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A classification of some prehomogeneous vector spaces related
with hypergeometric functions
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Abstract

In this paper, we give the detailed proof of a classification of finite reductive pre-
homogeneous vector spaces of type ((Spm, X GLm, X GL1) X GLp, (A1 A BA) ®
A1)(m1 > 2,n > 4) under various restricted scalar multiplications, which are omitted
in [KKMOT]. They are related with hypergeometric functions [O].

Introduction

Let G be a connected linear algebraic group, V a finite dimensional vector space (dim
V > 1), and p a rational representation of G on V, all defined over the complex number
field C. If V has a Zariski-dense G-orbit, we call a triplet (G, p, V) a prehomogeneous
vector space (abbrev. PV). When there is no confusion, we sometimes write (G, p) instead
of (G, p, V). When G is reductive, we call it a reductive PV. For any rational representation
p: G — GL(V) with finitely many orbits, (G, p, V) must be a PV. Such a PV is called a
finite PV (abbrev. FP). We would like to classify all reductive FPs of type (G X GLy,p®
Ai)(n > 2) which are related with hypergeometric functions. All reductive FPs with
full scalar multiplications are completely classified in [KKY]. However if we restrict the
scalar multiplications, then the difficulty of different type arises, and only the special cases
of the restriction of acalar multiplications are studied. In [KKMOT], all reductive FPs
of ((G x GL1) X SLy,(p® A1) ® A1, (V(m) @ V(1)) @ V(n)) with n > 2 under various
restricted scalar multiplications are completely classified, but the main part of the proof
of the most complicated type ((Spm; X GLm, X GL1) X GLy, (A1 B A B A1) ® Ay) with
my > 2 and n > 4 are not written in details. In this paper, we give the complete proof
for this omitted case. Note that such FPs with m; = 1 (i.e., Sp; = SLg)(resp. n = 2,3)
are classified in [Ka] (resp. Theorem 3.11 in [KKMOT]). We denote the representation
Melel)d(1A®1)D(1Q18 A1) of Spm; X GLm, x GLy by Ay BA; BA;.

In Section 1, we give the preliminaries. In particular, we review some basic facts
related with Grassmann variety and the orbits. We also give the orbital decomposition of
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(Spm % GLy, A1 ® A1) and the isotropy subalgebra of each orbit in the convenient form
for later use.

In Section 2, we quote Theorems in [KKMOT], by which we classify FPs of type
((Spmy, X GLmy X GL1) X GLp, (A BA1 B A1) ® A1) with my1 > 2 and n > 4 under various
restricted scalar multiplications.

In Section 3, we give the list of finite prehomogeneous vector spaces of type ((Spm, X

GLyy, xGL1) X GLy, (A1 BA;BA1) ®Ay) with m; > 2 and n > 4 under various restricted
scalar multiplications.
Notation We denote C” by V(n). As usual, C stands for the field of complex numbers.
We denote by ez(.n) the i-th fundamental vector in C®. We often write e, for simplicity. For
positive integers m, n, we denote by M (m, n) the totality of m x n matrices over C. If m =
n, we simply write M (n) instead of M (n,n). We also use the notations M(m,n) = {X €
M(m,n) | rank X = min{m,n}} and M(m,n)” ={X € M(m,n) | rank X < min{m,n}}.
For r < n, we put M, , = {(X|0) € M(m,n) | X € M(m,r)}. We denote by I,, (or
I(n)) the identity matrix of size n. We denote by *A the transposed matrix of a matrix
A. Two triplets are called isomorphic and denoted by (G, p, V) = (G', ¢/, V') if there exits
a group isomorphism o : p(G) — p'(G) and an isomorphism 7 : V' — V' of vector spaces
satisfying 7(p(g)(v)) = (op(g))7(v) for all g € G and v € V.

We denote by GL,, (resp. SLy, SOy, Spin,, Spn, (G2), Es, E7) the general linear group
{X € M(n)|det X # 0} (resp. the special linear group {X € GL,|det X = 1}, the special
orthogonal group {X € SL,| XX = I,}, the spin group, the symplectic group {X €
GLay| *XJpX = J,} where J, = (_%L IO"), exceptional algebraic groups (G»), Fs, E7).
When the expression of n is complicated, we also write GL(n) instead of GL,, etc. Further
we denote by GSp, the general symplectic group {X € GLa, | ' XJ,X = zJ,with z €
GL1} ={aA | a € GL1,A € Sp,} = (GL1 x Spp)/{(1, I2,), (=1, —I2,)}. We denote by
Tw(n) the group of all nonsingular upper matrices and put STy (n) = Ty(n) N SL,. Then
we write Hpg = {(5%) € GL, | A € Sp,, B € Tu(n — 29),C € M(2g,n — 2¢)} and
SHyq=SL,N Hy, with 2¢ < n.

