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A new type of qualitative change in chaotic dynamics is diseussed and illustrated. In 

this case, as the control parameter is varied, the destruction of the chaotic attractor 

occurs quite secretly, and the average lifetime of chaotic transients decreases extremely 

slowly. Furthermore, in the course of this decrease, peliodic attractors appear many times. 

Such a change can be observed in some non invertible maps ~~hich have attractors in a 

bounded area, and have, in the boundary of this area, a coexisting cbaotic attractor whose 

basin is riddled, rt is shawn by numerical considerations that such a change may result 

from the invasion of pieces of the riddled basin of the coexisting chaotic attractor into 

the chaotic objeet in the bounded area. 

l . Introduction 

Recent work by J.C.Alexander et al. [l] has sha~n that there can exist chaotic systems 

having attractors for which at any point in its basin af attraetion an open ball ~ith an 

arbitrarily small radius always contains pieces of another attract~r basin. In such a case 

the basin is called [1,2] "riddled basin" . Several theoretical and experimental works 

which support these findings have appeared [3-ll] . This behavior can arise in syste~is that 

possess chaotic dynamics in a smooth invariant manifold of lo~er dimension than that of 

the full phase space. 

In this ~ork such systems having an attractor B (or, attractors B*, B~,"',B~) in a 

bounded area (namely, a clos8d area in ~hich trajectries are confined) and a coexisting 

chaotic attractor A whose basin is riddled are studied. Following prey-predator model [12] 

is one of such systems; 

x*+~ ax (1 x -y~) 
y~+*=b y* ( I + c x*) 

The system (1) is one of the simple tvo-dimensional noninvertible maps. In this map, 

the x-axis is an invariant manifold of the system. The ctynamics on this manifold is the 

well known logistie map which has chaotic attractor A as the parameter a is suitably 

chosen in S.699･･･< a ~ 4 . Each orbit starting from inside of the area D which is bounded 

by lines x= O, y= O, and I -x-y= O is confined as para~eter a, b, c are 
suitably chosen. In the following argument, parameter a, c are fixed suitably (typically 

4 , 5 respectively), and parameter b is tr8ated as a eontrol parameter. 

How the bifurcation of the attractor B goes on when the parameter b , uhich control 

the stability of the attraetor A perpendicular to the x-axis* is varied? An answer to 

this problem is given hy the numelical considerations for the system (1), ~ith finding a 
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Let F be a C' planar map for which the x-axis is invariant. Suppose that F has an 

attractor A･~hich supports an invariant measure ll in the x-axis. Writing F with its 

components as 

F (x,y) = (f(x,y), g(x,y)) , (2) 
and n-iterates as 

F(*) (x y) (f(*)(x y) g(*)(x,y)) . (3) 
For the system (1), components of F are given as 

f(x,y)=ax(l-x-y) 

For each point of (x , O ) eA the normal Lyapunov exponent L+ (x ) is deflned by 

l
 

L+ (x) = Iim I n [D g(~)~ (x,O). (5) 
r~" n 

It has been shown by J.C.Alexande et al.[l] that L+(x) exist and is independent for 

almost all x with respect to /~, and that if this typical value L+ is negative then 

most points near A in R' are attracted to A. For the system (1) L+ (which is 

controlled by the parameter b, so is represented as L (b), too) is given by 

In L+ = L(b) =1im ~ In {b (1+cx ) } xi=f(')(x,O). (6) 
rp" n i=1 

Regarding b. as the critical point of b at uhich L (b) changes in its sign, it is 

shown in the following numerical and theoretical arguments that, when L+ changes from its 

positive value to negative value at b = b., the attractor A changes in its stability in 

y space from a simple reppler to an attractor uhich has a riddled basin. Moreover the 

following aspects will become apparent numerically. 

(1) As the parameter b has decreased from b., after the periodic attractor B 

developed into a chaotic object this chaotic attractor B changes promptly to the chaotic 

quasi attractor (nan]ely, chaotic transient whose average lifetime is very long). 

(2) But this change begins quite secretly in contrast to the crises [13] in which 

sudden destructions of chaotic attractors occur. 

