Mallat Transformation with Periodic Boundary Condition
and Application to Tribology

Takashi NAKANO

Tokyo Institute of Technology, Graduate School of
Information Science and Engineering, Faculty of

Information and Environmental Engineering

Abstract

The relation between Mallat transformation and wavelet transformation
is investigated. It is shown that in case of band limited function, if
sampling density is 50 percent larger than that is required by Shannon’s
sampling theorem, Mallat transformation with Meyer basis gives exact
wavelet transformation. Mallat transformation for periodic signal is also
formulated. This formulation is applied to the iribology. It is shown
that the separation of roughness from error of form can be done
efficiently by using Meyer basis.
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1 Introduction

When one apply wavelet analysis to discrete sampled data, there are mainly two methods.
One is so called FFT(Fast Fourier Transformation) aided wavelet transformation. In this
method, wavelet coefficients are calculated by constructing interpolated function from
sampled data with aid of FFT.

The other method is called Mallat transformation. " Mallat transformation directly treats
sampled data with linear transformation. .

As some information may drooped out due to discrete sampling, one need to know the
conditions that these methods gives exact results. In case of FFT aided wavelet
transformation, the condition that the exact results can be obtained from sampled data is
known as Shannon’s sampling theorem.”

The aim of this study are to know the condition that Mallat transformation gives exact
results and to investigate the relation among Mallat transformation, FFT aided wavelet
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transformation and wavelet transformation of original function.

In section 2, Mallat transformation is introduced. In section 3, it is shown that
reproduction of bandlimited data by Meyer basis can be made if appropriate sampling data
was chosen and Mallat transformation gives exact wavelet transformation.

Coefficients of MRA (Multi resolution analysis) are calculated in section 4.

Mallat transformation for periodic signal is formulated without cut off of coefficients in
section 5. Section 6 is discussion about extension of Meyer basis. This discrete wavelet
transformation is applied to characterization of surface profile in Section 7.

2. Mallat Transformation
In this section, outline of Mallat transformation is explained .Scaling functiong; ,(x)

and corresponding wavelet ,y, (x) are

0, (x)=27"p(27x-k)  (Lla)
v (x)=27"y(27x-k)  (11b)

Let f(t) is original continuous data. Then discrete sampling data with sampling density 1
are expressed as f(n) (n: integer) .

In first Mallat transformation, sampled data are regarded as the coefficients of scaling
function, i.e. the function C(x), we analyze in Mallat transformation is

C(x) = CY(x) = Y KM, (x) = Y fmex—n) (12)

n=—co n=—co

In second step of Mallat transformation, C(x) is decomposed into two parts, coarser
scaling function part C¥(x) and wavelet part D®)(x) and this procedure continue for
positive integer j, as

U (x) = C(x) + DY (x) (1.3a)
Cx)=Y Py, (x) (1.3b)

DY (x) =Y d%, (%) (1.3¢)

Mallat showed that these coefficients ¢,?, d, can be obtained by following
linear transformation.”
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¢ =Y h, ™ (1.4a)
dP =Y g, V™ (1.4b)

(j=1,2.., ¢ = f(n))

where h ,g, are coefficients of Multi-resolution analysis (MRA) as

@p(x) = Zhn—Zk(pj—l,n(x) (1.5a)
V() =Y 80 n®,(x)  (1.5b)

g, =C-1"h_, (1.5¢)

Coefficients ¢¥,d9 are also calculated from equation (1.2) by using orthogonality of

wavelets and scaling function as
o = [Clp,,()dx  (1.62)

ay’ = IC(x)y/jvn(x)dx (1.6b)

—o0

From equation (1.6a,b), itis known that if we can take appropriate scaling function that

makes C(x) coincides with original function f(x), Mallat transformation gives exact
wavelet transformation. In next section, the condition that original function can be
reproduced from sampled data is investigated.

2. Conditions for Reproduction of Original Function from Discrete Sampled
Data

In this section we investigate the property of C(x) which is constructed from sampled
data f(n) (n: integer) by scaling function ¢(x) as

C(x) = 2 o(x—n)f(n) (2.1)

The answer can be obtained by applying the procedure to obtain Shannon’s sampling
theorem. By Fourier transformation of equation (2.1), it is shown
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&8 = 2 o= mwexs(-i5)
é(é);f (n)exp(-ién)
(@(5); FE+2m) (22)

For obtaining equation (2.2), Poisson’s summation formula (2.3) is used.

Y fx+2m) =Y f(n)exp(~inx) (2.3)
In general C(£) does not coincide with f(£). What kind of conditions make
C(&)coincide with f(£). '
To know the answer we use the procedure to obtain Shannon’s sampling theorem i.e.

f(x) and @(x) are band limited,
support[f(+)] = [-Q, Q] (2.4)
support[@(*)] = [, ®] (2.4b)
and

P&)=1, &e [-0,0,] (0,<w) (2.5)

From equations (2.3)-(2.5), we see that C(x) reproduce f(x) if following conditions are
satisfied.

