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Abstract 

The relation between Mallat transformation and wavelet transformation 

is investigated. It is shown that in case of band limited function, if 

sampling density is 50 percent larger than that is required by Shannon's 

sampling theorem, Mallat transformation with Meyer basis gives exact 

wavelet transformation. Mallat transformation for periodic signal is also 

formulated. This formulation is applied to the tribology. It is shown 

that the separation of roughness from error of form can bc done 

efficiently by using Meyer basis. 
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1 Introduction 

When one apply wavelet analysis to discrete sampled data~ there are mainly two methods. 

One is so callod FFT(Fast Fourier Transformation) aided wavelet transformation. In this 

method, wavelet coefficients are calculated by constructing interpolated function from 

sampled data with aid of FFT. 

The other method is called Mallat transformation. I ) Mallat transforrnation direc~y treats 

sampled data with linear transformation. 

As some inforrnation may drooped out due to discrete sampling, one need to know the 

conditions that these methods gives exact results. In case of FFT aided wavelet 

transformation, the condition that the exact results can be obtained from sampled data is 

known as Shannon's sampling theorem.2) 

The aim of this study are to know the condition that Mallat transformation gives exact 

results and to investigate the relation among Mallat transformation. FFT aided wavelet 
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transformatiOn and wavelet transformation of original function. 

In section 2, Mallat transformation is introduced. In section 3, it is shown that 

reproduction of bandlimited data by Meyer basis can be made if appropriate sampling data 

was chosen and Mallat transformation gives exact wavelet transformation. 

Coefficients of MRA (Multi resolution analysis) are calculated in section 4 . 

Mallat transformation for periodic signal is formulated without cut off of coefficients in 

section 5. Section 6 is discussion about extension of Meyer basis. This discrete wavelet 

transformation is applied to characterization of surface profile in Section 7 . 

2. Mallat Transformation 
In this section, outline of Mallat transformation is explainod . Scaling functiOn epJ k (x) 

and corresponding wavelet , Wj,k(x) are 

epJk(x) 2 J/2ep(2~jx-k) (1.1a) 

Vfj,k(x) = 2~j/2W(2~Jx k) (1 Ib) 

Let f(t) is original continuous data. Then discrete sampling data with sampling density l 

are expressed as f(n) (n: integer) . 

In flfst Mallat transformation, sampled data are regarded as the coefficients of scaling 

function, i.e. the function C(x), we analyze in Mallat transformation is 

C(x) C(o)(x) ~ ~_ f(n)epo,'(x) ~f(n)ep(x n) (12) 

In second step of Mallat transformation. C(x) is decomposed into two parts, coarser 

scaling function part C(1)(x) and wavelet part D(1)(x) and this procedure condnue for 

positive integer j , as 

d j-1)(x) = C(j)(x) + D(j)(x) (1 .3a) 

C(j)(x) = ~ c(j)epj," (x) (1 .3b) 

~d(j)Wj,k (x) D(j)(x) = (1 .3c) 
Manat showed that these coefficients ckG), dkG) can bc obtained by following 

linear transformation. l) 
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c( j) (j~1) ( I .4a) 
~
~
 

= h*_2kc^ 

(j-1) ( I .4b) da) = ~g._2kc~ 

(j = 1,2...., c(o) = f(n)) 

where h*,g~ are coefficients of Multi-resolution analysis (MRA)' as 

~
 

epJ,k (x) = h. _2kepj_1'^ (x) ( I .5a) 

Vfj,k (x) = ~g._2kepj_1'~ (x) (1 .5b) 

g. = (-1)"~_^ (1 .5c) 

G) G) Coefficients c~ ,d. are also calculated from equation (1 2) by usmg orthogonality 

wavelets and scaling function as 

J
 

c(j) = C(x~pj,~(x)dx (1 6a) 

d(j) = f C(x)V/j,.(x)dx (1 6b) 

of 

From equation (1.6a,b), it is known that if we can take appropriate scaling function that 

makes C(x) coincides with original function f(x), ~nat transformation gives exact 

wavelet transfonnation. In next section, the condition that original function can bc 

reproduced from sampled data is investigated. 

