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Prehomogeneous vector spaces and their regularity

Tatsuo Kimura(®, Takeyoshi Kogiso®, Yoshiteru Kurosawal®,
and Masaya Ouchi(®

Abstract

In this paper, we gather the various known constructions of prehomogeneous vector
spaces and give some new results. We consider everything over the complex number
field C.

Introduction

It is classically known that the Fourier transform of the complex power of the quadratic
n

form fo and the determinant det X of an n x n matrix X are again essentially the
i=1
complex power of some polynomials. What is the real reason of these phenomena ? In 1961,
(3

Mikio Sato realized that these polynomials Z 22 and det X are relative invariants under

some big action of algebraic groups. Thus he reached the notion of prehomogeneous vector
spaces and showed that the Fourier transform of the complex power of a non-degenerate
relative invariant of a reductive regular prehomogeneous vector space is again essentially
the complex power of some polynomial. By using these results, one can construct the

zeta function of a regular prehomogeneous vector space which satisfies the functional
oo

equations. For example, the Riemann zeta function {(s) = 1/n® can be regarded as
g

n=1
the zeta function of the simplest prehomogeneous vector space (GL(1), A1,V (1)). To get
a new zeta function, a classification of prehomogeneous vector spaces is important.

For the classification of all prehomogeneous vector spaces, to find the PV-equivalences
is essential. For example, the discovery of castling transformation made the classification
of irreducible prehomogeneous vector spaces possible ([SK]). In this paper, we gather
all PV-equivalences so far known and investigate their relation of relative invariants and
regularity.

Now we give the basic definitions of prehomogeneous vector spaces and their regularity.
Let G be a linear algebraic group and p : G — GL(V) a rational representation on a
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finite-dimensional vector space V over the complex number field C. If V has a dense
G-orbit @ = p(G)vy with respect to the Zariski topology, a triplet (G, p,V) is called
a prehomogeneous vector space (abbrev. PV). In general, an orbit p(G)vg is called an
homogeneous space. So V = p(G)vg implies that V is almost homogeneous, although it
cannot be homogeneous since p(G)0 = {0}. In this sense, M. Sato named such a triplet
(G, p, V) a prehomogeneous vector space.

Then Q is Zariski-open and its complement S is called the singular set of (G, p,V).
We call v € O a generic point, and the isotropy subgroup at a generic point G, = {g €
G| p(g)v = v} (v € Q) is called a generic isotropy subgroup. Note that v € V is a
generic point if and only if dimG,, = dim G — dim V. Note that (G,p,V) is a PV if and
only if (G°, p|ge, V') is a PV where G° is the connected component of G. Hence for the
classification problem, we may assume that G is connected.

A non-zero rational function P(v) on V is called a relative invariant if there exists
a rational character x : G — GL(1) satistying P(p(g)v) = x(g)P(v) for g € G. Let
S;={ve S| P(v)=0} (i=1,...,N) be irreducible components of S with codimension
one. When G is connected, these irreducible polynomials Pi,..., Py are algebraically
independent relative invariants and any relative invariant can be expressed uniquely as
P(v) = cPi(v)™ --- Py(v)™ with ¢ € C* and (my,...,mn) € ZN. These P, ---, Py
are called the basic relative invariants of (G, p, V). Note that a PV (G, p, V') has no relative
invariant if and only if codim S > 2.

By using the relations p(exptA) = exptdp(A) and x(exptA) = exptdx(A) for A €
Lie(G) and t € C, we differentiate P(p(exptA)v) = x(exptA)P(v) by t. Then we
have (dp(A)v, pp(v)) = dx(A) where pp = gradlog P : O — V* satisfies pp(p(g)v) =
p*(g)pp(v) for g € G and v € O . Here p* is the dual representation of p on the dual
vector space V* of V. Hence pp(Q) is a G-orbit of the dual triplet (G, p*,V*). If ©op(O)
is a Zariski-dense G-orbit, we call P non-degenerate. In this case, (G, p*, V*) is also a PV.
If there exists a non-degenerate relative invariant, (G, p, V') is called a regular PV. When
G is reductive, it is regular if and only if its generic isotropy subgroup is reductive.

In Section 1, we give the preliminaries for the later use.

In Section 2, we discuss the direct sum of PVs. So the classification of indecomposable
PVs will be essential.

In Section 3, we discuss the adhesion of several PVs by trivial PVs. We also discuss
the regularity.

In Section 4, we discuss the well known castling transformations and its generalization
by Y. Teranishi. We also give some new generalization (cf. Proposition 4.5) from which
the result of Y. Teranishi is induced.

In Section 5, we discuss Sato-Mori transformations. In this section, Proposition 5.3 is
a new result.

In Section 6, we discuss symplectic PV-equivalence. The results about relative invari-
ants and regularity are new.
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In Section 7, we discuss orthogonal PV-equivalence. We give the complete proof.

Notation

In general, V(n) denotes an n-dimensional vector space. If V(n) and V (n)* appear at
the same time, V(n)* denotes the dual vector space of V' (n).
If @ and ® appear at the same time, we write + instead of @ to avoid confusion.

1 Preliminaries

All equivalences of prehomogeneity are obtained so far from the following Key Lemma.

Lemma 1.1. (Key Lemma by M. Sato)

Assume that an algebraic group G acts on two irreducible algebraic varieties W and
W'. Let o : W — W’ be a morphism satisfying

(1) p(gw) = gp(w) (g € G,w e W),

(1) (W) = W'.
Then the following assertions (1) and (2) are equivalent:

(1) W =G -w for some w € W,i.e., W is G-prehomogeneous.