Q< w, (2.6a)
Q+w<2r (2.6b)

Shannon’s sampling theorem is special case that corresponds to ®,= ® . In this case f(x)

is reproduced from f(n) as

fx) =Y, sinc(x-n)f(n) (2.7a)

sinc(x) = SBEE=D) 5
m(x—n)
As sinc(x) is not L' , we can not use sinc(x) as scaling function to generate wavelet. Is
there any scaling function to reproduce C(x) ? In the following, we show that Meyer basis
can satisfy above condition by taking appropriate sampling density.

Meyer base M(x) is defined in Fourier space as
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w(E)=1 (2r<p)
S{ah-1)] (5 <k )

=0 : (otherwise) 2.8

|
O
Q
@

|
<

Function v(x) is smooth function satisfying

v(x)=0if x<0
=lifx21 (29)
From equations (2.4b) and (2.5), we see that equation (2.8) means w;=2n/3 and
w=4m/3.
" By using equation (2.4a,b)-(2.6a,b), we conclude that Meyer basis can reproduce original
function if
A 2n
support[f(*)] = [-2,Q2] (Q< ——3——) (2.10)
In this case the original function is reproduced from sampled data as

fx) =Y f(n)M(x-n) (2.11)

According to Shannon’s sampling theorem, sampling density of this band limited signal
is {¥m=2/3. This fact means that sampling density that is required in case of Meyer basis
is 50 percent larger than that is required by Shannon’s theorem.

3. Relation between Mallat transformation and wavelet transformation
In previous section, we obtained the conditions that Meyer basis can reproduce original

function from sampled data. By using these results, it is known that Mallat transformation
gives exact wavelet transformation as

o = [fM, (x)dx (j20)  (3.1a)

d? = [ fu,(x)dx (j21)  (3.1b)
where M;, (x)Mj.k(x) is Meyer basis
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M, (x)= ﬁ‘M(z‘f x—k) (3.2)

and |, (x) is  corresponding wavelet generated from Meyer basis and defined as
p () =272 (27 x - k) (3.3a)

&)= e%[mg +2m)+ M(E- 2@]1\‘4(5-) (3.3b)

Next, we investigate the relation between Mallat transformation and wavelet
transformation for general signal.
In this case Shannon’s sampling theorem can not be applied but we can still construct two
functions C(x), f(x) from sampled data.

C(x)= ZM(x —n)f(n) (3.4a)

fi(x)= isinc(x —n)f(n)  (3,4b)

n=-—oo

C(x) is used for Mallat transformation and f,(x) is for FFT aided wavelet transformation.
Of course, neither C(x) nor f(x) (defined below ) reproduce original function f(x).

In the followings of this section, we compare the results obtained by using these two
functions .For later discussion we define two kinds of coefficients W;, ,and S, as

M, (x)dx (3.52)

(X (x)dx (3.5b)

5= [0
o=

where W, is wavelet transformation of f(x) and S, inner product of scaling function
with function f(x) . These two coefficients are calculated as (See appendix A)

_ fo( )sm (m(x- n)) M, (x)dx

n(x—n)

= Y f(n) szM(zf £)e™de (3.62)

“{i{k = i;f(n)sil;r(_ﬂ_ff_—_nﬁ :uj.k(x)dx

_n)

2 f(n) 2 2 fi(27 E)eaE (3.6b)

-
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Coefficients of Mallat transformation can be calculated directly by equation.(1.4a.b)
(see appendix B)

P = jC(x)M (x)dx

Zf(n)}:M(x -n) M, (x)dx

Zf(n) j M(&) 2% 2 E)e™dx  (3.72)

3

dé!)

IC(,\:),uJ.'k (x)dx

4rr

Zf(n) jM 2(2VE)e™dx (3.Tb)

3

By considering sﬁpport of Meyer basis and wavelet,

2-j 2-j

support[M(2! )] = [—2 ‘r?2 3’"] (3.8¢0)
3- 3-j

support[ﬂ(zj )] [_2 J” 23”] (3.8¢)

we see that forj =1 (see also appendlx A,B)

¢ = Zf(n) wn) (=21 (3.92)
¥ = wj_k = Zf(n) K (i22) (3.9b)

Note the difference of region of j between equations (3.9a,b) and reproducible case
(3.1a,b).

) =5, = T H0) M, ()= Tﬂxxoj_n(x)dx (120) G

4 = W, = 36(0) () = jf(x)wj,,(x)dx (i21) @.1b)
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4. Calculation of MRA coefficients of Meyer basis

. In this section the MRA coefficients of Meyer basis are calculated.

