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1 Introduction

The logistic map is a very famous one-dimensional system as a chaotic dynam-
ical system. It can be obtained by discretization of the differential equation

u, = (E — hu)u, (L.1)

which is called logistic equation and was proposed to describe the evolution of
a biological density. Equation (1.1) itself is simple enough to deduce an exact
solution. But, the behavior of its discretization

Tntl = /J'(l - z11)‘7:n7 : (12)

is quite different from that of Eq.(1.1), i.e., its generates a chaos as changing
the value of u. The propertics of such one-dimensional chaotic dynamical
systems are well described in Devaney|(2].

The existence of a chaos for the logistic map was published by biologist
R.May in 1974(May[10]), and by mathematician T.Li and J.A.Yorke in 1975(Li
and Yorke[9]). Since then, many rescarches have been done and are still in
progress.

The phenomena 'chaos’ is induced by the non-linear terms, even if those
terms are simple. For example, in the Henon map and the Lorenz equation, a
simple non-linear term provides chaos. The complex bifurcation is well known
for the logistic map, and the strange attractors are well known for the Henon
map and Lorenz equation.

We can find the same chaotic behavior in an extension of (1.2) to multi-
dimension. From (1.1), by the addition of the Laplacian and by the difference
scheme, we get a system which shows a similar bifurcation to that of (1.2)
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(Itaya[8], Noda[11], Saito[13]). More interesting, in the range of the parame-
ter which generates chaos, this system has one-dimensional attractor, namely,
straight-line-like attractor. This paper is aimed at show the existence of such
attractors of an extension of (1.2). .

We will state some details about this extension in section 2.

For the study of the gcometrical properties of such chaotic attractor, few
tools are availablé. We think, the concept of the fractal dimension will be one
of the strong methods for analyzing chaos and fractal. The fractal dimension
can characterize quantitatively a complex geometry of the strange attractor.
There are several definitions of the fractal dimension. Only one of them will
be studied here, that is, the Hausdorff dimension (Falconer[3], Federer[6}).

At this moment, however, no way is known to estimate the fractal dimen-
sion directly from the equations or mappings. So, we shall use the concept of
the Lyapunov exponents (or the Lyapunov numbers) though it gives only an
upper bound of the fractal dimension. This method is comparatively studied
well. Expressing in a simple way, the Lyapunov exponents are the average of
the eigenvalues of the locally linearized matrix of the dynamical systems, along
its orbits. We will say more intuitively. The unit ball in the phase space is
contracted in some directions and expanded in other directions. The Lyapunov
exponents describe such distortion through the associated eigenvalue problem.

More concretely, let X be an invariant set of a dynamical system, and
L = L(u),u € X be the Jacobian matrix of the that system. Then, L*L is
a positive, self-adjoint, and continuous operator. We denote by e;,7 € I the
eigenvectors of (L*L)"/2, with the corresponding eigenvalues a; = a;(L),

{ ap>ap>...>0

(L*L)?e; = aies, Vi, (13

and by B the unit ball in the phase space. Then, the set L{B) becomes the
ellipsoid whose axis are directed along the vectors Le;, with lengths o;(L).
Next, we define w,, = w,,(L) by

Wm = Q1 -..0n. (1.4)
For a non-integer d = n + s, n is an integer, 0 < 5 < 1, we set

Wi = W W, (1.5)
Let &;, @; be defined as follows.

& = supa,
ueX (16)

And, we call
Ay =@, Am == , m22, (17)
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Lyapunov numbers, and call
Lm = log A, m>1, (1.8)

Lyapunov exponents. If there exists d > 0 such that

wy <1, (19)

then,this d is an upper bound of Hausdorff dimension of X. The relation
between the Hausdorff dimension and the Lyapunov exponents is as follows.
Further details are described in Temam([14].