(2) (a) W' =G-w' for some w' € W'.
(b) For the above point w' € W' in (a), there exists a point w € ¢~ (w') such that
o Hw') = Gy - w, where G = {g € G; guw' = w'} is the isotropy subgroup of
G atw'.

Note that a generic isotropy subgroup of (1) is isomorphic to that of (2)(b) since (Gy)w =
Gy. Also note that W = G - w implies W' = G - p(w).

Proof. For the proof, see Proposition 7.6 in [K]. 1
In particular, we have the following proposition.

Proposition 1.2. Let V and V' be finite-dimensional vector spaces on which an algebraic
group G acts. Assume that ¢ : V — V' is a polynomial map satisfying (I) p(V) = V',
(1) o(gv) = gp(v) for g € G, v € V. Then we have the following assertions.

(1) If (G,V) is a PV, then (G,V') must be a PV. Moreover if vg € V is a generic point
of (G,V), then ¢(vy) € V' is always a generic point of (G,V’).
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(2) If P'(v') is a relative invariant of (G,V') corresponding to the character x, then
P(v) = P'(¢(v)) is a relative invariant of (G,V) corresponding to the same character

X-

Proof. (1) This is a special case of the last statement of Lemma 1.1. (2) Since P(gv) =
P'(p(gv)) = P'(g¢(v)) = x(9)P'(¢(v)) = x(9)P(v), we have our assertion. '

Proposition 1.3. Let H be a connected algebraic group which has no nontrivial rational
character, and G a connected algebraic group. Let p: H x G — GL(V) and o : G —
GL(V') be rational representations. Assume that there ezists a surjective polynomial map
: V. = V' satisfying o(p(g, h)v) = o(g)p(v) (h€e Hyge G,v e V). Letw: HxG —
G be the projection. Assume that (H x G,p,V) is a PV with a generic point v, and
7((H x G)v) = Gy holds. Then the basic relative invariants of (H x G, p,V) are given
by {P1,..., Pn} with P;(v) = P/(p(v)) (: =1,...,N) where {P],..., Py} are basic relative
invariants of (G,o,V'). If (H x G, p,V) is a reductive regular PV, then (G,o,V') is also
a regular PV.

Proof. See Theorem 1.11 in [KKS]. 1

Remark 1.4. In (2) of Proposition 1.2, P(v) = P'(p(v)) is a polynomial whenever P’
is a polynomial. However even if P(v) = P/(p(v)) is a polynomial, P’ might not be a
polynomial. For ezample, let G = GL(1)?2 act on V = V' =C? as V 3> = = (z1,72) —
(az1,Bze) and V' 3 z = (21,22) — (afz1,B22) ((o,B) € G). Define v : V. — V' by
(z1,2) — (122, 22). Then for P(z) = z1, P'(2) = 21/ 22, we have P(z) = P'(¢(x)).

To prove the prehomogeneity of non-irreducible triplets, the following Proposition is
fundamental, which can be obtained immediately from the Key Lemma.

Proposition 1.5. The following assertions are equivalent.

(1) (G,p1 @ p2, V1 @ Vo) is a PV.

(2) (a) (G,p1,V1) is a PV with a generic isotropy subgroup H.
(b) (H,p2|m,Va) is a PV.

2 Direct Sums

We define the direct sum (G1, p1, V1) @ (Ga, p2, V2) of (G1, p1, V1) and (G2, p2, V2) by
(G1 x G2, p1®1+1® pa, V1 @ Vp). Similarly we can define the direct sum &} (G, p;, Vi)
of (Gi,pi, Vz) (7, = 1, - 7n).
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Theorem 2.1. (1) The direct sum &_,(G,, p;, Vi) is a PV if and only if each component
(Giypi, Vi) i=1,...,n) is a PV.

2) If{P},..., P} are the basic relative invariants of Gi, p,, V;), then
1 k,
{PL,... ,Pkll, <oy Pl P} are the basic relative invariants of ®F (Gi, pi, V).

(8) The direct sum @7, (Gj, ps, Vi) is a regular PV if and only if each component (Gi, p,, V;) (i =
1,...,n) is a regular PV.

Proof. By Proposition 1.5, we have (1). The statement of (2) is obvious. For (3), see
Proposition 1.5 in [KKTI].

Hence if some PVs (G, p,, V;) (i = 1,...,n) are given, we can construct a new PV as
their direct sum. We say that a triplet is indecomposable if it is not the direct sum of m
triplets with m > 2.

3 Adhesion by Trivial PVs

Lemma 3.1. Let G’ be a subgroup of an algebraic group G.

(1) (G,p,V) is a PV whenever (G', plg:, V) is a PV.

(2) (G,p,V) has no relative invariant if (G', pler, V) has no relative invariant.

(8) If (G, p,V) is a reqular PV and (G',p|g',V) is a PV, then (G', p|lg', V) is a regular
PV.

Proof. (1) is obvious. Since a relative invariant of (G, p, V) is a relative invariant of
(G, plgr, V), we have (2). For (3), if (G, p,V) has a non-degenerate relative invariant, it
is also a non-degenerate relative invariant of (G', plg, V).

1

Theorem 3.2. Let p: H — GL(m) be any rational representation of any algebraic group
H.

(1) For anyn > m, a triplet (H x GL(n), p® Ay, M(m,n)) is always a PV, which is called
a trivial PV .

(2) For n>m, a trivial PV (H x GL(n), p ® A1, M(m,n)) has no relative invariant. In
particular, it is a non-reqular PV.

