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1 IntrOduction 

The logistic map is a very famous one-dimcnsional systcm as a chaotic dynam-

ical system. It can be obtained by discretization of the differential equation 

ut = (E - hu)u, (1.1) 
which is called logistic equation and was proposed to describe thc cvolution of 

a biological density. Equation ( I .1) itself is simple enough to deduce an exact 

solution. But, the bchavior of its discretization 

x~+1 = I/(1 - x~)x.,, (1.2) 
is quite different from that of Eq.(1.1), i.e., its generates a chaos as changing 

the value of ,1. The propertics of such one-dimensional chaotic dynamical 
systems are well described in Devaney[2]. 

The existence of a chaos for the logistic map was published by biologist 

R.May in 1974(May[lO]), and by mathematician T.Li and J.A.Yorke in 1975(Li 

and Yorke[9]). Since thon, many rescarchcs have been done and are still in 

progress . 

The phenomena 'chaos' is induced by the non-1inear terms, even if those 

terms are simple. For example, in the Henon map and the Lorenz equation, a 

simple non-1inear term provides chaos. The complex bifurcation is well known 

for the logistic map, and the strange attractors are well known for the Henon 

map and Lorenz equation. 
We can find the same chaotic behavior in an extension of (1.2) to multi-

dimension. From (1.1), by the addition of the Laplacian and by thc difference 

scheme, we get a system which shows a similar bifurcation to that of (1.2) 
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(Itaya[8], Noda[ll], Saito[13]). More interesting, in the range of the parame-

tor ¥¥.'hich gencratcs cha,os, this system has one-dimension'al 'attr'actor, n'amely, 

str'aight-1ine-like attr'actor. This paper is aimed at sholv the existence of such 

attractors of an extension of (1.2). -
Wc will statc somc dotails about this extension in section 2. 

For the studx of the gcometrical properties of such chaotic attractor, few 

tools are av'ail,abld. ¥Vc think, thc concept of the fractal dimension will be one 

of the strong methods for analyzing chaos and fractal. The fractal dimcnsion 

can characterize quantitatively a complex geometry of the strange attractor. 

There are several definitions of the fractal dimension. Only one of them will 

be studied here, that is, the Hausdorff dimension (Falconer[3], Federer[6]). 

At this moment, ho~¥'ever, no way is kno~vn to estimate the fractal dimen-

sion directly from the equations or mappings. So, we shall use thc concept of 

the Lyapunov exponents (or the Lyapunov numbers) though it gives only an 

upper bound of the fractal dimension. This method is comparatively studied 

well. Expressing in a simplc way, thc Lyapunov exponents are the average of 

the eigenvalues of the locally linearized matrix of the dynamical systems, along 

its orbits. W'e will say more intuitively. The unit ball in the phase space is 

contracted in some directions and expanded in other directions. The Ly~punov 

exponents describe such distortion. through thc associated cigenvalucLproblem. 

More concretely, Iet X be an invariant set of a dynamical system, and 

L = L(u),u e X be the Jacobian matrix of the that system. Then, L'L is 
a positive, self-adjoint, and continuous operator. ¥~Te denote by ei,i e I the 

eigenvectors of (L'L)1/2 with the corresponding eigenvalues ai = ai(L), 

{ al > a2 > > o (1.3) (L'L)1~/2ei = 
aiei, Vi, 

and by B the unit ball in the phase space. Then, the set L(B) becomes the 

ellipsoid whose axis are directed along the vectors Lei, with lengths ai(L). 

Next , we definc (,).., = cv..,(L) by 

a)~ = al ' ' ' a~. (1.4) 
For a non-integer d = n + s n rs an mteger O < s < I we set 

l-' s a)d = c,)~ cv~+1' (1.5) 
Let ~!i, ~)i be deflned as follows. 

ai = supai, 

c~i = supa)i. 
~ex 

And, we call ~~ m ~ 2, (1.7) 
A1 = ~il, A~ = _ 

a)~_1 ' 
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Lyapunov numbers, and call 

pt..,. = Iog .'¥ 1?~ ~ 1, (1.8) .,* ' 

Lyapunov exponents. If there exists d > O such that 

cv~d < 1, (1.9) 
then,this d is an upper bound of Hausdorff dimension of X. The relation 

between the Hausdorff dimension and the Lyapunov exponents is as follows. 

Further details are described in Temam[14]. 