Let H be a Hilbert space with the norm (-), and X C H be a compact set.
Let S be a continuous mapping from X into H satisfying '

SX=X (1.10)
and
uniformly differentiable on X! (1.11)
We denote by L the this differential operator. And we assume
sup |L(u)] < +o0, (1.12)
ueX
sggwd(L(u)) <1, (for some d>0). (1.13)

Then, we have

Theorem 1 Under the above assumptions (1.10)-(1.18) the Hausdor{F di-
mension of X is finite and is less than or equal to d.

An alternative form of Theorem 1 using the Lyapunov exponents is,

Theorem 2 Under the assumptions (1.10)-(1.12) and, if for somen > 1,
pr+ -+t <0, (1.14)

then ot
fgy <0, BT ITHER g (1.15)

“‘n+l|

and the Hausdorff dimension of X is less than or equal to
(B4 + i)+
|Mn+1|
for Vu € X, there exist a linear operator L(u) satisfing
sup |Su — Sv — L{u) - (v — u)|

uwEX, 0<[u—v|<e fv - u

n+ (1.16)

- 0,

when € — 0.
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Note that, as mentioned above, this methods of estimation of the fractal
dimension provides only the upper bound, so that we are eager for some lower
estimation. There is no way to estimate the lower bound of the fractal dimen-
sion of the attractor. Without the lower bound, we can’t say how the upper
one is reliable. However, since this method is one of the most promising means
for analyzing the chaos and fractal, we tried to apply it to the logistic map
with diffusion.

In order to adapt this method, first, we must find a bounded invariant set.
Finding strict invariant set is so difficult that we show the positively invariant
set. In scetion 3, we will prove the existence of such positively invariant set,
and lead it to the form suitable for our aim. ,

Finally, in section 4, we will calculate the Lyapunov exponents and estimate
the fractal dimension.

2 Logistic Map with Diffusion

This section is intended to introduce an extension of the logistic map, the
well-known one-dimensional chaotic dynamical system, to a multi-dimensional
system.

Equation (1.1) was first proposed in 1838. Although the name of the discov-
erer, P.F.Verhulst, had been forgotten, till Pearl and Reed refound his paper
in 1920, the equation itself had been used by many researchers. The equation
was proposed originally to describe the change of a population of flies, and
at one time, it was expected that this system would also describe the human
population. But soon, it became clear that the equation was not sufficient
to explain the human population. However many examples imply that, the
populations of the most of the lives in the laboratory obey this equation.

As was mentioned above, this equation is so simple mathematically, that
we can get the exact solution casily, that is,

Cged

T 1-— cest

u (2.1)
where ¢; = he, ¢ = ec, ¢ being an arbitrary constant.

From the view point of the chaotic dynamical systems, there is more interest
in equation (1.2), the Euler discritization of (1.1), than in (1.1) itself. Although
* (1.2) looks much simpler than (1.1), in 1974 biologist R.May showed that its
orbits of this mapping change drastically with the change of parameter u.
We show, in Figure 1, their behavior for p from 0 to 4. His study invoked
many important researches, for example, Li and Yorke’s famous paper “Period
Three implies Chaos” (1975, May([10]). And, Sarkovskii’s theorem(1964) which
include more important results was refound.

In this paper, we don’t discuss the bifurcation of the logistic map, but the
geometrical properties of its attractor, namely, fractal geometry.
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Figure 2.1: bifurcation diagram of logistic mapping

Adding the Laplacian to (1.1). Equation (1.2) becomes a partial differential
cquation which describes the growth of a spatially distributed population in a
region.

Let a > 0 be a diffusion coefficient. Logistic equation with diffusion is,

w=alu+ule—hu), veQt>0, (2.2)
and consider with the Dirichlet boundary condition,
ulon = 0. (2.3)

Here & ¢ R™ is a domain with border Q2. With the Neumann condition,
we can reduce (2.2) to a one-dimensional mapping, but with the Dirichlet
condition, we cannot do such reduction.