(8) For n=m, a trivial PV (H x GL(n), p ® A1, M(m,n)) is a reqular PV.
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Proof. (1) By (1) of Lemma 3.1, we may assume that H = {e}. Define the map ¢ : V =

(2)

3)

M(n) - V' = M(m,n) by X = (;1) — Xi. Then GL(n) acts on V = M(n) by
2

X — X'A (X € M(n), A € GL(n)) which is clearly a PV with a generic point I,.
Hence by (1) of Proposition 1.2, a triplet ({e} x GL(n), pley ® A1, M(m,n)) is a PV
with a generic point (I,]0).

By (2) of Lemma 3.1, we may assume that H = {e}. The singular set S = {X €
M(m,n) |rank X < m} is the common zeros of minors so that codim S > 2 for n > m
and hence there is no relative invariant (see Preliminaries).

If m = n, then P(X) = det X € M(n) is a non-degenerate relative invariant since
gradlogdet X = X! for X € GL(n) (see Lemma 1.21 in [KKTI}).
|

Theorem 3.3. (Adhesion by Trivial PVs) Let p and o be rational representations of an
algebraic group G satisfying dego < n.

(1) (Gx GL(n),p®@1+0Q® A1,V ®W) is a PV if and only if (G,p,V) is a PV.

(2) Ifdego < n, then (GXx GL(n),p®1+0Q®A1,V & W) is a non-regular PV. Note that

(G,p,V) can be a regular or a non-regular PV.

(8) Ifdego =n, then (G x GL{(n),p@1+0 &A1,V & W) is a reqular PV if and only if

(G,p,V) is a regular PV.

Proof. (1) Assume that (G X GL(n),p®1+0c®A;,V@® W) is a PV . Then by applying

(2)

(3)

(1) of Proposition 1.2 to ¢ : VW — V, we know that (G, p, V) is a PV. On the other
hand, if (G, p,V) is a PV with a generic isotropy subgroup H, then by Proposition
1.5, (GXGL(n),p®@1+0®A,VOW)isa PV if and only if (H X GL(n),oclp @A, W)
is a PV. However it is a trivial PV.

If m = deg o < n, we may assume that W = M(m,n). Then (v, X) € V@& M(m,n) is
a generic point if and only if v is a generic point of (G, p, V) and rank X = m. Hence
the singular set S of (G x GL(n), p®1+0®A;, V& M(m,n)) is the union {(v, X)|v €
Sy, X € M(m,n)}U{(v,X)|v € V, X € Sw} where Sy is the singular set of (G, p, V)
and Sw = {X € M(m,n)|rank X < m}. Since codim{(v,X)jv € V, X € Sw} > 2
(see the proof of Theorem 3.2), any relative invariant on V @& M (m,n) is a relative
invariant on V. This implies that any relative invariant is degenerate.

Since dego = n, we may assume that W = M(n). Then (v,X) € V& M(n) is a
generic point if and only if v is a generic point of (G, p,V) and rank X = n. Hence
the singular set S of (G x GL(n),p®1+ 0 ® A1,V & M(n)) is the union {(v, X)|v €
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Sy, X € M(n)} U{(v,X)|v € V,det X = 0}. This implies that any relative invariant
P(v, X) on Ve M(n) is of the form Q(v)(det X)" ((v, X) € V@M (n)) for some integer
r where Q(v) is a relative invariant of (G, p, V). Hence we have gradlog P(v, X) =
(gradlog Q(v),0) + (0,7 * X~ 1) € V*® M(n) ((v,X) € V& M(n)\ S). This implies
that P(v, X) is non-degenerate if and only if Q(v) is non-degenerate and r # 0. Thus
we obtain our assertion.

4 Castling Transformation and its Generalization

As we see in the previous section, (H x GL(n),0 ® A1,V ® V(n)) is always a PV
if m = dimV < n. In this section, we shall consider the case m = dimV > n. Let
Grass, (V) = {U| U is an n-dimensional subspace of V'} be the Grassmann variety. If
o : H — GL(V) is a rational representation of an algebraic group H, then H acts on
Grassp (V) by U — o(h)U (h € H,U € Grass,(V)). We identify V ® V(n) with M(m,n)
and put W = {X € M(m,n)|rank X = n}. Then (H x GL(n),oc ® A1,V ® V(n)) is
a PV if and only if W is H x GL(n)-prehomogeneous. For X = (z1]---|z,) € W, let
(X) = Czy+-- -+ Czxyp be an n-dimensional subspace of C™, i.e., (X) € Grass, (V). Then
the map ¢ : W — W’ = Grass,(V) defined by X — (X) is a surjective and it satisfies
p(o(h)X*A) = o(h)p(X) (h € H,A € GL(n)). If (X) = (Y) € Grass,(V), then as a base
change, there exists a unique A € GL(n) satisfying Y = X*A4, ie., a fiber ¢~ 1({X)) is
GL(n)-homogeneous. Hence by Key Lemma, we obtain the former part of the following
lemma.

Lemma 4.1. Assume that m = dimV > n > 1. Then the following assertions are
equivalent.

(1) (H x GL(n),c ® A1,V ®V(n)) is a PV.

(2) The Grassmann variety Grass,(V') is H-prehomogeneous by o.

Their generic isotropy subgroups are isomorphic.