Values of coefficients, h, for Mallat transformation are defined as coefficients of multi-
resolution analysis (MRA) of Meyer basis as

M(x) =23 h,MQ2x—~n)= Y hM_,(x)  (4.la)

or

M(€) = J_Zh exp(~iné/2) M(&/2) (4.1b)

h, =2 [ M(x)M(2x ~n)dx (4.2)
By using Parsevals equality

T T 1 T rmaa

[ 1o = — [ 7(£)a(E)s 4.3)

Coefficients of multi-resolution analysis, h, are expressed by Meyer basis as
1 oonpnf € én
h = M(c)M| = 2= id
n 2nJ§I- ¢) (2)“’{1 2) x
4n/3 A f
= «/~J’ M( §)exp(z——)dx
- &n
= M [ —_— d
27:«/5 J-M(&exp (' 2 S

e
=M, o(n) (4.4)

For deriving equation (4.4), we use the facts
M g =1, &e support[M(e)] = [—4—” 4—”] 4.5)

First 32 term of h, with v(x) = x*(35-84x + 70x? — 20x*)are shown in Table 1.
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5. Mallat transformation for periodic signal

In this section periodic signal of period N, i.e. f(x+N) =f(x) is treated. For convenience
we assume N=2’ (J: positive integer). Periodic version of wavelet Mj'k”“(x), and scaling
function p,,**(x) are defined as

MY (x) = 2 W(x+IN)  (5.1a)

u(x)= zuj,k(x +IN) (5.1b)

I=—o0

Note that for j=J
M""(x) =1 - (52a)
e (x)=0 (5.2b)
and only finite number of coefficients
cper) (0<j<J,0sk<2V ) (5.3a)

dP(per) 1<j<J-1,0<k<2V ) 1)  (53b)

are needed. C(x) becomes

Crx) =3 Flm)ME () 53)

n=0

and Mallat transformation becomes

(-1

¢ (per) = 2 KD, P (per) (5.6a)
n=0
=i 4
d(])(per)_. Zg’('j_)nd(j) per) (56b)
n=0
g9 = (-1 h9 (5.6¢)

In this case, coefficients MRA, ¥ depends on the scaling parameter, j. The coefficients
are calculated as (See appendix C)
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h(/) - J' Mper yM?e

Jj=t.n
2hn+2"'i)t

I=-00

(x)dx

22("” ) M(27r2(-1+j)k)ei"2(‘m)"” X))
Iklsz(/—iﬂ)

It is also interesting to note that equation (5.7) can be used to calculate the value of h,
(not h,9 ) because the h, decrease as order of n*. For example, if we take for example
N=2'° then only k=0 term is appreciable.

Next, consider the periodic version of equations (3.1a,b) and (3.9a,b). Interpolated

function f,(x) becomes

L@ =S fmysinate-mycoZE="

n=0

) (5.8

In deriving equation(5.1), following summation formulae is used.

lim 2 1 = ;mcotmx 5.9)

we see that for reproducible case

<O (per) =S, Zf(n)Mf;' (n)= I FOOMPE(x)dx (720)  (5.10a)

d?(per) = Zf(n) w5 (n) = J FOu(x)dx (j21)  (5.10b)
N=0
and for general signal »
c(per) = J'_ﬂ(x)M]’.’;'(x)dx = Zf(n) M!(n) (G=21) (5.11a)
d(per) = j FOpP (x)dx = Zf(n) ey (j22) (5.11b)

6. Extension of Meyer basis

In this section we consider extension of Meyer basis. Meyer basis is generalized in case
of O<a<mas
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M(E)=1 (am 2 |g])
cos[% v(i—[ﬂ - 1)] (am <|g <27 -a)

=0 (otherwise) 6.1

If the sampling density predicted by Shannon’s sampling theorem is 1 then sampling
density by Generalized Meyer basis is nt/a. In the limit ofa — 7 -0, we have Shannon’s

- sampling theorem.
7. Characterization of Surface Roughness by Mallat Transformation

In this section, Mallat transformation is applied to the characterization of surface profile.
In tribology (or lubrication engineering) , the surface profile has important roles on
friction and wear. To estimate the tribological behavior of engineering surface, it is
necessary to use the proper method of separation of surface roughness from error of form.
As the standard of roughness and error of form depend on precision for machine desired
performance, the flexible mathematical tools are needed for this characterization.>

Figure 1 shows example of such engineering surface. In machine engineering, the
surface profile is required to decompose three part, (1)longer wavelength part called
waviness, (2) short small amplitude variation called roughness and (3) short wavelength
large amplitude variation called scar.
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Fig.1 Example of Surface Profile
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The standard tool of surface characterization in mechanical engineering is Gaussian filter.
As the Gaussian filter separate variation of surface profile by scale, it is very difficult to
separate roughness from scar.