(3) The average lifetime of this quasi attractor decreases very slowly as the parameter 

b is varied. The width of the parameter range, from the point at which the destruction 

of chaotic attractor has already begun, to the point at which the average lifetime becomes 

about lO', reaches about 1/2 times the width of the parameter range, from the point at 

which the period doubling bifurcation begins, to the point at which this bifurcation 

reaches co period. Therefor, chaotic orbits can be observed in enouph iterates in the 

quite wide range of the parameter. In this meaning, too, it is suitable to call this 

chaotic transient chaotic "quasi attractor" . 

(4) In the course of decreasing of the average lifetime, periodic attractors appear in 

many times. 
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2 . Riddled Basin, chaotie quasi attraetor 

The system (1) has the follo~ing tvo fixed points which are important to the following 

argument in addition to the self evident fixed point (O, O): 

p^= (l-1/a, O), 

p .= (-1/c+1lbc, ll/a+1/c-1lbc) (7) 
The bifurcation of the problem occurs in the parameter area R* in Fig. I [12] . Period 

doubling bifurcatian of the fixed point p~ ~hich exists in the bounded area D starts 

when the parameter b decr8ases from the upper side of the baundary of R*. Fig.2 is a 

bifurcation diagram in this case, in ~hich multiple initial conditions are chosen, setting 

the parameter a, c as 4 * 5 respectively and varying the parameter b fram 0.261 to 

0.251. It ~ill be recognized in Fig.2 that the chaotic objeet appears after the period 

doubling bifurcation ~eached eo period at b~0.255927, and that the chaatic object 

changes pro~iptly to the chaotic transi8nt. Backgrounds in Fig.2 represent paints in the 

attractor A uhich exists on the unit interval I =[O, I] in the x-~xis, and this sho~s 

that ther8 exist initial paints from ~thich orbits leave soon for the attractor A ~ithin 

l O + iterates 

Black part in Fig.3(a) shows the basin of 16-periadic attractor B, whieh lie~ about 

O.1 in 'y space as b =0.256, ~hile white part shows the basin of attractor A. Fig.3(b), 

where the fixed point p~ is placed in the center, is an enlargement of a part of Fig.3(a) 

Fig.3(c) is a stretched figure of Fig.3(a) for O~ y~O.05. It see~}s from these figures 

that the basin of attractor A is riddled. But th~ basin of attractor B is partially 

riddled because there are some neighborhoods in ~hieh each points is attracted to the 

periodie points. Horeover it is conjectured in Fig.3(b) that th8re will exist an invariant 

manifold to which layers of tvO basins are accumulating alternat8ly. 

In Fig.4, the smooth curve ~hich links the fixed point p* and the fixed point p* is a 

stable manitold (M*) of p~, and also, is an unstable manifold of p^. Two smooth curves 

which depart out of p~ on either side and head for the twopetiodic points in x-axis 

are an unstable manifold (M･) of p*. But ~hen an orbit leaves from p* alang by the 

manifold M*, this orbit hegins ta separate from the manifold M* at some position 

(from Hhich the manifold is drawn by the datted lines) and makes amplitude of vibration 

larger to either side of manifold M,. 

Small circles in Fig.5 sho~ the distribution ratio (d*) of points of the basin of 

attractor B over the interval [O.7, O.8] of x for the range O.O005<y<0.01. In this 

case, from the data used in Fig.5 the follo~ing power law is recognized numerieally: 

d*~~2e800x y ~.st (8-1) 
But both of the coefficient and the exponent in (8-1) take different values when another 

interval of x or another range of y is taken. For the full range of x in D the ratio 

d･ is calculated as 

d *~ 3100 x y 2. ?s (8-2) 
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Supposing d., modelling after (8-1,2), to be the following form 

d*(y)=ay', (9) 

the value of the exponent y in (9) for the neighborhood of p* can be estimated 

theoretically (in the full paper, to be about 3.55 for b =0.256). 