Proof. We show the last assertion. If X € M(m,n) is a generic point, then (X) is a
generic point of Grass,(V) by Lemma 1.1. Let p : H x GL(n) — H be a projection.
We show that this induces an isomorphism p : (# x GL(n))x — Hxy. For (b, A) €
(H x GL(n))x, we have (o0(h)X) = (o(h)X*A) = (X), and hence h € H yy. Conversely
for any h € Hxy, there exists a unique A € GL(n) satisfying o(h)X*A = X. This implies
that the restriction of p to (H x GL(n))x is a bijection. 1

Proposition 4.2. (Castling transformation)

(1) (H x GL(n),0 ® A1,V ® V(n)) with m = dimV > n > 1 is a PV if and only if
(H x GL(m — n),oc* ® A;,V*® V(m —n)) is a PV where ¢* : H — GL(V*) is
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the dual representation of o. These triplets are called the castling transforms of each
other. Their generic isotropy subgroups are isomorphic. There exists a one-to-one
correspondence of their relative invariants (cf. p. 68 in [SK]).

(2) A castling transform of a regular PV is a regular PV.

Proof. (1) The bijection f : Grass,(V) — Grass,,—n(V*) defined by U — Ut is H-
equivariant, i.e., f(o(h)U) = o*(h)f(U) (h € H,U € Grass,(V)). Hence Grass,(V)
is H-prehomogeneous by ¢ if and only if Grass,,—,(V*) is H-prehomogeneous by ¢*.
Hence by Lemma 4.1, we obtain our assertion.

(2) When G is reductive, it is obvious since a reductive PV is regular if and only if
a generic isotropy subgroup is reductive. However, even if it is not reductive, this
assertion holds (see Theorem 1.30 in [KKTI], [SO]).

Remark 4.3. (Grassmann construction) To construct a new PV (H x GL(m —n),0* ®
A, V*®V (m—mn)) from a given PV (HxGL(n),0®A1,VQV(n)) withm =dimV >n >1
is sometimes called the Grassmann construction. In particular, for any given PV (G, p,V),
we can construct a new PV (GxGL(m—1), p*®A1,V*®V (m—1)). Note that the discovery
of castling transform, i.e., Grassmann construction, made the classification of irreducible

PVs possible ([SK]).

Theorem 4.4. Assume that m > n > 1. Then the following assertions are equivalent and
their generic isotropy subgroups are isomorphic.

(1) (Gx GL(n),p®@1+0® A1,V & M(m,n)) is a PV.

(2)(GxGL(m —n),pQ@1+0* @A,V & M(m,m—n)) is a PV.

There exists a bijective correspondence between relative invariants of (1) and (2).

Proof. By Propositions 1.5 and 4.2, we obtain our results. For the relative invariants,
see Proposition 1.16 in [KKS]. ]

Proposition 4.5. Assume that m >n+1. Let p: H — GL(m) and 0 : K — GL(n) be
rationel representations of algebraic groups H and K. Then the following assertions are
equivalent.

(1) (H x (Gé(l) U(’}{)), p® AL, M(m,n+1)) is a PV.

(2) (Hx (GL(m(; n=1) U*EKK)) , PP®AY, M(m,m —1)) is a PV.

Moreover their generic isotropy subgroups are isomorphic.
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Proof. The GL(l4+n)-part of the generic isotropy subgroup of (GL(I+n)x K, A1 ®0c, M (I+
n,n)) at (2) is (GL*(I) a*?K)) (= A’{((Glé(l) 0(:;()>)) Hence, by Proposition 1.5,
(1) is equivalent to (3) (HXGL(I4n) X K, pQA ®1+1QA;1Qc, M (m,l+n)®SM(l+n,n)) =
(Hx K)x GL(l4+n),(p®1+1R0)®A;, M(m+n,l+n)) is a PV. Its castling transform
with respect to GL(I+n) is (HxK)XxGL(m—1),(p*®1+1®0¢*) @ A1, M(m+n,m—1)).
Since this is a PV if and only if (2) holds, we obtain our assertion. 1

GL(l) *

Example 4.6. For 2m > [ + 3, (Sp(m) x ( 0 cod)

) A ® AT, M(2m, 1 + 3)) is

a PV if and only if (Sp(m) x (GL(2mO“ L-3) GO*(3)> A1 ® AT, M(2m,2m — 1)) is a
PV. Actually they are PVs. Note that A} = Ay for Sp(m) and SO(3).

Let P(ey, ..., e,) be the standard parabolic subgroup of GL(n). Note that Aj(P(e1,...,e;))
{*tA"Y A € P(ey,...,e.)} is conjugate to P(e,,...,e1).

As a corollary of Proposition 4.5, we obtain the new proof of the following proposition
by Y. Teranishi.

Proposition 4.7. (Parabolic transformation [T])
Assume thatm >n =e;+---+e, > 1. Leto : H — GL(m) be a rational representation
of an algebraic group H. Then the following assertions are equivalent.

(1) (H x P(ey,...,e;),0®A}, M(m,n)) is a PV.
(2) (H x P(m—mn,er,...,e2),0" ® Aj,M(m,m —ey)) is a PV.

Proof. By Proposition 4.5, (H x P(ey,...,e),0 ® A, M(m,n))

_ GL(e) * . . . .
= (H x 0 Ples,....en)) o ® A}, M(m,n)) is a PV if and only if
GL(m —n) * N «
(H X < 0 P(er,...,eg)>’ o* ® A, M(m,m — e7))
= (H x P(m—n,e,,...,e2),0* ®A}, M(m,m— e;1)) is a PV. Also see p. 141 in [T] or p.
238 in [KKO. '

Note that if » = 1, then it is a usual castling transform.