On the other hand, wavelet can extract local information. Especially Meyer basis has
compact support in Fourier space and fast decaying character in real space and thought to
have good performance to characterization. Figure 2 shows the result of separation by
Mallat transformation with Meyer basis.
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Fig. 2 Filter data by Mallat Transformation with Meyer basis
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From this results, it is known that discrete wavelet transformation is powerful tool for
the characterization of surface profile and tribology.

Appendix A Calculation of coefficients of Mallat transformation

R Iz f(n)sinc(z(x — n))M, ,(x)dx
= Y f(n) Tzfﬂ(zf E)edé | (A1)

using Parseval’s identity

64



j F(x)g(x)dx = — ] F(&)a(E)e (A2)

and fact that Fourier transformation of sinc(x-n) is

Isinc(x —n)e %dx = )5#_,,_,”(Jc)e""'é (A3)
" where 7 is characteristic function., we obtain
Sit = SO O M2 E)E
= 2_17;2 fo)f e 2§M(2f £)de (A4)
Coefficients W, , can be obtained be same procedure.
Wi = 5 S 00 (B2 (2 5

1 i é i
e IO IR ) LI O

By considering the fact that
support{M(2’ o)) = - 22_1" 22;”] clma] (21
support[(2’ o)1 = [~ 2”” 23;” [77] (22)
we see that
S0 = 310002 M2/
=Y f(n) 2% M(27x-n)
. if(n) M, (%) G21) (A.62)

and
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2 OIN '5"22 (27 E)e

= Zf(n) ZTu(Z""x - n)
=3 f(n) 1. (x) (22) (A.6b)

Appendix B Calculation of coefficients of Mallat transformation
)= J‘C(x)(pjvk(x)dx
- oo i .
=Y, [f(M(x-n)2? M(2/x—k)dx

-Zf I )2 M(2’§) A1

Using equation (A.5a,b) and

2>n 2%
373

M(§) =1 éesupport[M(zj .)]=[_ ] G=1) (AT7a)
o = 31(n) [i2re)2 e ag

= Zf(n)2§ M(n+27k)
= z f(n) M L(”

)}
dk

]:C(x)luj,k (x)dx
=y Tf(n)M(x - n)2% (27 x - k)dx

= 2 f(n) TM@) 2% ,ﬁ(2'j 5) eiZ’kéandg
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also using the fact that

M(&)=1 §€support[ ( )] (G22) (A7a)
d(/) Zf(n ]’ ( ) 'l eiﬂk&ﬁmfdg

= Zf(n)ﬁ p(n+27k)
= Z f(n) Hix (n)

Appendix C Calculation of Mallat coefficients in periodic case

B = I:M}’;'(x)M"" (x)dx

j-lLan

= [ M () T M, (e + N

[=—00

= j MPE(X)M,_, ,(x)dx

= .[ 2 0(x + lN ]-l,n (xﬂx

==

—Lzz 2M( Tx+27 N2 M2 0% - ~njdx

I=—c0

=1 ZZEM OM2y-n+2V""IN)ix  (N=2')
l=—e0

oo

= Z hn+2“'j”)l

l=-00

22(—1 j- 1) (27'.:2( J"'J)k) iga-iv D ey

(4-7+1)
Ks
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o o 1 -t
Sh o = 32 M(x)M(Zx——n—-Zm ’z)dx
n+ -

l=—c0 J=noo
(3-j*1)
n+2 {

N

LSy T

2m

w 1 _
=Y2 2M(%+2("’)1)

.

= i2'%'U‘J')M(zn_z-(./_j)k)e,-,,z-(l-nkn
k=—oo
T -1, in2
=227 M(2n2 i k)e &

|l <kp

2(/-j+1)
)

)
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‘Wavelet transforms on spheres — a brief survey

SHINYA MORITOH

Department of Mathematics, Nara Women’s University

In this brief survey, some recent constructions of the spherical wavelet transforms
are mentioned. The following are the constructions I presented at ” Symposium on

Applied Mathematics”. This survey is far from complete.

1) The spherical wavelet transforms introduced by Rubin are associated with

appropriate analytic operator families (4]).

2) The wavelet transforms on L(R) and Lo(R?) are generalized to tangent
bundles T'S* and T'S? by Dahlke and Maass ([2]). Specific groups that admit

square-integrable representations in Lz(7T'S') and L2(T'S?) are considered.

3) The concept of a multiresolution analysis on R" is generalized to specific

Riemannian manifolds by Dahlke ([1]).

The wavelet transforms on R™ are defined with microlocal views in mind by

myself ([3]).
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