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THE GROWTH FUNCTIONS OF NONCOMPACT
3-DIMENSIONAL HYPERBOLIC COXETER GROUPS
WITH 4 AND 5 GENERATORS

YOHEI KOMORI AND YURIKO UMEMOTO

ABSTRACT. We calculate the growth functions of noncompact 3-dimensional
hyperbolic Coxeter groups with 4 and 5 generators.

1. INTRODUCTION: THE GROWTH FUNCTION fg(t) OF (T, S)

Let (T, S) be the pair of an infinite group I" and a finite set of generators
S satisfying S = S~!. Then we can define the word length £s(x) of z €
I' with respect to S by the smallest integer n > 0 for which there exist
51,82, * ,8n, € S such that £ = s159---8,. For z,y € T, set dg(z,y) :=
£5(z~1y). Then dg becomes a metric on I' and the left multiplication of an
element of " on T itself becomes an isometry of the metric space (I, dgs).

The growth function fs(t) of (T, S) is the formal power series Y 5o, axt*
where ay, is the number of elements g € T" satisfying £5(g) = k.

Since the cardinality of I" is infinite and that of S is finite, the growth rate
of (T, S) w := limsupy_,, {ax is bigger than or equal to 1 while it is less
than or equal to the cardinality | S| of S, since ax < |S|¥,ie. 1 <w <|S|. By
means of Cauchy-Hadamard formula, the radius of convergence R of fs(t) is
the reciprocal of w, i.e. 1/|S| < R < 1. Therefore fg(¢) is not only a formal
power series but also an analytic function of ¢t € C on the disk |¢| < R.

T is said to be of ezponential growth if w > 1. The notion of exponential
growth is independent from the choice of S ([5]). Milnor proved the following
fundamental result for the growth rate: the fundamental group 71(X) of a
compact Riemannian manifold X is of exponential growth if all sectional
curvatures of X are strictly negative ([10]).

We remark that the growth function of the direct porduct (Gq x Gg, S1 U
S2) of (G1,S1) and (G2, S2) is the product of growth functions of (G1,51)
and (Gg, S2), i.e. fsyus,(t) = fs,(t) - fs,(2).

2. HyPERBOLIC COXETER GROUPS

2.1. Hyperbolic Coxeter groups and their growth functions. A con-
vex polyhedron P of finite volume in the n-dimensional hyperbolic space H"
is called a Cozxeter polyhedron if its dihedral angles are the integer parts of
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7. Any Coxeter polyhedron is a fundamental domain of the discrete group
T generated by S the reflections with respects to its facets. We call (', S) a
n-dimensional hyperbolic Cozeter group. In particular when P is a (gener-
alized) simplex of H"™, (T, S) is also called a (generalized) simplex reflection
group ([12]). From now on we assume that (I, S) is a hyperbolic Coxeter
group. In this case the growth function fg(t) which is analytic on |t| < R ex-
tends to a rational function P(t)/Q(t) on C by analytic continuation where
P(t),Q(t) € Z[t] are relatively prime: in practice there are formulas due
to Solomon and Steinberg to calculate the rational function P(t)/Q(t) from
the Coxeter diagram of (T, .S) ([14, 15]. See also [6]).

Theorem 1. (Solomon’s formula:)

The growth function fs(t) of an irreducible spherical Cozeter group (T, S)
can be written as fs(t) = [1%_,[m, + 1] where [n] ;== 1+t +---+ 1" and
{mi,mg,--- ,mg} is the set of exponents of (T, S).

We give explicitly the growth functions of irreducible spherical Coxeter
groups in Table 1 where we use the notation [n,m| = [n][m] (See [7] p.59).