Fig.6 shows an object of a chaotic quasi attractor of the system (1) calculated for the 

initial condition (0.2, 0.2) for b =0.255. This orbit continues about 99350 iterates 

until it becomes y< I O-', uhile as shown in Fig.7 this orbit becomes y< I O -e in only 

50 iterates after it began to leave for y=0. In other words, the orbit keeps y>0.04 

in 99300 iterates and pictures an object sho~n in Fig.6. In the upper figure of Fig.7, 

lOOO iterates of y of this orbit are plotted in the vertical after initial 98500 iterates, 

and the lower figure displays the sa~e steps in log(y). In Fig.6, a small circle shows 

the fixed point p*, and points which heads under either side near pB go along by the 

unstable manifold Mg of p*. This manifold penetrates the chaotic object and reaches to 

the 2-periodic points in the x-axis. As shown in Fig.7 the orbit is highly blown up 

before beginning to leave for y=0. This behavior occurs for the orbit which is blown up 

along by the manifold M* after it fell in near M*. The orbit chooses either to trace in 

the chaotic object again or to leave far the attractor A after coming back again into the 

chaotic object. 

3 . Secret destruction of the chaotic attracto~ 

In Fig.8, the white part shows a set of initial points from uhich orbits become 

y<lO-' within initial 10' iterates, while the black part is the complement set. The 

orbit from each point in this black part pictures much the same figure as Fig.6, though 

the lifetime depends on each initial point. Therefor, Iet us call the set of the black 

points 'quasi basin' of the chaotic quasi attractor here. But the set of points of the 

quasi basin depends on the number of initial iteFates, computing precision, and parameters 

too. In any case, the figure of the quasi basin becomes transparent as the nuElber of 

initial iterates is increased. Fig.9 shows the aspect of lifetimes which were calculated 

for 500 initial conditions uniformly chosen in the segment 0.2~ x~0.25, y=0.2, ~thich 

lies in the area filled sufficiently by points of the quasi basin of the chaotic quasi 

attractor B. Fig.10 shows a numerical result for the surviving number N of chaotic 

orbits as the function of t (the number of iterates), where data from 1.2xlO' initial 

conditions uniformly chosen in the same segment as in Fig.9 was used. This figure predicts 

the following exponential decay form for N; 

N = N ,exp (- t / Ir ) , (lO) 
where N, is the number of initial conditions, and T is the average lifetime of chaotic 

transients. In this case, T is calculated about 1.04xlO*. This is the same form as the 

case of the crisis [13] in the Henon map. The formula (lO) permits us thinking the system 

has the statistical nature that each orbit of chaotic transient falls, with probability 

i/1r per one Iterate Into the "pltfall" from which the orblt leaves for y=0. That 
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is, pitfalls are distributed on virtual support kt of the chaotlc quasl attractor wlth 

average density l/1r , repres8nted a~ l!~: 

Let us consider the parameter dependence of 1~~, supposing the following power law, 

where bd is the critical point of the parameter b , at which the chaotic attractor B 

changes to the chaotic transient. Fig.11 shows a numerical result of the parameter 

dependence of the average lifetime T , calculated setting bd as O.2558018, where collapse 

of a chaotic orbit canbe observed already. Each point In Fig.ll }~as abtained by using 

data from 500 initial conditions uniformly chosen in the same segment as in Fig.9 for each 

of 26 values of b in the range 0.2532-0.2557. The solid line in Fig.ll ~as fitted to the 

points. In this case, the value of fc is estimated to be about l.30. But, when bd 

increases to a little, ;c increases sensitively. For example, as bd=0.2558115, Ic 

becomes about 1.33. At this value of b the same chaotic object as Fig.6 can be observed 

only for quite many iterates (about lO? or more) as sho~n in Fig.12, though the finding of 

the collapse of the chaotic abject has never been succeeded. But it can be thought that 

the destruction of the chaotic attractor has occurred already in this level of b because 

the orbit should have chances to go into near the manifold Ml, or M2, though rarely and 

intermittently. In any case, it is clear numerically that the absolute value of the 

exponent /c is larger than I . Then, the parameter d8pendence of /1* is like the curve (a) 

in Fig.13, and the invasion of the pitfalls begins secretly as if cusps with the pitfalls 

invade. On the other hand, in case of the boundary crises, which occur for chaotic 

attractors in one-dimensional quadratic maps, twodimensional invertible maps and so on, 

the type of like the curve (b) in Fig.13 can occur because the value of ,c is l/2 or more 

(lc>1 occur in case of weakly dissipative tvo-dimensional invertible maps), and changes 

in those chaotic dynamics are sudden as has been sho~n by C.Grebogi et al C13]. 