Now, we induce a discrete model for (2.2); By central difference for Au and
backward one for ¢,

Uitly — Wiy Uitlj+l — 2Uit1j + Uil -1
At (Az)?
and by transformation,

a/At 2a/At al\t
T (Dg) L +{1+ (Ag)E ) Vitli = (g titti=t = (€ — huij)uij + i

+ (6 - hu,-,j)u;,j.
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Ah
=(1+ At 1-
1+ 6)( 1+ Ate
If we set
alt " Ath
— = 1+ Ate= —Uij = Vi,
Gap =7 TTAlE=m TR =

then, we obtain
=i+ (14 2001y — roier -1 = w0i(1 = viy),

where, from (2.3),

’U,',o = ’U,',n = 0, V’L
Here, we sct v, = (Un,1, Un2, - -+, ¥n,i-1)", and,
14+2r —r
-7 14+2r —r 0
A= —_r ,
14+2r -—r
0 -  142r
and,
. ’U1(1 - 'U])
vo(1l — v2)
f(v) = .

Vi1 (1 — viz1)

Then, we get
Avrl-l f('U

So finally, we can write
Uns1 = A7 F(vn).

u;,,-) Uij-

(2.4)

(2.5)

(2.6)

(2.7)

In this paper ,we consider only simplest case ¢ = 4. That is, by the bound-
ary condition vy = 0,u4 = 0, we obtain the system which is practically 3
dimensional. Furthermore, the symmetry assumption makes it 2 dimensional.
Parameter r is concerned with the diffusion coefficient x4 with proportional
relation. So, it is obvious that logistic mapping with diffusion is completely

reduced to (1.2) when each v; have no relation, i.e., r = 0.
The 2 dimensional logistic mapping with dlffllblOIl is,

(z’)z 1 (1+2r r )(f(:c))
Yy 14+4r42r2\ 2r 1+42r fly) )’

f(z) = pz(l - 2).
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The bifurcation diagram of (2.8) is shown in Figure(2.2). The periodic points
for r = 10,and 0 < p < 4 are plotted in this figure. Then even with diffusion
term, we can see the bifurcation similar to the original onc. For p > 3.5,
by the unboundedness(non-compactness) of the attractor, orbits are diverging
to —oco. Numerically, we have got 3.442 as the value of p which causes such
divergence. Of course, we treat the values less than this value as pu.
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Figure 2.2: bifurcation diagram of logistic map with diffusion

By applying the scaling for more sensitiveness to the parameter 7, i.e., by
following transformation,

1 142r r 143 }+§r r3
— T r  143r

T+4r+2r2 2 14929 - 14+4r42r i 1+2r
T +2r 14+3r 143r

3 1427 r

— 143r 143 1

=  TF4r+2r 1-_!:4# ar l+41+?r;t2r
143r 143r  143r 14+3r

1+3 .
and by embedding Hﬁ in the parameter u, we get

o\ _ [ anf(z) + al2f(y) - -
( y ) B ( can f(z) + canf(y) ) + J@) = pall - ), 29)

where,
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142r T
Qo =

an =

143r 143’
o _frr a __li%;: (2.10)
AT T4 T 1140 ’
e 1+4r
T 143
Further, to make analysis easy, we apply the translation of z,y to z — 2
1
y-3 Then, (2.8) is reduced to
2 2 1
( & ) - pang® - pany’ + Z(k-2) (2.11)
—_— 1 -
v — ucaz? — pcaxny® + 2(en=2)

From now on, we call (2.11) simply the “logistic map”. We assume p is
larger than 2.5, because the chaotic behavior seems to occur for such u.

3 The Invariant Set of the Logistic Map with
Diffusion

In this section, we show the existence of an invariant set of an logistic map
(2.11). Before that, we recall the definitions of the invariant set and the at-
tractor. Let H be a Hilbert space and S be an operator from H into H itself.

Definition 1 A set X € H is a positively invariant set of S if
S’X cX.