Graph Exponents fs(t)
A, 1,2, .n 2.3, ,n+1]
B 1,3, . 2n—1 2,4, 2n]
D, 1,3,---,2n-3,n—1 [2,4,---,2n — 2][n]
Fe 1,4,5,7,8,11 [2,5,6,8,9,12]
o 1,5,7,9,11,13,17 [2,6,8, 10,12, 14, 18]
Es | 1,7,11,13,17,19,23,29 | [2,8, 12, 14, 18, 20, 24, 30]
Fy 1,5,7,11 (2,6,8,12]
78 1,5,0 2,6, 10]
H, 1,11,19,29 2,12, 20, 30]
Ir(m) 1, m-1 [2,m]

TABLE 1. The growth functions of irreducible spherical Cox-
eter groups

Theorem 2. (Steinberg’s formula)

Let (T, S) be a hyperbolic Cozeter group. Let us denote the Cozeter subgroup
of (I',S) generated by the subset T'C S by (U'r,T), and denote its growth
function by fr(t). Set F = {T'C S : I'r is finite }. Then

L=y S
fs(™h) L= fr(t)

In this case, t = R is a pole of fs(t) on the circle |t| = R. Hence R is a
real zero of the denominator Q(t) closest to the origin 0 € C of all zeros of
Q(t). Solomon’s formula implies that P(0) = 1. Hence ap = 1 implies that
Q(0) = 1. Moreover de la Harpe proved that I is of exponential growth, i.e.
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w > 1 ([4]). Therefore w > 1, the reciprocal of R, becomes a real algebraic
integer whose conjugates have moduli less than or equal to the modulus of
w. If t = R is a unique zero of Q(¢) with the smallest modulus, then w > 1 is
a real algebraic integer whose conjugates have moduli less than the modulus
of w: such an algebraic integer is called a Perron number.

The growth function fg(t) of a cocompact hyperbolic Coxeter group with
Coxeter generators has special symmetries: Serre and Charney-Davis proved
that for cocompact n-dimensional hyperbolic Coxeter groups, fs(t) is re-
ciprocal, i.e. fs(1/t) = fs(t) when n is even, and anti-reciprocal, i.e.
fs(1/t) = —fs(t) when n is odd ([13, 2]). But in general we can expect
neither reciprocal nor anti-reciprocal properties for noncompact hyperbolic
Coxeter groups.

2.2. Low dimensional cases. For low dimensional cocompact hyperbolic
Coxeter groups, the denominator Q(¢) of fs(t) has more special properties:
a Salem number is a real algebraic integer 7 > 1 such that 7! is an algebraic
conjugate of 7 and all algebraic conjugates of 7 other than 7 and 77! lie on
the unit circle. The monic irreducible polynomial over Z of a Salem number
is called a Salem polynomial. For two and three dimensional cocompact
hyperbolic Coxeter groups, Cannon-Wagraich and Parry showed that Q(¢)
is a product of distinct irreducible cyclotomic polynomials (possibly none)
and exactly one Salem polynomial. In particular the growth rate w is a
Salem number. ([1, 11]). From the definition, a Salem number is a Perron
number.

Kellerhals and Perren calculated growth functions of four dimensional co-
compact hyperbolic Coxeter groups with five and six generators and showed
that Salem polynomials do not appear as factors of denominators. They
also checked that w is a Perron number numerically. ([8]).

For noncompact case, Floyd proved that the growth rate w of two di-
mensional noncompact hyperbolic Coxeter groups is a Pisot- Vijayaraghavan
number, where a real algebraic integer 7 > 1 is called a Pisot-Vijayaraghavan
number if algebraic conjugates of 7 other than 7 lie in the unit disk ([3]).
From the definition, a Pisot-Vijayaraghavan number is also a Perron num-
ber. In practice Floyd showed that for any two dimensional noncompact
hyperbolic Coxeter group (T, S), there exists a sequence of two dimensional
cocompact hyperbolic Coxeter groups whose growth rates, which are Salem
numbers, converges the growth rate w of (I', S) to conclude that w is a
Pisot-Vijayaraghavan number.

In this paper we start to go to the next stage: we calculate growth func-
tions of three dimensional noncompact hyperbolic Coxeter groups with four
and five generators. The three dimensional noncompact hyperbolic Coxeter
groups with four generators were classified by Lannér ([9]) (see Table 2) and
with five generators by Tumarkin ([16]) (see Table 3). We represent their
classifications in terms of Coxeter diagram since any Coxeter polyhedron P
can be represented by its Coxeter diagram: the nodes of a Coxeter diagram



22 YOHE]I KOMORI AND YURIKO UMEMOTO

correspond to the facets of P. Two nodes are joined by a m-labeled edge
if the corresponding dihedral angle is equal to #/m. It is a custom to omit
labeling for m = 3 and omit putting an edge for m = 2. If the corresponding
facets are parallel the nodes are joined by a bold edge.