To summarize, the occurrence of this secret destruction is due to the following two 

dynamical caracteristics. The one is that the cobweb of pitfalls from which orbits leave 

for the atttactor A is already prepared in the area ~thich gro~ing chaotic orbits will 

occupy. As for the other, in the beginning of destruction chaotic orbits get to adventure 

rarely and intermittently out of the territory on four small secure islands into the wide 

area in which the cotweb of pitfalls exists. 

4 . Longlife aspeet in chaotic quasi attractors 

The second characteristic of this quasi attractor is that the average lifetime 

decreases very slo~?ly as the parameter b is varied. The ~idth of the parameter range, 

from the point b=0.2558018, at ~hich the destruction of the chaotic attractor has 

already begun, to thepoint b=0.2537, at which the average lifetime becomes about 104 

reaches about O.44 times the width 4.73x I O-e of the parameter range, from the point 

b =0.260655, at which period doubling bifurcation begins, to the point at which this 

bifurcation reaches co period. rforeover, the 3rd characteristic is that periodic 
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attractors appear many times in the course of decreasing of average lifetime I . Fig.14 

shows the parameter dependence of the average lifetime of chaotic transients obtained 

numerically using data from 100 initial conditions in the same segment as in Fig.g for 

each value of b m the range O 246-0 256. Diverging aspects in Fig.14 indicates the 

existence of periodic attractors, lO-periodic attractor for (a), 6-periodic attractor for 

(b). And also, other periodic attractors, which do not appear in this graph, can be found. 

For example, 36periodic attractor appears atound b =0.2557. It can be thought that the 

reason why periodic attractors apear many times is that the bifurcation of this case may 

occur similar to that of logistic map, because, as the parameter b decreases, the 

position of the orbit becomes lower in y space, then the range of x in which orbits 

visit proceeds to spread near to the range of attractor A. 

5 . Conclusion 

Some systems which have the following characteristics exist. In case that the basin of 

the chaotic attractor A which exists on a part of the boundary of the bounded area D 

becomes riddling when the normal Lyapunov exponent L+ on A changes to negative in its 

sign by varying the control patameter, there exist such an attractor B in D that the 

characteristics of the bifurcation of the attractor B by varying the same control 

parameter is as follows. 

(1) After the periodic attractor B bifurcated to the chaotic attractor, the destruction 

of the chaotic attractor begins promptly by the invasion of pieces of the riddled basin of 

A into the chaotic object B . 

(2) The destruction of the chaotic attractor B begins quite secretly. 

(3) the average lifetime of the chaotic transients decreases extremely slowly as the 

control parameter is varied. 

(4) In the course of this decreasing, peFiodic attractors appear many times over. 
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Fig. l 

Parameter regions of diff~rent states for system (1). R*; (O, O)is stable, R2; p^ in 

(7) is stable, R.; p* in (7) is stable. (Reproduced from reference [12].) 

Fig . 2 

Bifurcation diagram for the system (1) for a=4, c=5, in ~hich multi initial conditions, 

(0.0001, 0.2), (0.lOOl, O.2), (O.2001, 0.2), (O.3001, 0.2) are taken, and 50 iterates 

after initial l0+ iterates are dotted far each value of b . The upper figure shows x 

component, ~hile the lower one shows y component. Backgrounds in the upper one shoN 

points of orbits on the attractor A, which exists on the unit interval [O, I] of x . 