Remark 4.8. (1) In Proposition 4.7, there exists a one-to-one correspondence between
the relative invariants of (1) and (2) (see Lemma 1.4 in [T]).
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(2) Although the castling transformation keeps the regularity, the parabolic transformation
does not keep the regularity in general as we see in the following example. In Ezample
4.6, if we use GL(3) instead of GO(3), then we obtain a PV (Sp(m) x P(,3),A1 ®

M (2m,l +3)). Ifl is odd, then it is a reqular PV (cf. (2) of Proposition 6.3).
Houwever its parabolic transform is (Sp(m) x P(2m—1-3,3), A1 ® A, M(2m,2m —1))
which is not reqular since 2m — 1 is odd.

5 Sato-Mori Transformation

Theorem 5.1. (M. Sato) Assume that n > max{mi, mas}. Let p, : G — GL(m;) (i =1,2)
be rational representations of G. Then (GxGL(n), p1®A1+p2®AT, M(my,n)®M(ma,n))
is a PV if and only if (G, p1 ® p2, M(mq1,m3)) is a PV.

Proof. See Theorem 7.8 in [K]. i

Corollary 5.2. A triplet (G,p,V) is a PV if and only if (G X GL(n),p@ A +1A;,V®
V(n) 4+ V(n)*) for any natural number n satisfying dimV < n.

Proposition 5.3. Assume that n > max{mi,ma}. Let Pj,..., P} be basic relative in-
vartants of (G, p1 ® p2, M(my,mz)). Then Pi,..., PN are basic relative invariants of
(G x GL(n),p1 ® Ay + p2 ® A}, M(my,n) & M(mg,n)) where P;(X,Y) = P/(X'Y) (i =
1,...,N) for (X,Y) € M(my,n) ® M(ma,n).

Proof. The number of basic relative invariants are the same (see Proposition 1.18 in
[KKTI]). Hence it is enough to prove that P; is irreducible. If not, we have P; = QR
for some polynomials ¢) and R. Since the group is connected, @ and R are also relative
invariants so that there exist Q' and R’ such that P/ = Q'R’. In general, if a polynomial
F on M(m1,n) & M(ma,n) is defined by F(X,Y) = F/(X'Y) for some rational function
F’' on M(my,mz2), then F’ is also a polynomial since F([I,,|0],[!Z|0]) = F'(Z) holds.
Hence Q" and R’ are polynomials, which contradicts an irreducibility of P} (cf. Remark
1.4). '

Proposition 5.4. Ifn > max{mi, ma}, then a PV (GxGL(n), p1®A1+p2QAT, M(my,n)®
M (mg,n)) is a regular PV if and only if my = my.

Proof. Assume that mj = mg(= m). Then the image of G x GL(n) is a subgroup of the
image of the group of (GL(m) x GL(m) x GL(n),A1 ®1® A1 + 1 ® A1 @ A}, M(m,n) &

M (m,n)). It is castling equivalent to ((GL(m) x GL(n—m)) X GL(n), (A1 ®1+18®A1)®

A1, M(n)) which is a regular trivial PV. Hence by (3) of Lemma 3.1 and Theorem 4.4, our

PV is a regular PV. If mj # my, it is a non-regular PV by Proposition 1.22 in [KKTI].
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Proposition 5.5. If (G, p1 ® pa2, M (my,m2)) is a regular PV, then (G x GL(n),p1 ®
A+ p2 ® A}, M(my,n) ® M(ma,n)) with n = max{my, ma} s a regular PV. So far, the
converse holds under some conditions, but not proved in general yet.

Proof. See (2) of Proposition 1.20 in [KKTT].
1

Proposition 5.6. Assume that n = my > mq. Then a relative invariant P(X,Y)of a
PV (G x GL(m1),p1 ® A1 + p2 ® A, M(m1) & M(mg,m1)) is of the form P(X)Y) =
P/(X'Y)(det X)" where P'(Z) is a relative invariant of (G, p1 ® p2, M(my,m2)) and r €
Z. In this case, even if P'(Z) is an irreducible polynomial, P(X,Y) = P'(X'Y) is not
necessarily irreducible.

Proof. By (2) of Proposition 1.18 in [KKTI], we have the former result. For the latter
assertion, for example, if n = mq = mq, then P/(Z) = det Z is an irreducible polynomial,
but P(X,Y) = P'(X'Y) = det X det Y is not irreducible.

Theorem 5.7. The following assertions are equivalent.
(1) (G,p+p1®p2, V& M(mi,mg)) is a PV.

(2) (GxGL(n),p®@1+p1 ® A1 +p2 @A}, V O M(my,n)® M(mz,n)) is a PV for alln
satisfying n > max{my, my}

If n > max{my, my}, there ezists a bijective correspondence between the relative in-

variants of (1) and (2).

Proof. By Proposition 1.5 and Theorem 5.1, we obtain the equivalence of (1) and (2).
For the latter assertion, one can prove similarly as Proposition 5.3.

Now consider the case my > n > mao.

Theorem 5.8. ([KKS2])
For my > n > ma, the following assertions are equivalent.

(1) (G x GL(n), p1 ® A1 + po ® A}, M(my,n)® M(ma,n)) is a PV.

(2) (a) (G, p1 ® p2, M(my,m2)) is a PV with a generic point Zy € M(m1,m3).
(b) Let H be the isotropy subgroup of G at Zo, p} the dual action of p1 and (Zg)* =
{f € V(m1)*|f(v) =0 for all v € {(Zy)}.
Then (H x GL(m1 —n), pt ® A1, (Zo)* ® V(my —n)) is a PV.