P <> A\ Do e oo
o_&iwioo_aoﬁﬁ,ﬁ@}—o:}:o—ug4 4@4

4

6 4
41:14 o——-—c»—6—o—o:>>—oo—o——o-6—oo—o—oio

4
4 5 6

toote oot [ [ [T [ ] []
6 6 6 6

TABLE 2. 4-generators

]>k0{1 k=2,3,4; m=234:

2 1=3,4; n=34.
ko m k=5,6; m=273;
| 1=2,3,4,5,6.

TABLE 3. 5-generators

3. GROWTH FUNCTIONS

Now we shall show the way to calculate the growth functions. This is the

first diagram in Table 2.

There are two non-isomorphic Coxeter subgroups with three generators
and two non-isomorphic Coxeter subgroups with two generators. Their cor-
responding growth functions are given below.
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o—-O0—0 o—oO0 (o] o0——-oO o [}
——— — —— ——
Az Az XA A A1 XA
type of subgroup | growth function | number

Az 2,3,4 2

Az x A 2,2,3 1

Az 2,3 4

A1 x A 2,2 2

Also there are 4 Coxeter subgroups with one generator, i.e. of type A;. By
Theorem 2, we have that

e S S SR R Y
fs@h) (2,34 [2,2,3]  [2,3]  [2,2] 2]
This yields the growth function
E+DE+ D)2+t +1)
fs(t) = 3
-1 +t-1)
The growth functions for the other three dimensional noncompact hyper-

bolic Coxeter groups with four generators are given below. We remark that
every Coxeter group has 4 Coxeter subgroups of type Aj.

O<I>o

type of subgroup | number
Az 2
A 5
A1 X A1 1
Folt) = E+DE+DE+t+1)
ST - DE T B2+t 1)
type of subgroup | number
A 6
t+ 1)+t +1
Fs(t) = (t+1)( )

S (t—-1)3t2+t—1)

I>oiq

type of subgroup | number
Bj 2
A2 X A1 1
By 1
Ay 3
Al X Al 2

23
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5 = 4+ + D)2 -t + D2+t +1)
I T = D)T 25 4 2t4 3442 - 1)

[

type of subgroup | number
Hj 2
A2 X A] 1
I5(5) 1
Ao 3
Al X Al 2

1Pt D+ ) - P+ -t 4 1)

—~~

t) =
Is®) (=) + 17+ 16+ t2 82+t — 1)
b)—é—o

type of subgroup | number
AQ X Al 1
1(6) 1
Az 3
Al X Al 2

t+ 122 —t+ 1) +t+1)
fs(t) =
-1+t + 12+t —1)
—otodo

type of subgroup | number
Bs 1
Bg X Al 1
A2 X A1 1
B, 2
A 1
Al X Al 3

Fslt) = E+ 13+ D(E -t + D)2+t +1)
ST TR ST+ 5 A B+t 13— 1)
4 4 4

type of subgroup | number
Bz x A1 2
By 3
A1 X A1 3

(1+t)3(1 +t2)
-1 +t-1)(E2+t+1)

fs(t) =
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D

type of subgroup | number
Bs 2
A1 X A1 X A1 1
By 2
As 1
A1 X A1 3

(t+ 13+ 1)({2 -t +1)
E—-1)E+3+t—-1)

44
::4

fs(t) =

type of subgroup | number
Al X Al X Al 1
By 3
A] X A1 3

(t+1)3(t%2+ 1)

t) =
Js®) -1 +353+2-1)
[ ]
4
type of subgroup | number
Bs 2
As 1
By 2
As 2
A1 X A1 2
Fo(t) = E+ 13+ 1) —t+1)
ST RSB 2 rt-1)
{:}
4
type of subgroup | number
B3 2
By 3
As 1
A1 X A1 2
t+13E+ 1) -t +1
fo(t) = (D )

S -DES B2+t - 1)

25
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4
41:14
4
type of subgroup | number
By 4
A x A 2

(t+1)2(2 +1)
t—1)@BB3+t2+t—-1)

Is(t) =

o——o—6—o—-o

type of subgroup | number
A2 X A1 2

I,(6) 1

As 2

A1 X Al 3

E+ 12—t + D2+t +1)
-1+t +t-1)