Fig . 3 

Basin of attraction of the systeFi (1) for a=4, b=0.256, c=5. Black part shows the 

basin of 16-periodic attractor B, which lies about 0,1 hcight in y space in the bounded 

area D , ~hile white part shows the basin of attractor A. Fig.(b) is an enlargement of 

some square region in Fig.(a), in Fig,(b) the fixed point p. 'is placed on the center. 

Fig. (c) displays the stretched figure of the region O~ y ~0.05 in Fig.(a). 

Fig . 4 

Stable, and unstable manifold of the fixed point p*. Stable manifold M* Iinks the 

fixed point p * and the fixed point p^ ~shich exist in the x-axis. unstable manifold M2 

which depart out of p* on either side and head for the two-periodic points in the x-axis. 

Fig . 5 

Each small circle in this figure indicates the distribution ratio d* of points of the 

basin of attractor B over the interval [0,7, O.8] of x for each of 9 values of y in the 

range O Ol-O O005 A stralght llne in this figure ~as fitted to the points by least-

square method. In this case, po~er la~ d*-26800x y"' obeys numerically. ~ 

Fig . 6 

An object of a chaotic quasi attractor of the system (1) for a=4, b=0.255, c=5, 

calculated for the initial condition (O.2,0.2) in the precision of 72 digits below the 

decimal point. An small circle in this figure is the fix8d point p~. This orbit continues 

abaut 9S350 iterates until it becomes y<lO-*, while the orbit becomes y<lO-' in only 

50 iterates after it began to leave for the attractor A. 

Fig. 7 

The upper figure indicates 1000 iterates of y component of the same orbit as in Fig.6 

after initial 98500 iterates. The lawer one shows the same steps in log (y). 
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Fig . 8 

Quasi basin of chaotic quasi attractor B for the same other conditions as in Fig.6. 

White part corresponds to a set of initial points from which orbits become y<lO-e within 

initial l0$ iterates, while black part is the complement set, namely a quasi basin, from 

each point of which an orbit are still surviving in 10* iterates. 

Fig. 9 

A sketch of lifetimes calculated for 500 initial conditions on a segment 0.2~ x ~0.25, 

y=0.2 for the same other conditions as in Fig.6. These values of lifetime are 

hypersensitive to the small varying in the initial condition, parameters, and computing 

precision to some deep level. 

Fig . lO 

Numerical results for surviving number N of chaotic orbits as a function of time t 

(the number of iterates). These results ~lere obtained using data from initial 1.2xlO' 

conditions uniformly chosen in the same segment as in Fig.g for the same other conditions 

as in Fig.6. The vertical axis in this figure is represented on a logarithmic scale. 

Fig. 11 

Parameter dependence of the average lifetime of chaotic transients. Each point was 

obtained numerically using data from 500 initial conditions uniformly chosen in the same 

segment as in Fig.g for each of 26 values of parameter b in a range 0.2532 - 0.2557, 

setting b * as 0.2558018. A straight was fitted to the points, to obtain the parameter 

dependence of the average life lr . In this case, T Is proportlonal to (b b ) *･'" 

Fig . 12 

A chaotic orbit which adventure rarely and intermittently out of the territory on four 

small secure islands into the wide area in ~thich the cobweb of pitfalls exists. Figure (a) 

shows initial lO' iterates followed by 2.5xlO* iterates in Figure (b), 5xlOs iterates 

in Figure (c), and lO' iterates in Figure (d). Calculation was done in the precision of 96 

digits below the decimal point for a= 4 ,b =0.2558115, c = 5 , and initial condition 

(0.2, 0.2). 

Fig . 13 

Schematic expression of two types of destructions of chaotic attractoFS. /1* represents 

the average pitfall density in virtual support /4 of chaotic quasi attractor. Type (a) 

sho~s the secret change, while type (b) shows the sudden change. 

Fig. 14 

Average lifetime of chaotic transients obtained numerically using data froEl 100 initial 

conditions in the same segment as in Fig.g for each value of b in the range 0.246-0.256. 

Diverging aspects in the figure imply the existence of periodic attractors, lO-periodic 

attractor for (a), 6-periodic attractor for (b). 
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