We denote by A; the standard representation of GL, on V(n). For a subgroup H
of GL,, the restriction A;|ly is also simply denoted by A;. More generally, Ay (k =
1,...,7) denotes the fundamental irreducible representation of a simple algebraic group
of rank r. We have (GSpn, A1) = (GLy X Spp, A1 ® Aq). In general, we denote by p*
the dual representation of a rational representation p. It is known that (H,o,V) is a FP
if and only if (H,0*,V*) is a FP for any algebraic group H, not necessarily reductive
(see [P]). Hence (G,pg*) Q- Pz(*)) is a FP if and only if (G,p1 ©---® p;) is a FP
where p® implies p or its dual p*. Also if G; and Gy are reductive, then we have
(G1 x Gy, pg*) ® pé*) ) = (G1 x G2, p1 ® p2). Using these facts and by the form of FPs (see
[KKY]), it is not necessary to consider the dual representation as far as we deal with FPs.
For a representation p : G — GL(V) and a point v of V', we denote by G, the isotropy



A CLASSIFICATION OF SOME PV’S RELATED WITH HGF’S 91

subgroup {g € G | p(g9)v = v} at v.

1 Preliminaries

Proposition 1.1. ([KKMOT, Proposition 1.1]) Assume that (H x GLy,p® Ay) is a FP.
Then (H X SLy, p&A1) is also a FP if and only if the GLy-part of the connected component
of the isotropy subgroup of each orbit is not contained in SL,. In this case, they have the
same orbits.

Proposition 1.2. ([KKMOT, Proposition 1.2|) Let o : H — G Ly, be a representation of
an algebraic group H.

1. If m < n, then (H X SLy,0 ® A1, M(m,n)) is a FP if and only if (H X GLp.0 ®
Ay, M(m,n)) is a FP. In this case, they have the same orbits.

2. If m > n and the number of orbits of H X SL,, in M(m,n)’ is finite, then (H x
SLp,0® Ay, M(m,n)) is a FP if and only if (H X GLy,0 ® Ay, M(m,n)) is a FP.
In this case, they have the same orbits.

Next we shall review the relation between the Grassmann variety and finite prehomo-
geneity ([SK, Section 8]).

Definition 1.3. Let V be an m-dimensional vector space. For any n satisfyingm > n > 0,
Grass, (V) = {W|W is an n-dimensional subspace of V'} is an n(m—n)-dimensional variety
which is called the Grassmann variety.

Then the following assertion holds.

Proposition 1.4. ([SK, Proposition 1 in Section 8]) (Correspondence of orbits). Let G
be any algebraic group. For m > n > 1, and for any representation p : G — GLyy,, con-
sider a triplet (G x GLy, p® A1, M(m,n)) and a triplet (G, p, Up_,Grassi(V (m))) without
assuming the prehomogeneity. Then G x GLy-orbits in M(m,n) correspond bijectively to
G-orbits in Up_,Grassi(V(m)).

In particular, when we assume a number of G x GL,-orbits on M(m,n) is finite,
also a number of G-orbits on Up_ Grassg(V(m)) is finite. Moreover for any ¢ satisfying
n >t > 1, a number of G-orbits on U%_,Grassi(V(m)) is finite. Therefore a number
of G x GLi-orbits on M(m,t) is finite. In general, if an irreducible algebraic variety W
is decomposed into finitely many orbits by the action of a algebraic group H, W has a
Zarisaki dense H-orbit. Hence the following Lemma is obtained, which is fundamental for
a classification of FPs.
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Lemma 1.5. ([KKMOT, Lemma 1.3]) Let G be any algebraic group, not necessarily re-
ductive, and p its representation, not necessarily irreducible.

1. Form >n > 2, if (G X GLp,p® A1,V (m) ® V(n)) is a FP, then a triplet (G X
GLk,p® A1,V (m) @V (k)) is also a FP for any k satisfying n > k > 1.

2. Forn>m > 2, if (G X GLp,p® A1,V(m) ® V(n)) is a FP, then a triplet (G x
GLg,p® A1,V (m) @ V(k)) is also a FP for any k.

Remark 1.6. (Castling transform) ([SK, Proposition 7 in section 2]) Let p be a represen-
tation of an algebraic group H on an m-dimensional vector space V. For any n satisfying
m > n > 1, the following conditions are equivalent.