2. Conditions 

Data 

for Reproduction of Original Function from Discrete Sampled 

In this section we investigate the property of C(x) which is constructed from sampled 

data f(n) (n: integer) by scaling function (p(x) as 

C(x) = ~ep(x - n~(n) (2. l) 

The answer can be obtained by applying the procedure to obtain Shannon's sampling 

theorem. By Fourier transformation of equation (2. I ), it is shown 
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~(~) = ~ ep(x - n)f(n)exp(-i~) 

= c(~)~f(n)exp(-i~n) 

= c(~)~f(~+27ln) (2.2) 

FOr obtaining equation (2.2), poisson's summation formula (2.3 ) is used. 

~f(x+2lm) = ~f(n)exp(-inx) (2.3) 

In general C(~) does not coincide with f(~). What kind of conditions make 

C(~)coincide with f(~) . 

To know the answer we use the procedure to obtain shannon's sampling theorem i.e. 

f(x) and q)(x) are band limited, 

support[f(')] = [-~, ~] (2.4a) 

support[c(･)] = [-co, co] (2.4b) 

and 

c(~)=1' ~e [-coo'coo] (coo ~ co) (2.5) 

From equations (2.3)-(2.5), we see that C(x) reproduce f(x) if following conditions are 

satisfied. 

~ < eoo 

~ +w < 27r 

(2.6a) 

(2.6b) 

Shannon's sampling theorem is special case that corresponds to co0= co . In this case f(x) 

is reproduced from f(n) as 

f(x) = ~ sinc(x-n)f(n) (2.7a) 

sin 7c(x - n) 
sinc(x) = (2.7b) 

lr(x - n) 

As sinc(x) is not Ll , we can not use sinc(x) as scaling function to generate wavelet. Is 

there any scaling function to reproduce C(x) ? In the following, we show that Meyer basis 

can satisfy above condition by taking appropriate sampling density. 

Meyer base M(x) is defined in Fourier space as 
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( ) ,~r(~) = 1 2 lc ~ I~l 
3
 

cos[~v(2;cl~l 1)J ( 47c) _ 27c ~ I~l ~ 
3
 

3
 

= O (otherwise) (2.8) 

Function v(x) is smooth function satisfying 

v(x) = O if x ~ O 

= I if x ~ I (2.9) 

From equations (2.4b) and (2.5), we see that equation (2.8) means co0=2lr/3 and 

o~47c/3 . 

By using equation (2.4a~b)-(2. 6~~ b), we conclude that Meyer basis can reproduce original 

function if 

support[f(e)] = [-~,~] (~ < 3 ) (2 10) 

In this case the original function is reproduced from sampled data as 

f(x) = ~ f(n)M(x - n) (2. 1 1) 

According to Shannon's sampling theorem, sampling density of this band limited signal 

is ~/1c=2/3. This fact means that sampling density that is required in case of Meyer basis 

is 50 percent larger than that is required by Shannon's theorem. 

3. Relation between Mallat transformation and wavelet transformation 

In previous section, we obtained the conditions that Meyer basis can reproduce original 

function from sampled data. By using these results, it is known that Mallat transformaion 

gives exact wavelet transformation as 

c(j) = Jf(x)Mj,k(x)dx (J > o) (3 Ia) 

!
 

da) = f(x)//i,k(x)dx (j ;~ l) (3.1b) 

where Mj,k(x)Mj,k(x) is Meyer basis 
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MJ k(x) ~~ 2~~~(2 x-k (3.2) -j ) 
and uj,k(x) is corresponding wavelet generated from Meyer basis and defined as 

/lJk(x) 2 l/2/1(2~jx-k) (3.3a) 
[
)
 

~[ ~ (3'3 b) ~
 

p(~) = e' /~(~+27c)+X~(~-27c) h~ j
 

Next, we investigate the relation between Mallat transformation and wavelet 

transformation for general signal, 

In this case Shannon's sampling theorem can not be applied but we can still construct two 

functions C(x), fl(x) from sampled data. 