Let H be a Hilbert space with the norm ('), and X C H be a compact set. 

Let S be a continuous mapping from X into H satisfying 

SX = X (1.lO) 
an d 

uniformly differentiable on Xl (1.11) 
~~re denote by L the this differential operator. And we assume 

sup IL(u)1 < +00, ' (1.12) 
~ex 

supa)d(L(u)) < 1, (for some d > O). (1.13) 

Then, we have 

Theorem I Under the above assumptions (1.10)-(1. 13) the Hausdorff di-
mension of X is finite and is less than or equal to d. 

An altern'ativc form of Theorem I using the Lyapunov exponents is, 

Under the assumptions (1.10)-(1.12) and, iffor some n ~ l, Theorem 2 

pel + ' ' ' + pn+1 < O, (1.14) 
then 

pt.,+1 < O //1 + ' ' ' + '1~ < I (1.15) 
' l//~+1 1 ' 

and the Hausdorff dimension of X is less than or equal to 

n + (kel + ' ' ' + 'l~)+ (1.16) 
I,h~+1 1 ' 

l for Vu e X, there exist a linear operator L(u) satisfing 

sup ISu - Sv - L(u) ' (v - u)1 _ O 

~,~ex, o~I~-~l~< Iv - ul ' 
when e - O. 
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Note that, as mentioned above, this methods of estimation of the fractal 

dimcnsion providcs only the upper bound, so that l¥'e are eager for some lo¥ver 

estim'ation. Thorc is no way to estimate the lower bound of the fractal dimen-

sion of the attractor. Without thc lower bound, we can't say how the upper 

one is reliable. However, since this method is one of the most promising means 

for analyzing the chaos and fractal, we tried to apply it to the logistic map 

with diffusion. 

In order to adapt this method, first, we must find a bounded invariant set. 

Finding strict invariant set is so difficult that we show the positively invariant 

set. In scction 3, we will prove the existence of such positively invariant set, 

and lead it to the form suitable for our aim. 

Finally, in section 4, we will calculate the Lyapunov exponents and estimate 

the fractal dimension. 

2 LOgiStic Map with DiffuSiOn 

This section is intended to introduce an extension of the logistic map, the 

well-known one-dimensional chaotic dynamical system, to a multi-dimensional 

system. 
Equation (1.1) was first proposed in 1838. Although the name of the discov-

erer, P.F.Verhulst, had been forgotten, till Pearl and Reed refound his paper 

in 1920, the equation itself had been used by many researchers. The equation 

was proposed originally to describe the change of a population of flies, and 

at one time, it was expected that this system would also describe the human 

population. But soon, it became clcar that the equation was not sufficient 

to explain the human population. However many examples imply that, the 
populations of the most of the lives in the laboratory obey this equation. 

As ~¥'as mentioned above, this equation is so simple mathematically, that 

we can get the exact solution casily, that is, 

c2e't 

u - I c e't (2.1) 
where cl = hc, c2 = ec, c being an arbitrary constant. 

From the view point of the chaotic dynamical systems, there is more interest 

in equation (1.2), the Euler discritization of (1.1), than in (1.1) itself. A,Ithough 

(1.2) Iooks much simpler than (1.1), in 1974 biologist R.May showed that its 

orbits of this mapping change drastically with the change of parameter ,h. 

We show, in Figure l, their behavior for // from O to 4. His study invoked 

many important researches, for example, Li and Yorke's famous paper "Period 

Three implics Chaos" (1975, May[lO]). And, Sarkovskii's theorem(1964) which 

include more important results was refound. 

In this paper, we don't discuss the bifurcation of the logistic map, but the 

geometrical properties of its attractor, namely, fractal goometry. 
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bifurcation　diagram　of　logistic　mapping
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　　Adding　the　Lap1㏄ian　to（1．1）．Equation（1．2）becomes　apartia1di伍erentia1