Definition 2 A set X € H is an invariant set of S if
SX =X

Definition 3 An attractor of S is a set A C H that enjoys the following
properties;

(1) A is an invariant set of S,

(2) A possesses an open neighborhood U such that, for every uo in U, Sug
converges to A ast — 0o.

We write (2.11) again as

7' z —panz? — paigy® + s
=9 = , 3.1
( y ) ( y ) ( —pcan z® — peagsy® + ¢ (31)
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where s = %(p, -2),t= %(cu - 2).

By the numerical computation, it was observed that as time increasing all
points of the phase space diverge to oo or converge to one or more lines. Figure
3.1 shows an attractor of (3.1) for 4 = 3.4 and r = 16. Thus, we can guess
that the logistic map (3.1) has a straight-line-like attractor, and this attractor

include a segment which terminated with the points S ( g ) and S? ( 8 ),

i.e., denoting by v and u’ these points, we have

s(D)-(H)-(2) e

0 —pay1 8% — paygt? + s
"= §? - 11 12
v=s ( 0 ) B ( —picans® — peant? +t |- (3.3)

The line which connects v and ' is

and

liaz—Py+v=0 (3.4)
where, '
a = t'—t = —pcass?— ucaggt?
B = s—s = —pans®— papt?
y s't — st/ (3.5)

i

—pay %t — paiot® + pcag s° — pcagy st

Now, we consider a point (z,y) and its image (z’,y') by S The condition
for a point (z,y) to be
dist(l,(z,y)) <4,

for some § >0 is

D ) (3.6)
where D = v/aZ + (2. Similarly, the condition to be
dist(l, (z',y)) < 6
® laz’— By +4] _ A
ar —PY T _ A2 202
5 Dt:r sy|<6 (3.7)
o1 +4r 4 2r?

where A = . It is easy to see that u is a point on the asymptote

(1+3r)?

of the hyperbola M
2.2 .22 _

Bltw -—syI—é. (3.8)

The upper boundedness of the orbits of the map is also easy to see, because

quadratic term of the map is negative, but the lower boundedness is not always
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Figure 3.1: the attractor of the logistic map(y = 3.4,r = 16)

held. Indeed, for some p and r, the orbits of the map is not bounded. We
need s > |s'| and t > |t/] for the‘boundedness of the orbits of the map. It
follows from the symmetry of the logistic map for z and y, i.e. (3.1) have only
quadratic terms of z and y. -So, we consider p and r satisfying

s > |—pays? — paat? + s
t > |~pcags® — ucant? +t|

that is,
pas?  +  papt? < 2s
{ pcan s> + pcamt? < 2t (3.9)

For 1 and r not satisfying (3.9), the orbits of the logistic map diverge to —oo
as seen in Figure 2.2. We plot u and r satisfying (3.9) in Figure 3.2. For every
r, there exist u satisfying the above conditions.

Now, we consider the particular case that u' is also the points on the
asymptote of the hyperbola (3.8). In this case, vy = 0 and

t 2
o Caa) + Cagy (;)

s N2
b a11 + a2 (;)
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Figure 3.2: The range of the parameter satisfying (3.9)

cag) + can(t/s)?
a; + alz(t/8)2 ’

4
must be held. We set g(w) = then, w = 5 is the fixed point

of g. Since
cag + cagnr? b
glo)= LI IT oy D
a1 + a2 a1 + a2T
with 143 1—6r —7r?
a= +r>0’ b=$<0,
T T
ca cagn(t/s)? t. . . .
We set g(w) = — + caz(t/ 2) , then, w = - is the fixed point of ¢. Since
an + alg(t/s) S
(.’L‘) _ Cag + C0,22£L'2 . b
N = van a1 + a122?’
with 1+3 1~ 6r — 7r?
7‘ — —_— —
- + >0, b= _____:_r_ <0,

g(z) is decreasing function and converges to a > 0. Hence, the curves y = g(z)
and y = z intersect necessarily, and there exists such fixed points. Since
o'

B

. . 1 . .
in this case, 5 depends on only r, because — doesn’t contain p except in s
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t
and ¢, we can set wo(r) = A

cp —
wo(r) = —

. Furthermore, ¢ also depends on only r, with

2 . .
3 thus, we can write

o wolr) =1
wo(r) — c(r)’
Therefore, for every r, there exists y, for which (3.3) coincides with the asymp-

tote of the hyperbola (3.8). But 1 must satisfy (3.9), i.e., the attractor must
be bounded, consequently 7 is smaller than approximately 4 (Figure 3.3).