:>io

fs(t) =

type of subgroup [ number
Aj 1
Al X A1 X Al 1
12(6) 1
Ag 2
A1 X Al 3

E+1PE+ D2 -t + )2+t +1)

fst) = (t— 1)(88 + 207 + 206 + 35+ 14+ 43 — 1)
0——~O——O—6-—O
type of subgroup | number

As 1

]2(6) X Al 1

A2 X A1 1

I5(6) 1

Asg 2

A1 X A1 3

t+ 13+ D)2 —t+ D)2+t +1)
Is(t) =

-1+t +t2+t4 1)
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oto—0Lo

type of subgroup | number
B3 1
IQ(G) X A1
BQ X Al
I,(6)
By
Ay
A1 X A1

W = | = =] =

E+1D3(EP+ D)2 —t+ D)2+t +1)
- +t—D)Er+3+2+t+1)

5 6

type of subgroup | number
Hj 1

12(6) X Al

12(5) X A1
15(6)
I>(5)
Az

A1 X A1

fs(t) =

[SUIRTY S e

E+1D32 -t + D2+t + D) - B+ 2 —t+ D)+ 2+ 2+t + 1)

Is®) = (¢ — 1)1 + 12 4 21T 4 2010 1 249 1 265 + 207 + 246 + 245 + ¢4 + 3 — 1)
6 6
type of subgroup | number
12(6) X Ay 2
I(6) 2
Ao 1
Al X Al 3

E+13E -t + D)2+t +1)

Is®) = C- )@ +t— D+ B+ 2 +t+1)
6
type of subgroup | number
Az 2
T,(6) 1
A, 3
A1 X A1 2




28 YOHEI KOMORI AND YURIKO UMEMOTO

E+ D2+ D)2 —t+ D2+t + 1)

t) = ;
fs®) t— DT+ + 28 +t2+ 8 +t—1)
4
6
type of subgroup | number
B3 2
I,(6) 1
By 1
Ag 2
A] X A1 2
Js(t) = (t+ 132 + 1)(¢2 — t + 1) (> + t + 1)
-+ +2+t - D)+ +2+t+1)
]
6
type of subgroup | number
Hs 2
I(6) 1
L(5) 1
As 2
A1 X A1 2

E+ 13 —t+ D+t + D) -2+ 22—t + 1)
-0+ O+ BB+ tT 8+ P+t + 3+ 12+¢— 1)
6

[ ]

6
type of subgroup | number
75(6) 2
As 2
A1 X A1 2
@+ —t+ 1)+ t+1)
C-D)EO+tr+ 3 +12+1-1)

fs(t) =

fs(t) =
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E+1PE+ D) —-t+1D)E+t+1)

Is() = (t— 1)+ 28 + 265 + 204+ 23 + 12+ ¢ — 1)
(2,3,4,4)
type of subgroup | number
Bs 2
B2 X A1 2
By 2
A 1
Al X A1 5
fo(t) = E+13E+D)E-t+1)
ST - NB i+ 12— 1)
(2,4,2,4)
type of subgroup | number
BQ X Al 2
Al X Al X A1 1
By 2
Al x Ay 6
(t+ 13 +1)
fs(t) = 4 34 42
(t—1)(4+ 28 + 2+t —1)
(2,4,3,3)
type of subgroup | number
Bs 2
Az X A1 2
By 1
Az 2
A1 X A1 5
fs(t) = t+ 13+ D2 —t+ D)2+t +1)
ST G- D@ r 26+ 20 ¥ 3th 123+ 2+ ¢ — 1)
(2,4,3,4)
type of subgroup | number
By 1
BQ X Al 1
A2 X A1 1
By 2
As 1
A1 X A1 5
3042 2 2
fs(t) = E+1)°@E+ 1) —t+ 1) +t+1)

-1 427 +3t5 135+ 34+ 33 2+t - 1)

29



30 NONCOMPACT 3-DIMENSIONAL HYPERBOLIC COXETER GROUPS

(2,4,4,4)
type of subgroup | number
Bz X Al 2
By 3
A1 X A1 5
folt) = (t+ 132+ 1)
ST Dt T3P 22+ - 1)
(3,3,3,3)
type of subgroup | number
Az 4
Ag 4
A1 X Al 4

DR+ 1)
Is() = t— D2 +2t—1)