cquation　which　describes　the　growth　of　a　spatia11y　distributed　popu1ation　in　a

regiOn．

　　Letα〉0be　a　difusion　coe冊cient．Logistic　equation　with　di丘usion　is，

　　　　　　　　　　　　　　　吻：α△α十α（6一んα），　也∈Ω，τ≧0，　　　　　　　　（2－2）

and　consider　with　the　Dirich1et　boundary　condition，

　　　　　　　　　　　　　　　　　　　　　　　　　　刎1∂Ω＝0．　　　　　　　（2．3）

HereΩ⊂πm　is　a　domain　with　border∂Ω．With　the　Neum汕n　conditi㎝，

we　c狐reduce（2．2）to　a　one－dimensiona1mapping，but　with　the　Dirich1et

condition，we　cannot　do　such　reduction．

　　Now，we　induce　a　discrcte　mode1for（2．2）；By　centra1d岨erence　for△αand

backward　one　for舌，

　　　　　　也1＋13一吻，ゴ　α1＋15＋r2α1＋1，ゴ十吻十15－1
　　　　　　　　　　　　　　　　＝α　　　　　　　十（6一肋，，。）也，，。
　　　　　　　　　　△苫　　　　　　　（△Z）2

and　by　tr狐sformation，

一（芸今1．W・（1・織）也・・1ガ（芸今1榊一1一（・一11・口）吻｛
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( Ah ~ = (1 + Atc) ~l - I + ~tcuij) u' ' 
, * , J 

If ¥ve set 

( ) = r I + Ate p, I + ~tcui,j ~ - vi,j' 
Ax 2 ' 

then, wc obtain 

+ (1 + 2r)vi+1,j - rv +1 1 ( i,j)' -rvi+1,j+1 ,j- = Pvi,j I - v 
where, from (2.3), 

vi,o = v* n Vi ', = O, . 
Here we sct vn = (vn,1' vn 2, , vn i-1)t, and, 

-r 
-r 1+2r -r 

A = -r 
1 + 2r -r 

O -r I + 2r 
and, 

vl(1 - vl ) 

f(v) pt v2(1 - v2) 

(
 

vi_1 1 - vi_1) 

(2.4) 

(2.5) 

Then, wc get 
= f(vi). 

So finally, we can write 

vn+1 = A-If(vn)' (2.7) 
In this paper we consider only sunplest case i = 4. That is, by the bound-

ary condition vo = O,v4 = O, we obtain the system which is practically 3 

dimensional. Furthermore, the symmetry assumption makes it 2 dimensional. 

Parametcr r is concerned with the diffusion coefficient ~ with proplortional 

relation. So, it is obvious that logistic mapping with diffusion is completely 

reduced to (1.2) when each vi have no relation, i.e., r = O. 

The 2 dimensional logistic mapping with diffusion is, 

)( , )
 

l
 / 2 1 + 2r r 2r I + 2r l + 4r + 2r 

f(x) = klx(1 - x). 

26 



The bifurcation diagram of (2.8) is shown in Figurc(2.2). Thc periodic points 

for r = lO,and O ~ ft ~ 4 are plott,ed in this figure. Then cvcn ¥~'~ith diffusion 

term, ¥ve can see the bif'urcation similar to the origin'al one. For /1 ~ 3.5, 

by the unboundedness(non-compactness) of the attractor, orbits are divcrging 

to -oo. Numerically, we have got 3.442 as the value of ,h which causes such 

divergence. Of course, we treat the values less than this value as l/-
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bifurcation diagram of logistic map with diffusion 
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l
 

By applying the scaling for more sensitivencss to the parameter r, i'e', by 

fOllowing transformation, 

Tr~:i~~l+4r+2r I + 2r r = TI~:~l+~r~+3~r ( }~~~ i~~ ) 

2r I + 2r l+3r l+3r 
l:t~i r

 

= l+~rL+3~r ~d:~ilt3~r l+~ti:t~r~r 2r 

l+3r 1+3r 1+3r l+3T 

1 + 3r 
and by embedding I + 4r + 2r2 m the parameter ke we get 

x' allf(x) + al2f(y) ~ ~ ca2lf(x) + ca22f(y) ' ' (2.9) f(x) = /lx(1 - x) 

where, 

27 



_ I +2r 
all - 1 3r ' ctl2_ }~~:1;' (2.10) _ ~r 
a21- l+4r ' a22- l+4r' 

_ I +4r 
c - I +3r ' 

1
 Further to make analysrs easy we apphy thc translatron of x y to x - ~' 

y - ~･ Then, (2.8) is reduced to 

1
 ,1allx - ptal2y2 + -(pe - 2) (; = J 

y _ /~ca22y2 + ~(c/~ - 2) ' /1ca2lx2 

From now on, we call (2.ll) simply the "logistic map" . We assume p is 

larger than 2.5, because the chaotic behavior seems to occur for such ~. 