~ (3 ･4a) C(x) = M(x - n)f(n) 

fl(x) = ~sinc(x - n)f(n) (3,4b) 

C(x) is used for Mallat transformation and fl(x) is for FFT aided wavelet transformation. 

Of course, neither C(x) nor fl(x) (defined bclow ) reproduce original function f(x). 

In the followings of this section, we compare the results obtained by using these two 

functions .For later discussion we define two kinds of coefficients Wj,k ,and Sj,k as 

J
 

Sj,k ~ fl(x)Mj,k(x)dx (3.5a) 

Wj,k ~ !fl(x)/lj,k(x)dx (3.5b) 

where Wj,k is wavelet transformation of fl(x) and Sj,k inner product of scaling function 

with function fl(x) . These two coefficients are calculated as (See appendix A) 

Sj,k = * sin(7c(x - n)) Mj k(x)dx 
J_~ f (n) 

~ 7c(x - n) ' 
,j J ~^( j ) = ~f(n) 2 M 2 ~ e'"~d~ (3.6a) 

sin(7T(x - n)) l ~ f (n) 

Wj,k = /lj k(x)dx ~ Ic(x - n) ' 
,j J ~^( j ) = ~f(n) 2 /1 2 ~ e'"~d~ (3.6b) 
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COefficients of Manat transformation can be calculated directly by equation.( I .4a.b) 

(see appendix B) 

f
 

c{ j) = C(x)Mj,k (x)dx 

J
 

= ~~ f(n)__M(x - n) Mj,k(x)dx 

4* 

J J (3.7a) = ~f(n) I~:(~)2~l~(2j~)ei'~dx 

, 4* 

J
 

d(j) = C(x)//i,k(x)dx 

4* 

f j ) = ~f(n) 1~1(~)2~p(2j~ ei~~dx (3.7b) 

4' 

By considering support of Meyer basis and wavelet, 

f i ¥ 22~j,r 22~jlc 
support[M¥2 .j] = [~ 3 (3.8c) , J 3

 
f j ~ 23~jlc 23~j/z: 

support[l/~2 .)] = [- 3 (3.8c) , J 3
 

we see that forj~:1 (see also appendix A,B) 

ca) = Sj,k = ~f(n) Mj,k(n) (j ~: l) (3.9a) 

d(J) = Wj,k = ~f(n) Ilj,k(n) (j ~ 2) (3.9b) 

Note the difference of region of j between equations (3.9a,b) and reproducible case 

(3 . I a,b). 

c!j) Sj,k f = = ~f(n)Mj,k(n) = f(x>pj,.(x)dx (j ~: O) (3.1a) 

d(]) WJ k ~f(n),lj,k(n) = Jf(x)Wj,.(x)dx (J > 1) (3 Ib) 
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4 Calculatron of MRA coefficrents of Meyer basis 

In this section the MRA coeffrcients of Meyer basis are caiculated. 

Values of coefficients, h* for M~lat trans formatiOn are dermed as coefficients of multi-

resolution analysis (MRA) of Meyer basis as 

~ h~ M_1'~(x) (4 Ia) M(x) =1/~ h~M(2x-n) = 
~
~
 

or 
1
 ~I(~) = ~/~~h~exp( m~/2) M(~/2) (4.1b) 

h. = ~/~Jf M(x)M(2x - n)dx (4.2) 

By using parsevals equality 

1 ~^ J f (x)g(x~x = J f (~)~(~ ~~ 

Coefficients of multi-resolution analysis, k~ are expressed by Meyer basis as 

(~) ( )
 

= ~ I~:(~)l~: ~ exp i dx ~ J_ h 2,c~/~ 2 
l~:(~) ex p(i dx )

 
l r4' / 3 ~n 

~ 2/r~/~ J~'/3 2 
= f _ M(~) ex p(i l ~n dx 217~/~ 2 
~ M(~ 

= Ml'o(n) (4.4) 
For deriving equation (4.4), we use the facts 

[~) _ - I , ~ e support[l~:(o)] = [- 4,c 47T] (4.5) 
M 

( 20x3)are shown in Table I . First 32 term ofr~ with v(x) = x4 35- 84x + 70x2 -
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5. Mallat transformation for periodic signal 