20 T T T T T T T
‘gam=0+.kekka" -
15 -
10 | .
5 .
0 1 A 1 1 1 1 Il M
2.6 2.8 3 3.2 34 3.6 3.8 4

Figure 3.3: The values of parameter which make v = 0 in (3.4)

~ . . . t
We reconsider the distance appearing in (3.6) and (3.7). Setting z = y— pd
(3.5) is rewritten as

(0%

,Z|=ly—-§xl=ly—ﬂ=M D

181 18]
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Therefore,

t t
[t222 — 22| = [tz — syl |tz + sy| = §* K y‘ |;z + yl
< s’fel]2y — 4
< sle| (2lul + |2]) (3.10)
< 5D 6D

Iﬂl (2t+l 3

If the left hand side of (3.9) is bounded by i?, ie,

28D (2t+ 51)) 6D,

161 18]
then,

o 00l a
Thus, if )

sLiAIE - ?# >0 (3.12)

is satisfied, there exist a rectangle-like positively invariant set along the line
(3.4) whose width are smaller than §. Figure 3.4 plots x and r satisfying (3.12).

Thus, we can say that the logistic map has a rectangle-like absorbing set
for the above values of x4 and r, and by the continuity, we can also say that
the same is true for the values of y and r which are sufficiently close to the
above values.

Next, we consider the general case. As in above case, we transform (3.6)
into

a 7
—_— e =
7B ﬂ' = 18]
and set 2 =y — % - %— Then, (3.7) is changed to
t?0? — %% = |(tz ~ sy)(tz + sy)]

tx—s(z+ +—) t +s(z+ +%)
= 32 l %

(E_E)x_z_
s f g

T
t —
;+ T+2z2+
< s é %x+|z|+l% li+ﬂz+|z|+l D
2 (18 _ 2, ¢
< oSl 2 (ot )
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Figure 3.4: The values of p and r satisfying (3.12) with the values satisfying
v=0 in (3.4)

o

w | o+

, then

RiI™

If this right hand side is bounded by (—SAIZ, and if we think

2
82D? + ( 2|y| + |6t — as| + |Bt + as| — |ﬂ| 6D

+12 + (18t — as| + |6t + as])|v] + Iﬂt — as||ft + as|
< 0.

Since the conditions of existcnce of § satisfying (3.13) is the same to the
conditions for equation

(3.13)

2
§2D? + (2]7] + |6t — as| + |ft + as| - lﬂl 6D

+1? + (18t — as| + (8t + as|)v] + Iﬂt — as||ft + as]
=0.

to have two different real solutions and at least one of them is positive, that
is,

|8t — as|? + |8t + as|? — 2|8t — as||ft + as|?
2
|’6| (4|7| + 2|0t — as| + 2|6t + as| - Iﬂl ) (3.14)

>0,
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and AP
2ly| + |5t — as| + |6t + as| - EEIZ < 0. (3.15)
Figure 3.5 shows the p and r satisfying (3.14) and (3.15).
We find that the range of parameters u and r satisfying (3.14), (3.15) is

little different from that satisfying (3.9).

0 : ; e X 1 1 A i 1 l't'

26 2.8 3 3.2 3.4 3.6 3.8 4

Figure 3.5: The range of 4 and r satisfying (3.14) and (3.15)

4 Fractal Dimension of Attractor

Now, we calculate the Lyapunov exponents of the logistic map, and estimate
the fractal dimension of its attractor. We use the theorems mentioned in the
section 1. § means the logistic map. In the section 3, we saw that the logistic
map satisfies (1.10), and (1.11) would be obvious. Let us derive L. It is
ordinary Jacobian matrix of the logistic map.