3 The Invariant Set Of the LOgiStic Map wlth 
DiffuSion 

In this section, we show the existence of an invariant set of an logistic map 

(2.11). Beforc that, we recall the definitions of the invariant set and the at-

tractor. Let H be a Hilbert space and S be an operator from H into H itself. 

Definition I A set X e H is a positively invariant set of S if 

SX c X. 

Definition 2 A set X e H is an invariant set of S if 

SX = X. 

Definition 3 An attractor of S is a set A c H that enjoys the following 

pro pertiesj 

(1) A is an invariant set of S, 

(2) A possesses an open neighborhood u such that for every u m u Su 
converges to A as t -> oo. 

We write (2.11) again as 

(; = ) ( [ x x -,tallx /lal2y2 + s y y /lca2lx ,lca22y2 + t ' (3.1) S
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l
 

l
 ¥vhere s = - /1 - 2), t = - c/~ - 2 . 

4
 By the numerical computation, it ¥vas observed that as time incre'a.sing all 

points of the phase space diverge to oo or converge to one or more lines. Figure 

3.1 shows an attractor of (3.1) for ,1 = 3.4 and r = 16. Thus, we can guess 

that thc logistic map (3.1) has a straight-line-like attractor, and this attractor 

( O ) and S2 (( O ), 
include a segment which terminated with the points S 

O
 

O
 

i.e., denoting by u and u/ these points, we have 

)
 

u = S O _ 14(ke - 2) (3.2) 
O ~ 14(c// - 2) t 

an d 

( = - :[ ) ,= 2 ) ( O ,hal2t2 + s -llalls 
u S o khca22t2 + t ' (3.3) ,tca2 1 s 

The line which connects u and ul is 

l : ax - py + nr = O (3.4) 
where, 

a = t' - t = ptca22t2 -/lca21 s2 -

~ = = -/lalls2 - ~al2t2 (3.5) 
nf = s't-st/ 

= -14alls2t - ~al2t3 + /1ca2ls3 - /lca22st 

Now, wc consider a point (x,y) and its image (x', y') by S The condition 

for a point (x, y) to be 

dist(1, (x, y)) < 5, 

for some 6 > o is 

lax - ~y + ~l < 6, (3.6) 
D 

where D = ~/~lr~. Similarly, the condition to be 

dist(1, (xl, yf)) < 6 

i
s
 lax/ _ ply + nfl A 

D = ~ t2x2 - s2y2 < 6 (3.7) 
D 

where A = ~2 1 + 4r + 2r2 . It is easy to see that u is a point on the asymptote 

(1 + 3r)2 

of the hyperbola 

A 22 - t x - s2y2 = 6. (3.8) D 
The upper boundedness of the orbits of the map is also easy to sce, bocause 

qua,dratic term of the map is negative, but the lower boundedness is not always 
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x 

held. Indeed, for some p and r, tl;eL .orbits of the map is not bounded. We 
need s > Is'l and t > It'l for tlte'~'b~Q~mdedness of the orbits of the map. It 

follows from the symmetry of the logistic map for x and y, i.e. (3.1) have only 

quadratic terms of x and y. So, we consider pl and r satisfying 

{ : ~al2t2 + sl s > l-1lalls -
ftca22t2 + tl ' t > l-pca2ls -

that is, 

+ ,4al2t2 ,hal I s2 

2 < 2t ' + pca22t /1ca21 s 

For /~ and r not satisfying (3.9), the orbits of the logistic map diverge to -oo 

as seen in Figure 2.2. We plot /1 and r satisfying (3.9) in Figure 3.2. For every 

r, there exist /1 satisfying the aboye conditions. 

Now, we consider the particular case that u' is also the points on the 

asymptote of the hyperbola (3.8). In this case, nr = O and 

t a 
s~~~~ 

t2 ca21 + ca22 ( ) 

s
 

t2 
(
s
)
 

all+al2 -
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Figure 3.2: The range of thc parameter satisfying (3.9) 

must be held. We set g(a)) = ca21 + ca22(tls)2 then, a) - i is the fixed pomt 

all + al2(t/s)2 ' 

of g. Since 

g(x) ca21 + ca22x2 a + b 
all + al2 all + al2x2 ' 

with _1 - 6r - 7r2 a I + 3r > O, b = < O, 
r
 

We set g(cv) ca21 + ca22(tls)2 then a) = - is the fixed point of g. Since t
 

all + al2(t/s)2 ' 