In this section periodic signal of period N, i.e. f(x+N) =f(x) is treated. For convenience 

we assurne N=2J (J: positive integer).Periodic version of wavelet h4i,kP*(x), and scaling 

function uj,k~(x) are defined as 2) 

Mj~'L.'(x) = /~Mj,k(x + IN) (5 Ia) 

l~_~_llj,k (x + IN) 

/lJeik'(x) = (5. Ib) 

Note that for j ~ J 

MJ~'L･'(x) = I (5.2a) 

/l f'k'(x) = O (5.2b) 

and only finite number of coefficients 

c(j)(per) (o ~ j ~ J, o ~ k ~ 2(J~j) -1) (5.3a) 

d ( j) (per) (1 ~ j ~ J - 1, o ~ k ~ 2(J~j) - 1) (5.3b) 

are needed. C(x) becomes 

N-1 
CP"(x) = f(n)Mo~'"'(x) 

~-o 

and Mallat transformation becomes 

2('~1)-1(j) (j)(per) (5,6a) 
c(J)(per) = ~ h~_2kc. 

~*o 

2('-j) -

~
 

(j) = g;j)2kd"(j)(per) (5.6b) dk (Per) 

'-o 

g(j) = (-1)"~(j) (5.6c) 

In this case, coefficients MRA, h*G) 

are calculated as (See appendix C) 

depends on the scaling paralneter, j. The coefficients 
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N J
o
 

h(j) = MJ~'o'(x)MJ~'f,~(x)dx 

~_ -= h*+2(")l 

= ~2 ~ ) M(2lc2(~J'J)k)e'"2( "')kN (5.7) ( -~ J+ j 

2u-j**) 
lkl~ 3 

It is also interesting to note that equation (5.7) can be used to calculate the value of h~ 

( not h.G) ) because the ~ decrease as order of n4. For example, if we take for example 

N=2ro then only k=0 term is appreciable. 

Next, consider the periodic version of equations (3.1a~b) and (3.9a~b). Interpolated 

function fl(x) becomes 

'=N-If(n)sm'r(x n)cot(ll(x-n)) (5 8) 
f[(x) = ~ ' 

In deriving equation(5.1 ), following summation formulae is used. 

lim " I ,ccot7Dc (5.9) ~ = "+~ x + n "=-~ 
we see that for reproducible case 

c(j)(per) = SJ k ~ f (J > O) (5. 10a) ., = f(n)MJ?~k'(n) = f(x)MJ~'k'(x)dx ' _ 

'-o 

N-1 N d(j)(per) = Wj,k ~ J = f(n) Ilf'k'(n) = f(x)'lf'k'(x)dx (j ~: l) (5.10b) 

N*o 

and for general signal 

J f(n) MJ~'L.'(n) (j ~ l) (5. I Ia) ~
~
 

c(j)(per) = fl(x)MJ~'k'(x)dx = 

N 

J ~ (j ~ 2) (5. 1 Ib) dfj)(por) = fl(x)pf'k'(x)dx = f(n)pJe.'k'(n) 

6 Extension of Meyer basis 

In this section we consider extension of Meyer basis. Meyer basis is generalized in case 

of 0<a<7c as 
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~r(~) = I (a7T ~: I~l) 
cos[~v(;I~l l)] 

- a7c ~ I~l ~ 27T - a) 

= O (otherwise) (6.1) 
If the sampling density predicted by Shannon's sampling theorem is I then sampling 

density by Generalized Meyer basis is lc/a. In the lirnit ofa ~ 'T - O, we have Shannon's 

sampling theorem. 

7. Characterization of Surface Roughness by Mallat Transformation 

In this section, Mallat transformation is applied to the characterization of suface profile. 

In uibology (or lubrication engineering) , the suface profile has important roles on 

friction and wear. To estimate the tlibological bchavior of engineering surface, it is 

necessary to use the proper method of separation of surface roughness from error of form. 