82 TATSUO KIMURA, TAKEYOSHI KOGISO, YOSHITERU KUROSAWA AND MASAYA OUCHI

Moreover generic isotropy subgroups of (1) and (2)(b) are isomorphic. In particular, when
G s reductive, (1) is a reqular PV if and only if a generic isotropy subgroup of (2)(b) is
reductive.

Note that if m; > n = mag, then (1) and (2)(a) in Theorem 5.8 are equivalent since the
generic isotropy subgroup at I, of (G x GL(mz2), po ® A}, M(n)) is {(A, p2(A)); A € G}.
The special case n = m1 —1 and mz = 1 of Theorem 5.8 was already known ( See Theorem
1.1 in [KUY], Theorem 7.10 in [K] ) and used to prove that (GL(1)* x G, p, V((2n +
1)(2m+2n—-1))) isa PV and (GL(1)°xG, p+1®A @1, V((2n+1)(2m+2n—1))@V (2m))
is a non-PV where G = Sp(n) x SL(2m) x SL(2n—1) and p=A1 QM ®1+ A ®1Q®
A+1® Ag*) ®1+1®1® A (See Lemmas 3.31 and 3.33 in [KUY]).

For the case min{mj,ma} > n, we have the following result.

Let G be a linear algebraic group. Let p; : G — GL(m;) and pg : G — GL(m2)
be its rational representations. Then G acts on M(mi,mz) by p1 ® p2, ie, X —
p1(9)Xtp2(g9) (X € M(mi,mz), g € G). By this action, G also acts on a rank vari-
ety M (my,mg) = {X € M(my, ms)| rank X = n}.

Theorem 5.9. ([OHK]) The following assertions are equivalent.
(1) M™(my,mp) has a Zariski-dense G-orbit by the action py ® ps.
(2) (G x GL(n), p1 ® A+ p2 ® A}, M(m1,n) ® M(mg,n)) is a PV.

Here the action of (2) is given by (X,Y) — (p1(g) XA, p2(g)Y A™Y) for (X,Y) €
M(ma,n) & M(mg,n) and (g, A) € G x GL(n).

6 Symplectic PV-equivalence

Let o : H — GL(n) be arational representation of a linear algebraic group H. Then the
action Az(0) of H on Alt(n) = {X € M(n)|*X = —X} is given by X +— o(h)X'o(h) (h €
H, X € Alt(n)). Let Sp(m) = {A € GL(2m)| *tAJA = J} be the symplectic group where
J= ( ? Ié") For z,y € C*™, if we define (z,y) = ‘zJy = > 10 (TiYm+i — Tm+i¥i)s

—im
we have (Az, Ay) = (x,y) for A € Sp(m). Now we investigate the relation of 2 triplets
(Sp(m) x H, A1 ® 0, M (2m,n)) and (H, Az(c), Alt(n)).

Lemma 6.1. For 2m > n, define the map v : M(2m,n) — Alt(n) by X — 'XJX
(zisz;)) (X = (z1]---|zn) € M(2m,n)). Then ¢ is surjective and p(AX'c(h))
o(h)p(X)to(h) (X € M(2m,n),(A,h) € Sp(m) x H).

Proof. For (A, B) € Sp(m)xGL(n), we have p(AX'B) = {(AX'B)J(AX!B) = By(X)'B.
Since (GL(n),A2,Alt(n)) is a PV with finitely many orbits {X € Alt(n)|rank X =

i

Il
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21} (21 < n), and rank (X)) = 21 for Xo; = (e1]em1| - |ei|lem+i]O) € M(2m,n), we
obtain the surjectivity of ¢. I

Lemma 6.2. For X,Y € M(2m,n) with 2m > n satisfying p(X) = @(Y) and rank X =
rankY = n, there exists A € Sp(m) satisfying Y = AX.

Proof. For X = (z1]--|zn) and Y = (y1] - -+ yn), ¢(X) = @(Y) implies (zi, ;) = (yi,y;)
fori,7 =1,...,n, we have our result from Lemma 7.49 in [K]. 1

Proposition 6.3. Assume that 2m > n.

(1) (Sp(m) x H, A1 ® 0, M(2m,n)) is a PV if and only if (H,A2(0),Alt(n)) is a PV. If
Pi,..., Py are basic relative invariants of (H, Ay(0), Alt(n)), then Pi,..., Py are ba-
sic relative invariants of (Sp(m)x H, A1®c, M (2m,n)) where P;(X) = P/(*XJX) (i =
1,...,N).

(2) A PV (Sp(m) x H,A; ® 0, M(2m,n)) s a regular PV if and only if n is even.

(8) APV (H,Az(o),Alt(n)) is a reqular PV ifn is even. Ifn is odd, A PV (H, Az(0), Alt(n))
can be a regular PV or a non-regular PV.

Proof. (1) The former part is obtained by Key Lemma and Lemmas 6.1, 6.2. To prove
the latter part, we use Proposition 1.3. Let X € M(2m,n) be a generic point of
(Sp(m) x H,A1 ® 0, M(2m,n)). Since AX*c(h) = X implies o(h)(*XJX)'o(h) =
‘X JX, we have m((Sp(m) x H)x) C Hyx). Now assume that h € Hy(x) and put
Y = X'o(h). Then we have o(Y) = o(h)p(X)'o(h) = »(X) and hence there exists
A € Sp(m) satisfying X = AY (= AX'o(h)),i.e,(4,h) € (Sp(m) x H)x and h €
m((Sp(m) x H)x).