(3,3,3,4)
type of subgroup | number
B3 2
A3 2
By 1
As 3
A1 X A1 4

t+1)3(2 +1)(t2 -t +1)

Is(t) = t-1)(BF2t8+¢2+2t—1)
(3,3,4,4)
type of subgroup | number
B3 4
By 2
Ag 2
A1 X A1 4
Jolt) = (t+ 132 + 1)(t? — t + 1)
ST DB+ 2+ B+ 2+ 26— 1)
(3,4,3,4)
type of subgroup | number
Bsg 2
As 1
B, 2
Ag 2
Al X A1 4

(t+ 13+ D)% —t+1)
(t— 1)+ 5 +2t4+ 3+ 82+ 2t — 1)

fs(t) =



YOHEI KOMORI AND YURIKO UMEMOTO 31

(3747474)
type of subgroup | number
Bs 2
By 3
As 1
A1 X A1 4
Folt) = (t+13F+ D)2 —t+1)
ST (2 ot 2tf 23 2 4+ 2t — 1)
(474a4)4)
type of subgroup | number
By 4
Al X A1 4

(t+1)2(t2 +1)

Is(t) = -1+ 2+ 2t-1)

(k,l,m)=(5,2,2)
type of subgroup | number
Hj 1
12(5) X A1 1
A2 X Al 1
Al X A] X A] 1
1(5) 1
Ay 1
Al X Al 6

(E+1)3E2 —t+ D2+ e+ 1) -2+ 12—t 1)+ + 12 e+ 1)
t—l)(t,13 4112 4 2411 2310 1 349 4 248 - 3¢7 + 2t6 4 35 4 ¢4 + 213 + 2 — 1)

fs{t) = (

(5,2,3)
type of subgroup | number
Hj 2
A2 X Al 2
I>(5) 1
Ajy 2
Al X A1 5

L+ -t )P+ D) - B+ -+ 1)
- (t— 1)t + 18+ 216 + 14+ 1342t — 1)

Is(t)
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(5,3,2)
type of subgroup | number
H;g 1
As
I2(5) X Al
A2 X Al
I(5)
Az
A1 X Al

(G230 ORI I Y

P+ D@ -t + D)2+t + D) — B+t —t+ D+ 312 2+ 1)

fs(t) = (t — 1)(#15 + 2t14 + 3¢13 5812 4 511 7410 4 612 4 7¢8 + 617 + 616 + 5t5 + 312 + 343 +1 — 1)
(5,3,3)
type of subgroup | number
H; 2
As 2
I,(5) 1
Az 3
Al X A1 4
Fo(t) = E+13E2+ D)@ -t+ D - +12—t+1)
@E—1)(t9+ 68 —¢7 + 36 — 5+ ¢4 4+ 263 — 212+ 3t — 1)
(5,4,2)
type of subgroup | number
Hj 1
B3 1
12(5) X Al 1
Bg X A1 1
1(5) 1
By 1
A2 1
A1 X A1 5
o) = G+ + )2 -t + D — B+ D+ 3+ 12 1+ 1)
(= 1)(#13 4 412 4 2411 4 2410 4 3¢9 4 2¢8 + 3¢7 + 26 + 3¢5 + 14 + 313 — 12 + 2t — 1)
(5,4,3)
type of subgroup | number
Hj 2
Bsg 2
1,(5) 1
By 1
Ay 2
A1 Da Al 4
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The growth functions for three dimensional noncompact hyperbolic Cox-
eter groups with five generators are given below, where the first line (k,l,m,n)
or (k,1,m) of each table represents the Coxeter diagram in Table 3. We re-
mark that every Coxeter group has 5 Coxeter subgroups of type A;.