ca21 + ca22x2 b g(x) all + al2 a + all + al2x2 ' 

with 
a I +3r > O, b= ~1 6r - 7r < O, 

r
 

g(x) is decreasing function and converges to a > o. Hence, the curvcs y = g(x) 

and y = x intersect necessarily, and there exists such fixed points. Since 
t
 a in this case - depends on only r because - doesn't contain p except in s 
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t
 and t, we can set c,)o(r) = -. ~¥"ith Furthermore, c also depends on only r, 

c// - 2 
a)o(r) = thus ~¥'e can ¥~"rite 

/h-2' ' 
cc)o(r) - 1 

/1 = 2a)o(r) - c(r) ' 

Therefore, for every r, there exists /1, for which (3.3) coincides with the asymp-

tote of the hyperbola (3.8). But /h must satisfy (3.9), i.e., the attractor must 

be bounded, consequently r is smaller than approximately 4 (Figure 3.3). 

r
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Figure 3.3: 
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The values of parameter which make nf = O in (3.4) 

p
 

we reconsideir the diStancc appearing in (3.6) and (3.7). Setting z = y- t x, 

(3.5) is rewritten as 

lzl - t I - Ipy - axl < 6D = I -l ~= a 
x
 

y
 

y
 ~

 
~ I~l l~l ' 
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Therefore, 

It2x2 - s2y21 = 

< 
< 
<
 

Itx - syl Itx + syl = s2 

s2 Izl 12y - zl 

s2 Izl (2 Iyl + Izl) 

(
 

6D ~ 6D lpl 2t+1~l 

t
 -x - y 

t
 

I
s
 
-x + y 

(3.10) 

6D . 
If the left hand side of (3.9) is bounded by A ' he., 

6D 5D ~ 6D lpl 2t+ Ipl) < A 

then, 

6 < Ipl2 _ 2tl~l (3.11) 
s2AD D ' 

Thus, if 

lpl2 _ 2tl~l > o (3.12) 
s2AD D 

is satisfied, there exist a rectangle-1ike positively invariant set along thc line 

(3.4) whose width are smaller than 6. Figure 3.4 plots ,h and r satisfying (3.12). 

Thus, we can say that the logistic map has a rectangle-like absorbing set 

for the above values of p and r, and by the continuity, we can also say that 

the same is true for the values of ke and r which are sufficiently close to the 

above values. 

Next, we consider the general case. As in above case, wc transform (3.6) 

into 
ly - ~ - Il < 6D 

p p - Ipl 

a nf and set z = y - ~ ~ ~' Then, (3.7) is changed to 

It2x2 - s2y21 = l(tx - sy)(tx + sy)l 

= s 

< 

<
 

s
 

S
 

( ( ~+nf~~( ( a l)) tx+s z+-+ tx-s~z+p ~))~ ~p 211 (t ~)x-z-- ; l(t j) I 7
 _-'+_n x+z+ry 
p
 ___ i x + Izl + I~ l) ta t + alx+1z +11 

s pl I l sp p
 ~ ~ ~ x+ If~~Dll + ~1) (li + ~lx+16Dl + 

s ~ lpl ~
 

)
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If=0 in (3.4) 

6D and if we thmk p _ t then 
If this right hand side is bounded by , 

) s (3.13) 
62D2 + ~2h/1 + Ipt - asl + Ipt + asl -

s2A 
+1ryl2 + (lpt - asl + Ipt + asl)l~l + Ipt - asllpt + asl 

< O. 

Since the conditions of existcnce of 6 satisfying (3.13) is the same to the 

conditions for equation 

62D2 + (2171 + I~t asl+1pt + asl lpl2 6D - ) 
s2A 

+1712 + (l~t - asl + Ipt + asDhfl + Ipt - asllpt + a81 

= O. 

to have two different real solutions and at least one of them is positive, that 
i
s
 
,
 

l~t - asl2 + Ipt + asl2 - 2lpt - asllpt + asl2 

_ 2 ( Ipl2 (3.14) )
 

l
 
p
l
 4hfl + 2lpt - asl + 2lpt + asl -

s2A s2A 
> o, 
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an d 

2hl + 1 5t asl + Ipt + asl - I~l2 < O. (3.15) 

s2A 
Figure 3.5 shows the p and r satisfying (3.14) and (3.15). 