As the standard of roughness and error of form depend on precision for maehine desired 

performance, the flexible mathematical tools are needed for this characterization.3~5) 

Figure I sho'vs example of such engineering surface. In machine engineering, the 

surface profile is required to decompose three par~ (1)longer wavelength part called 

waviness, (2) short smallamplitude variation caned roughness and (3) short wavelength 

large amplitude variation called scar. 
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Fig.1 Example of Surface Profile 
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The standard tool of surface chamcterization in mechanical engineering is Gaussian filter. 

As the Gaussian filter separate variation of surface profile by scale, it is very difficult to 

separate roughness from scar. 

~l the other hand, wavelet can extract local information. Especially Meyer basis has 

compaet support in Fourier spac~ and fast decaying character in real space and thought to 

have good performance to characterization. Frgure 2 shows the result of separation by 

Mallat transformation with Meyer basis . 
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Fig. 2 Filter data by Mallat Transformation with Meyer basis 

From this results, it is known that discrete wavelet transformafion is powerful tool for 

the characterization of suface profile and uibology. 

Appendix A Calculation of coefficients of Mallat transformation 

Sj,k = J~f(n~inc('c(x n))MJ k(x)dx 

*j = ~, f(n) Jf2~Mf¥2 ~¥f"'"~d~ 

using parseval's identity 

(A. I ) 
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r f(x)g(x~x = f f(~)~ ~~~ J 2it J ( 
and fact that Fourier transformation of sinc(x-n) is 

J' -srnc(x n~~icd;c = Xi *,.] (A.3) _ (x)e~i^~ 

where x is characteristic function., we obtain 

Sj.k 27c ^ I ( j ) 1
 = ~ J~ (~)ei~~~M 2 ~ d~ f(n) _X[_",'] 

1
 = f(n)Jfi.eic2~M(2j~ ~ (A.4) ~

 

~
~
 

2,t 

Coefficients Wj,k can be obtained be same procedure. 

Wj,k = ~ f f(n) IX[_","](~)eic2~// 2J~ d~ ( ) 
2,7 . 

1 ' l = ~f(n)Jf_.eic2~l/(2j~ ~ (A.4) ~
 2lt 

By considering the fact that 

f j ~ 22~j7T 22 J7c 
support[M¥2 e/] = [~ , 3 1 c [ 7T ic] G > 1) 

3
 

( i 1 23~jlc 23~j7c 
support[l/¥2 e)] = [- , I c [-7c,7T] G > 2) 

3 3 
we see that 

l
 = f(n)Jfieic2~Mf¥2j~ ~ ~

 
･, ~~ SJ k 27r 

~ '~~~J (-j - ) 
= f(n)2 M2 x n 
~
~
 

= f(n) Mj.. (x) G ~ 1) (A.6a) 

and 

(A.5a) 

(A.5b) 
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1 J~ i ! ( ~ , = ~f(n) _e~22ll2J~ ~ WJk 271 ~ 

--;J ( -j - ) 
=~.f(n)2 /12 x n 

= ~ f (n) Ilj,~ (x) G ~ 2) (A.6b) 

APPendix B Calculatron of coeffrcrents of Mallat transformatron 

J
 

c(j) = C(x>pj,k(x)dx 

= ~~ J_f(n)M(x n)2 Mf¥2 x k)dX 

= ~ J ^ --{ ^ ( aj ) ,.jk~+'~~d~ 
f(n) __M(~)2 M 2 ~ e~ 

Using equatiOn (A'5a,b) and 

[ , J 22~j7r 22~j71 
[ ( i )]= 3 G;~1) (A'7a) M(~) = I ~ e support M 2 e -

3
 

ca) ~ J ^( j ) -! ' ' d~ 2 "'Jk~+i^~ = f(n) _M 2 ~ 2 e 

~ ~{ ( -j) = f(n)2 M n+2 k 
~
.
 