(k,],m,n)=(2,3,2,3)
type of subgroup | number

As 1

Az X A1 2

Ay x Al x A 1

As 2

A1 X A] 6

E+1D3 2+ D)2 +t+1)

Is(t) = t— DB +2t8 4234 £2-1)
(2,3,2,4)
type of subgroup | number
Bj 1
Bg X A1 1
Ag X A1 1
A1 X A1 X Al 1
By 1
Ag 1
Al X A1 6
- E+1D3E+ D)2 —t+ D)2+t +1)
Is®) = C—DE + 025+t 28 16— 1)
(2,3,3,3)
type of subgroup | number
Aj 2
Ag X Al 2
As 3
Al X A1 5
Is(t) = (t+D2(E2+ 1) (2 +t+1)
ST DA r 2P+ 21— 1)
(2,3,3,4)
type of subgroup | number
B3 1
Aj 1
Bg X A1 1
AQ X Al 1
By 1
Agy 2
Al X Al )
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G+ DPEFDE -+ D - B+ 2 -t 4 1)

Is(t) = (t—1)(° + 18 + 265 + 363 — 262 + 3t — 1)
(5,5,2)
type of subgroup | number
H; 2
12(5) X A1 2
I>(5) 2
Ag 1
A1 X A1 5
Js(t) = (t + 1)3(t2—t+1)(t4—t3+t2—t+1)(t4+t3+§2+t+1)
(=) + 10+ 89 + 28 +¢7 4+ 266 + 15+ 204 + 3 + 2t — 1)
(5,5,3)
type of subgroup | number
Hs 4
I,(5) 2
As 2
A1 X A1 4
A = (t+1)32 —t+ D) -8B +2—t+1)
fst) = (t—1)E7"+t6—t5+2t4 — 2 4+ 3t — 1)
(5,6,2)
type of subgroup | number
Hj 1
12(6) X Al 1
12(5) X Al 1
I,(6) 1
I,(5) 1
Aj 1
A1 X A1 5
EHD3E2 D+ e+ D -+ 2 -t D) 2 12 4t 1)
st = (t = 1)(t14 + 2£33 1 3112 | 4431 + 5210 1 59 | 58 1 5¢7 1 516 + 55 + 34 1 315 1+ 42 + ¢ — 1)
(5,6,3)
type of subgroup | number
Hj 2
I>(6) 1
I5(5) 1
As 2
Al X A1 4

_ t+ 132 —t+ D+t + D) -3+ 12 -t + 1)
Tt —1)(210 419 £ 28 447 4 26 4 25 + 144+ 23 4 12+ 2t — 1)

Is(t)
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(6,2,2)
type of subgroup | number
12(6) X Al 1
A2 X A1 1
Al X Al X Al 1
I,(6) 1
Ay 1
A1 X A1 6
fo(t) = (t+ 132 —t+ D2+t + 1)
o E—D)(ES 25+ t5+ B3+ 2 +1—1)
(6,2,3)
type of subgroup | number
Az X A1 2
I5(6) 1
Ajy 2
A1 X A1 5
Fs(t) = ¢+ 122 -t + )2 +t+1)
s t— DB+ +8 +2—1)
(6,3,2)
type of subgroup | number
A3 1
12(6) X A1 1
Az X Al 1
I5(6) 1
Ay 2
A1 X A1 5
Fs(t) = E+13E+ D) —t+ D)+t 4+ 1)
5 =18+ 2" +3t5 + 35+ 3t + 23 + 2+t — 1)
(6,3,3)
type of subgroup | number
Az 2
1,(6) 1
Ay 3
A1 X A1 4
fo(t) = E+D2(2+ 1) -t + )2+t + 1)

(=127 18 45+t + 383 + 2t — 1)

35
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(6,4,2)
type of subgroup | number
Bs 1
12(6) X Al 1
Bg X A1 1
I,(6) 1
By 1
As 1
Al X Al 5
fo(t) = (t+13F + D)2 -t + )2 +t+1)
s (t— 1)1+ 207+ 36 + 45 + 34+ 33+ 12+t — 1)
(6,4,3)
type of subgroup | number
By 2
1(6) 1
By 1
Ag 2
A1 X A1 4
fot) = t+ 13+ (2 - t+ )2+t + 1)
(t—1)(2t8 + 3t" + 516 + 615 + 514 + 4¢3 + 282 + ¢t — 1)
(6,6,2)
type of subgroup | number
12(6) X Al 2
15(6) 2
Ao 1
A1 X A1 5
Jolt) = t+1)32—t+ 1)+t +1)
o t—1)(2 + 35+ 28+ 23 + 202 + L — 1)
(6,6,3)
type of subgroup | number
I>(6) 2
As 2
A1 X A1 4

E+ D)2 -t+ 1)+t +1)
-1+t +283 + 12+ 2t - 1)

fs(t) =
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