Wc find that the range of parameters ,l and r satisfying (3.14), (3.15) is 

littlc different from that satisfying (3.9). 
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Frgure 3.5: Thc range of // and r satisfying (3.14) and (3.15) 

4 Ilractal DimenSiOn Of AttractOr 

Now, we calculate the Lyapunov exponents of the logistic map, and estimatc 

the fractal dimension of its attractor. We use the theorems mentioned in the 

section 1. S means the logistic map. In the section 3, we saw that the logistic 

map satisfies (1.lO), and (1.11) would be obvious. Let us derive L. It is 

ordinary Jacobian matrix of the logistic map. 

L -2ke allx al2y (4.1) 
ca2lx ca22y 
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By the boundedncss of thc X, ~¥ro can say that (4.12) iS held' So, L*L rs 

- 2( . )( aii ca2lx all al2x 
al2x ca22y ca2lx ca22y 

4,1 (all + c2a~1)x2 (allal2 + c2a2la22)xy 
(allal2 + c2a21 a22)xy (al2 + c2a~2)y2 

(4.2) 

Here, if we set 

al = 

a2 = 

b = 

1 + 4r + 8r2 
4/t(all + c2a~1) = 4hl 

(1 + 3r)2 

l + 4r + 5r2 
4~(al2 + c2a~2) = 4~ 

(1 + 3r)2 ' 

( 2) 3r + 6r2 
4kl(al lal2 + c2a2la22) = 4l/ 

(1 + 3r) 

then 

(
 

L*L alx2 bxy (4.3) bxy a2y2 

Denoting by A the eigenvalues of the matrix (4.3) and by I the unit matrix, 

since 

AI - L*L = O, 

is satisfied, we solve IAI - L'LI = O by using 

IAI - L'LI = (A - alx2)(A - a2y2)-b2x2y2 
= A2 - (alx2 + a2y2)A+(ala2 - b2)x2y2 

Thus, we obtain 

= (alx2 + a2y2) ~ (alx2 + a2y2)2 4(ala2 b2)x2y2 ~
 

IAI - L'LI = O by usmg 

IAI - L'LI = (A - alx2)(A - a2y2) - b2x2y2 

= A2 - (alx2 + a2y2)A+(ala2 - b2)x2y2 

Thus, we obtain 

1
 }

 
(alx2 + a2y2) :1: (alx2 + a2y2)2 - 4(ala2 - b2)x2y2 . A= 2

 

Let each of them be A+ and A_, then al' a2 are 

al V~T, a2 = V~. (4.6) 
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From (1.4), I~re get 

a)1 = al 
1
 
~ {(alx2 + a2y2) + (alx2 + a2y2)2 - 4(ala2 - b2)x2y2} (4.7) 

cv2 = ala2 
= V~;]V)l 

(ala2 - b2)x2y2 

and can calculate ail' and C~12' Recalling (1.7), (1.8), 

A evl' A2 = a)_2 (4.8) 
cvl 

and 

ke log A,, i = l, 2 (4.9) 
Now, we apply Theorem 2 for the logistic map. 

First, wc considcr the case in which the line (3.4) and the asymptote of 

hyperbola (3.8) are overlapping. We calculate for the values of p and r satisfy-

ing (3.9),(3.12) and If = O in (3.4). For example, for // = 3.020 and r = 1.486 

d im 

2
 

1 .8 

1 .6 

1 .4 

1 .2 

1
 

Imu-3.RO' 
'mu=3_151 ----
'mU=3.101 _ 

Figure 4.1: 

10 14 16 18 
The Hausdorff dimension for some values of l/ 

r
 

which approximately satisfy the above conditions, we got the value l.37 as 
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the upper bound of the Hausdorff dimension. But, if the value of /h is larger 

than about 3.4, ¥¥,'hcre thc v'aluc of 1' is larger than approximately 2.2, then 

thc logistic map is about to divcrgc to -oo, and the upper bound of Hausdorff 

dimension is closc to 2. Although the Hausdorff dimcnsion is supposed to de-

crease as the increase of r, the divergence of the system seems to have more 

dependence on p. 

That tendency is shown in the general case. Figure 4.1 plots the values 

of parameter r and the Hausdorff dimension. Although the dimension of the 

attractor of the logistic map is not so larger than I , we cannot say that this 

attractor is one-dimensional. Of course, this estimation is upper one, and our 

invariant set seems to be too large. We arc anxious for the lower estimations 

and the proper invariant sets. 
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