= f(n) Mj,k (n) 

f
 

d(j) = C(x)'4j,k(x)dx 

= ~Jf(n)M(x-n)2 I/(2 x k)dx 

= ~f(n) !J~(~) 2 P(2 ~) e'2ik~+i^~d~ 
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also using the fact that 

M(~) = I ~ e support[/1(2j . G ~ 2) 
)
]
 

~. f(n) fp(2 ~)2 e 
da) = i2ik~'i'~d~ 

=~. ~ f(n)2 ,t(n+2~jk) 

= ~ f(n) 'lj,k (n) 

(A.7a) 

APPendix C Calculation of Mallat coefficients in periodic case 

N ' Jo h(J) = MJ~'or(x)M]~'f,~(x)dx 

N fo l= 
~
_
 

= MJ~'o'(x) Mj_1'~ (x + IN~X 

= fiMJ~'o'(x)MJ I ~(x)dx 

f ~Mj,o(x+1N)M] In(x~x 
*
~
 /=-

* j = 2~~M(2~j x + 2~j IN)2~T M¥2~(j~1)x - n)dx ~l~ 

* J ~2~M(y)M(2y n+2(J l+1)lN)dx (N = 2J) 
~
~
 l=-

~ _･ l = h*+2(J "I) 
l=-* 

~2 ~ ) M(2lc2(~J'J)k)e "'( l'l)kN ( -~ J+ j 

2(1-'+1) 

lkl~ 3 

67 



レ州、・、三・；L・（・）・（・・十・岬，1）血

　　　　　　　　　　　　　　　　　　　　　　1，・j刈

　　　　　・拒t榊／ヅ・ξ・1

｛』・j刈

　　　。。　　　　　　　　　　”十2

・去、～可ル（ザξ・1

・卸／姜・州）

　　”　　　1
＝Σ2す灼）〃（2π2一（＾・）火）ノπ汁ハ㎞

止＝｝

：Σゴτ㈹后（2πτ（川た）～πブ（川㎞

　1此1く㌦

（k㎜＝

2（J一川）

　　　　）

　0

Acknow1edgme耐

Author血㎜ks　to　Dr．H．Sasaki　of　K勾ima　Constmction　Company　for　sugges㎞1g血e

impo池㎜ce　of　this　prob1em．Author　a1so　th㎜ks　Pro胎ssor　K．Mizohata　of　Josai

Universi奴εmd　S．Ukai　of　Tokyo　Institute　of　Tec㎞o1ogyわr曲e辻valuab1e　discussion

about　wave1et．

References

1）S．M汕敏：Trans．AmeL　Ma曲．Soc．，31569－88（1989）

2）I．Daubec㎞es：TenLect㎜es㎝Wave1et，S㏄ietyforIndus㎞alandApp1ied

　Ma此㎜dcs．（1992）P304PeriodizedWave1et

3）T．N北㎜o：Pr㏄eedingsofJSMECentemia1G㎜dC㎝gress

　ofComputado刷Mech㎝ics　C㎝虹㎝ce　143－1仏（1997）

4）T．Na1kam：Procgedings　ofJAST　Tribo1ogy　Con胎肥n㏄Tokyo72－74　（1997）

5）T．Nakξmo：Proceedings　ofJAST　Tribo1ogy　Con胎肥nce　Osa1ka　64－65（1997）

68



Wavelet transforms on spheres a brief survey 

SHINYA MORITOH 

Department of Mathematics, Nara Women's University 

In this brief survey, some recent constructions of the spherical wavelet transforms 

are mentioned. The following are the constructions I presented at " Symposium on 

Applied Mathematics" . This survey is far from complete. 

1) The spherical wavelet transforms introduced by Rubin are associated with 

appropriate analytic operator f~ilies ([4]). 

2) The wavelet transforms on L2 (lR) aud L2 (IR2) are generalized to tangent 

bundles TSI and TS2 by Dahlke and Maass ([2]). Specific groups that admit 

square~intdgrable representations in L2 (TSl) and L2 (TS2) are considered. 

3) The concept of a multiresolution analysis on IR" is generalized to specific 

Riemannian mauifolds by Dahlke ([1]). 

The wavelet transforms on I~" are defined with microlocal views in mind by 

myself ([3])-
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