(2) If n is even, then (Sp(m) x GL(n),A1 ® A1, M(2m,n)) is a regular irreducible PV
(see [SK]). Hence a PV (Sp(m) x H,A1 ® o, M(2m,n)) is a regular PV by (3) of
Lemma 3.1. Now assume that (Sp(m) x H,A; ® o, M(2m,n)) is a regular PV with
a non-degenerate relative invariant P(X). By (1), there exists a relative invari-
ant P’ of (H,A2(0),Alt(n)) satisfying P(X) = P/(!XJX). For a generic point
X € M(2m,n), we have gradlog P(X) = —JX gradlog P’(*XJX) € M(2m,n) by
direct calculation. Since P is non-degenerate, we have n = rank gradlog P(X) <
rank grad log P'(*X JX) < n. Since gradlog P/(!XJX) € Alt(n) with rank = n, this
implies that n is even.

(3) If n is even, then (GL(n),Ay, Alt(n)) is a regular irreducible PV (see [SK]), and
hence a PV (H, Ay(0), Alt(n)) is a regular PV by (3) of Lemma 3.1. If n is odd,
(GL(n), A2, Alt(n)) is a non-regular irreducible PV (see [SK]) while if ¢ : H =
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{diag(e, B,7)|a, B,y € GL(1)} — GL(3), then (H, Az(0), Alt(3)) = (GL(1) x GL(1) x
GL(I),A1®A1 RIFAIRIQAI+1QA; ®A1,(C€B(C@(C) is a regular PV.
|

Theorem 6.4. (1) For2m > n, the triplet T = (Sp(m) xG,1Qp+ A1 ®0c, VO M (2m,n))
is a PV if and only if the triplet T' = (G, p ® A2(0),V & Alt(n)) is a PV.

(2) If P'(v,Z) is a relative invariant of T', then P(v,X) = P'(v,! XJX) is a relative
invariant of T and this gives the bijection of relative invariants.

(3) When G is reductive and T is a regular PV, then T' is also a regqular PV. However
the converse does not hold.

Proof. (1) If (G, p,V) is a non-PV, then both are non-PVs by (1) of Proposition 1.2. If
(G,p,V) is a PV with a generic isotropy subgroup H, then it is enough to show that
(H x Sp(m), o|lg ® A1, M(n,2m)) is a PV if and only if (H, As(o|u), Alt(n)) is a PV.
This is obtained from Proposition 6.3.

(2) By Theorem 1.13 in [KKS] and Proposition 6.3, we obtain our result.

(3) If a generic isotropy subgroup of T is reductive, then a generic isotropy subgroup of 7"
is reductive. Hence it is regular. The converse does not hold as we see the following
example: (GL(1)?2 x SL(2141), A1 ® A2, V(2l+ 1)@V (I(21+1))) is a regular PV where
GL(1)? acts on each irreducible component as scalar multiplications (see p. 95 in [K2])
while (GL(1)?*xSp(m)x SL(214+1), A1®A1+1®A1, V (2m)®V (21+1)+V (214+1)) (2m >
21+ 1) is a non-regular PV. (see p. 398 in [KKIY]).

7 Orthogonal PV-equivalence

Let o : H — GL(n) be a rational representation of a linear algebraic group H. Then the
action 2A1 (o) of H on Sym(n) = {X € M(n)| X = X} is given by X + o(h)X'o(h) (h €
H,X € Sym(n)). For K = 'K € GL(m), let O(K) = {A € GL(m)['!AKA = K} (resp.,
SO(K) = O(K) N SL(m)) be the orthogonal group (resp., the special orthogonal group)
with respect to K. For z,y € C™, if we define (z,y) = ‘zKy, we have (Az, Ay) = (z,y)
for A € O(K).

The following lemma is well-known (cf. [W]).

Lemma 7.1. For m >'n, define the map ¢ : M(m,n) — Sym(n) by X + 'XKX =
(=i, x5)) (X = (z1] - - |zp) € M(m,n)). Then ¢ is surjective and we have p(AX'o(h)) =
o(h)p(X)to(h) (X € M(m,n), (A,h) € O(K) x H).
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Proof. For any (4,g9) € O(K) x GL(n), we have p(AX'g) = }AX'g)K(AX'g) =
FX(PAKA)Xtg = gp(X)tg. Since (GL(n),2A1,Sym(n)) is a PV with finitely many
g (0)) (d=0,1,...,n), and for Xg= (21| --|2|O) €
M(m,n), we have ¢(X4) = T4, we obtain the surjectivity of ¢. Here 2z1,..., 2z, is an
orthonormal basis of C™ with respect to (, ). Since o(H) C GL(n), we obtain the latter
result.

orbits with representatives Ty =

Lemma 7.2. Form > n > 1, assume that X,Y € M(m,n) satisfy the condition * XK X =

YYKY withrank *X KX = n. Then there exist non-zero elements x andy in C™ satisfying
5o IXKX 0 'YKY 0 o S

t — _ _ ot L t _

XKX = ( 0 tokn) = 0 tyky) = YKY with rank 'XKX =n+1

where X = (X|z) and Y = (Y|y) € M(m,n +1).