- _ auT 012y
L= 2’“( CanT Caxny ) (4.1)
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By the boundedness of the X, we can say that (4.12) is held. So, L*L is

(—2#)2 ( a1 caaT ) ( a; a2k )
Q12T ca2§y Ca21T Cax2y (42)
42 (a}; + c?ad))z? (an1a12 + cPagian)zy
(ana12 + c*as a)Ty (a}, + 2ady)y?

L*L

Here, if we set

1+ 4r + 8r?
ar = 4u(al; +*af) = 4p T(1+3r)2
1+ 4r + 572
az = 4dp(aly + c*ad) = 4u (1 +3r)2 ’
3r + 672
— 2 = e~
b = 4ﬂ(alx012 +c 0'21“22) du ((1 + 37.)2)
then 9
«r _ [ a1z bry
L'L= ( bey  agy? ) (4.3)

Denoting by X the eigenvalues of the matrix (4.3) and by I the unit matrix,
since

A - L*L =0,
is satisfied, we solve |AI — L*L]| = 0 by using

(A = a122)(\ — agy?) — bz?y?

I\ - L*I]
2% — (0122 + aap®)A + (a1az — b%)z2y? *

o

Thus, we obtain

A= % {(a1x2 + ag9?) £ /(19?2 + agy?)? ~ 4(aras — b"’)z2y2} - (449)

|AI = L*L| = 0 by using

M- L*L| = (A=az?)(\ — ay?) — b’z%y?
= A2 — (0122 + aoy?)A + (a1ap — BH)z%?

Thus, we obtain

A= %.{(a;at:2 +a99?) £ /(@122 + a29?)? ~ 4(a1as — b2)x2y2} : (4.5)

Let each of them be A, and A_, then a;, o are

Q) = \/I, Qo9 = \/)\—_ (46)
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From (1.4), we get

w = o
1
= \/-2- {(alar;"2 +agy?) + /(172 + a29?)2 — 4(a102 — b2)x2y2}
W = oyt 4.7
= 4/ X+1/ x_
= /(a1az — 8?)22y?
and can calculate @, and @,. Recalling (1.7), (1.8),
M=o, A== (438)
w1
and
w; = log A;, i=1,2 (4.9)

Now, we apply Theorem 2 for the logistic map.

First, we consider the case in which the line (3.4) and the asymptote of
hyperbola (3.8) are overlapping. We calculate for the values of 1 and r satisfy-
ing (3.9),(3.12) and v = 0 in (3.4). For example, for 4 = 3.020 and r = 1.486

2 T L} L} L} T T T L
| e —
. lI 'm . Ae—
dim ! *mu=3.10" -----
1.8 -
18 F “.._ “.\ 4
14 3
1.2 + E
1 Il 1 1 1 i I il L 1 T
2 4 6 8 10 12 14 16 18 20

Figure 4.1: The Hausdorff dimension for some values of u

which approximately satisfy the above conditions, we got the value 1.37 as

37



the upper bound of the Hausdorff dimension. But, if the value of y is larger
than about 3.4, where the value of r is larger than approximately 2.2, then
the logistic map is about to diverge to —oo, and the upper bound of Hausdorff
dimension is close to 2. Although the Hausdorff dimension is supposed to de-
crease as the increase of r, the divergence of the system seems to have more
dependence on .

That tendency is shown in the general case. Figure 4.1 plots the values
of parameter r and the Hausdorff dimension. Although the dimension of the
attractor of the logistic map is not so larger than 1, we cannot say that this
attractor is one-dimensional. Of course, this estimation is upper one, and our
invariant set seems to be too large. We are anxious for the lower estimations
and the proper invariant sets.
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