (v — 1)P(p°) dive’, )|

(5.4)
< (1B llwracrey + YIP(0%) oo ey 16 w2 re) | Bl w2 2

for any ¢ € Wy*(Q). Thus we have proved the lemma. 1

On the other hand, {u’} and {B®} are bounded in L%(0,T; W»?(Q2)) by Lemma 6,
and note that W1%(Q) —— L?(Q) — W~1%(Q), where the symbol < is the continuous
embedding while << is the continuous and compact one, so that we can apply one of
celebrated compensated compactness theorems (see [7] Aubin-Simon theorem) to conclude
that {u’} and {B®} are compact sets in the space L%(0,T’; L*(2)) for anyvbounded open

set © in R?. We can now choose a subsequence § = §, — 0 such that for any Q,

(5.5) u®% — u strongly in L*((0,T) x Q),
(5.6) B% — B strongly in L*((0,T) x ),
(5.7) P ub — pu  weakly in L*((0,T) x ),

This means that we can go to the limit in the equation (1.6) for (0°, ). Thus the limit
(p, u) also satisfies (1.6).
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Next we shall show that P(p) = P. From the continuity equation (1.6) we have the
following equality for the limit (p, ) (see [1] Lemma 2.1),

(5.8) %I; +div(Pu) + (y — 1)Pdive =0,

in the distribution sense. Since B = P — 1 — div u holds for the limit u, P, B, we have
o°P . _

(5.9) T div(Pu)+ (y-1)P(P-1-B)=0.

On the other hand, we have from (1.3) for any § > 0

dP(p")
at

(5.10) +div(P(p')u’) + (v = )P(P°)(P(¢°) — 1 - B’) = 0.

Passing to the limit gives the equation

o°P . _ —_ _
(5.11) i div(Pu) = (y—-1)PB+ (y—-1)P? — (v - 1)P =0,
which holds in the distribution sense. Then the difference ¥ = P — P satisfies

(5.12) % + div(Tu) + (v — 1)(P% = P2) = (v — DU(B +1).

Since for any smooth convex function F(p), the difference F' — F(p) is nonnegative, where
p and F are weak limits of {p°} and {F(p®)} respectively, we can integrate (5.12) over
R? x (0,t) to obtain the inequality

t
) < < )
(5.13) 0__/Rz\Ildz_/0/Rz(B+1)\Ilda:
For the limit B we have

Lemma 8

T
(5.14) | 1Bl < C.

Proof We decompose (5.3) for

5.15 B, —AB =0, B%z,0) =P —-1-divu,

1t 1 1 0 0

(5.16) By, — A By = —div(P(¢°)u’) — (v = 1)P(¢°) div e,
Bi(z,0) = 0.
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Owing to well-known estimates of solutions to the heat equation (see [8]), we have

¢
(517) LB llmrey < €,
¢
(5.18) L 1By S € 25 g5
Then use the embedding inequality and pass to the limit to conclude (5.14). '

Now we arrive at the integrated inequality
t
(5.19) /R Wdr < /0 IB(-, 7l oy /R U(z,r)dzdr, ¥(z,0)=0.

By the Gronwall inequality, we see that ¥ = 0 which means P = P(p). The existence of

weak solutions is therefore established.
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