Proof. For X = (z1]|-- - |zn), put (X) = Czq1+---+Cxy. We show that rank XKX =n
implies that (X) @ (X)*+ = C™ where (X)* = {y € C™|(z,y) =0 for all z € (X)}. Tt is
enough to show that (X) N (X)* = {0}. For any z = a1z1 + -+ + anz, € (X) N (X)L,
we have XK X%(ay,...,a,) = XKz = Y((z1,%),...,(Tn,7)) = *0,...,0). Since
!XKX € GL(n), we have !(a1,...,a,) = %0,...,0), ie,, z = 0. Hence there exists
a non-zero element = of (X)1. We show that we may assume (z,z) = *zKz # 0. If
(z,x) = 0 for all z € (X)), then we have (z,’) = 2(z+2’,z+2’) = O for all z,2’ € (X) .
Hence if z is a non-zero element of (X )1, then we have (z,y) = (z, 2) 4 (z,w) = 0 for all

= z+w € C™ = (X)®(X)L. This implies x € (C™)* = {0}, a contradiction. Thus there
exists ¢ € (X) satisfying (z,2) = 'zKz # 0. Similarly we see that there exists y € (Y')*
satisfying (y,y) = 'yKy # 0. By multiplying a scalar if necessary, we may assume that

t t

(z,z) = (y,y) # 0. Then we have *XKX = (XS{X tz?{x) = (ng ty?(y) =
'Y KY with rank *XKX =n -+ 1. 1

Proposition 7.3. (cf. Witt’s Theorem)

(1) For X,Y € M(m) satisfying 't XKX = *YKY with rank !XKX = m, there exists
A € O(K) satisfyingY = AX.

(2) Assume that m > n > 1. For X,Y € M(m,n) satisfying ' XKX = 'YKY with
rank !X KX = n, there ezists A € SO(K) satisfying Y = AX.

Proof. (1) We have X,Y € GL(m) and ! XKX = 'Y KY. Hence if we put A =Y X1,
then we have *AKA = K, i.e., A € O(K) satisfying Y = AX.
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(2) First assume that n = m — 1. By Lemma 7.2, there exist non-zero elements x and
y in C™ satisfying !XKX = 'YKY with X,Y € GL(m) where X = (X|z) and
Y = (Y]y). If we put A = YX~!, then we have A € O(K) with ¥ = AX and
hence Y = AX. In the case A € O(K) \ SO(K), take Y/ = (Y| — y) instead of
Y. If we put A_ = Y’X ™!, then we have A_ € SO(K) satisfying Y = A_X since
det A_ = —det A and *Y KY = *Y’KY'. Now assume that the assertion holds for n
and we show that the assertion also holds for n — 1. Assume that X,Y € M(m,n—1)
satisfy I XK X = *YKY with rank !XKX =n — 1. By Lemma 7.2, there exist non-
zero elements z,y € C™ satisfying *XKX = *YKY with rank *XKX = n where
X = (X|z) and ¥ = (Y|y). By the assumption of induction, there exists A € SO(K)
satisfying ¥ = AX and hence we have Y = AX.

|

Proposition 7.4. (1) Form >n, (SO(K) x H,A; ® o, M(m,n)) is a PV if and only if
(H,2A1(0),Sym(n)) is a PV.

(2) Assumethatm > n. If P|,..., Py are basic relative invariants of (H,2A1 (o), Sym(n)),
then P1,..., Py are basic relative invariants of (SO(K) x H, A1 ® o, M(m,n)) where
P(X)=P/(!XKX) (i =1,...,N).

(8) (SO(K) x H,A; ® 0, M(m,n)) (m > n) and (H,2A:(c),Sym(n)) are reqular PVs.

Proof. (1) If m > n > 1, then by (2) of Proposition 7.3, a generic fiber of ¢ : M (m,n) —
Sym(n) is SO(K)-homogeneous. Hence, applying Key Lemma to ¢ : M(m,n) —
Sym(n) in Lemma 7.1, we have (1) for m > n. If m = n, then by (1) of Proposition
7.3, a generic fiber of ¢ : M(m) — Sym(m) is O(K)-homogeneous. Hence, by Key
Lemma, (O(K)x H,A;1 ®0, M (m)) is a PV if and only if (H, 2A;(0), Sym(n)) is a PV.
Since (O(K) x H, A1 ® o, M(m)) is a PV if and only if (SO(K) x H, A1 ® o, M(m))
is a PV, we have (1) for m = n.

(2) Let X € M (m,n) be a generic point. By Proposition 1.3, it is enough to show that
7((SO(K) x H)x) = Hy,x). By using (2) of Proposition 7.3, we can prove this
assertion similarly as (1) of Proposition 6.3.

(3) Since (SO(K) x GL(n),A1 ® o,M(m,n)) and (GL(n),2A1(c),Sym(n)) are regular
PVs, we have our assertion by (3) of Lemma 3.1.
1

Remark 7.5. Note that (2) of Proposition 7.4 does not hold for n = m. For example,
(GL(m),2A1,Sym(m)) has the basic relative invariant P'(Z) = det Z. However P(X) =
P'(*XKX) = (det K)(det X )? is not the basic relative invariant of (SO(K)x GL(m), A1 ®
Ala M(m))
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Theorem 7.6. For m > n, a triplet T = (SO(K) x G,1® p+ A1 ® 0o,V & M(m,n))
is a PV if and only if a triplet T' = (G, p ® 2A1(0),V & Sym(n)) is a PV. If P'(v, Z)
is a relative invariant of T', then P(v,X) = P'(v,! XK X) is a relative invariant of T.
Moreover this gives the one to one correspondence of relative invariants.

Proof. By Propositions 1.5 and 7.4, we obtain the former part. By Theorem 1.13 in
[KKS] and Proposition 7.4, we obtain the latter part.
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