1. (HXxGLp,p®A1,V®V(n))isaPV.
2. (HXGLyn,p*®@ A1, VQV(m—n))isaPV.
3. (HXGLppn,p® A, VRV(m—n))isaPVif H is reductive.

We say the triplets 1, 2 (resp. 1, 3 if H is reductive) in Remark 1.6 are castling
transforms of each other. This castling transformation is essential for the classification of
irreducible PVs. However, in general, a castling transform of a FP is not necessarily a FP
although it is a PV. For example, a castling transform (SLy x GL3,3A1 ® A1,V (4) @V (3))
ofa FP (GL2,3A1,V(4)) is a PV, but it is not a FP. If it is a FP, then by 1 of Lemma 1.5,
(SLa x GL2,3A1 ® A1,V (4) ® V(2)) must be a PV, which is a contradiction by dimension
reason.

Proposition 1.7. ([KKMOT, Proposition 1.4]) If (G X GLp,p ® A1) with n > 2 is a
FP, then we have p = p1 + --- + p with k = 1,2,3 where p1,...,pr are irreducible
representations.

Here we review the symplectic group Sp,,. The action Ay of Sp,, on V(2m) is given
by z — Az (A € Spm, x € V(2m)) which satisfies (Az, Ay) = (z,y) where (z,y) ='zJy.
Note that this condition is equivalent to A € Spy,.

Lemma 1.8. ([K, Lemma 7.49]) Let vi,...,v, and us,...,u, be linearly independent
elements of V(2m) satisfying (vi,v;) = (us,u;) for 4,5 = 1,...,r. Then there exists
A € Spm satisfying u, = Av; (i=1,...,7).

Now consider the action Ay ® Ay of Spym X GLy, on M(2m,n) given by X — AX ‘B
for (A,B) € Spm x GL, and X € M(2m,n). Note that this is essentially the same as
the action Ay ® Ay of GSpm, x SL, on M(2m,n) given by X — AX'B for (A,B) €
GSpm x SL, and X € M(2m,n). It is clear that rank X is invariant under the action
of the group. Since ‘X JX — '(AX!B)J(AX!B) = B(!XJX)'B, rank(!XJX) is also
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invariant. Since {XJX is an alternating matrix, its rank is always even. The condition
(rank X, rank *XJX) # (rank Y,rank 'Y JY) implies that X and Y do not belong to the
same orbit. We shall show the converse.

Proposition 1.9. ([KKMOT, Proposition 1.5]) (The orbital decomposition of (Spp, X
GLp, AMi®A1)) If X,Y € M(2m,n) satisfy rank X = rank Y and rank*XJX = rankY JY,
then we have Y = AX'B for some (A,B) € Spm X GL,. Hence the orbits of (Spm X
GLy,, Ay ® A1, M(2m,n)) are given by

Opq = {X € M(2m,n) | rank X = p + g, rank *XJX = 2¢}

!
withm > p > q > 0 andn > p+q. The orbit Oy 4 is represented by Xp 4 = (g’ 2 8) €
q

M (2m,n) where I, = (IO”) € M(m,p) and I, = (g’) € M(m,q).

Now we shall calculate the isotropy subalgebra at X,,. The Lie algebra of Sp,, is
given by Lie(Spn) = {(4 %,) | A € M(m), B,C € Sym(m)}. We divide this matrix to
the block size (¢,p — ¢,m —p,q,p — g, m — p) as follows:

Ay Aip A1z By Bz Bz
Agy As Agg 'Biy By Bag
Asgy Asp Az 'Big 'Bys  Bj
Cy Ciz Cig —tA1 =149 1Az
'Cle Coy Coz —tA12 —tAs —tAs
tC13tCa3 C3 —tA13 —"A23 —tA3

A= € Lie(Spm).

Similarly we divide X}, 4 to the block size (¢, p—g¢, m—p, g, p—q, m—p) x(q,p—¢,q,n—p—q)
and also divide D € Lie(GL,)(= M(n)) to the block size (¢,p —gq,9, 7 —p — q) as follows:

I, 0 00
0I, 4,00 D1 D12 D13 Dug
{0 0 00 _ | D21 D2 Do Dy :
Xpq 0 0 1,0 € M(2m,n),D = Dy Dy D3 Dy € Lie(GL,).
O 0 00 Dy Dy2 Dy3 Dy

O 0 00
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Then AX,, + X,4(D) = O if and only if (4, D) =
AL O O B, By O

Ay Az Ap3 'Bia By Bog ~tAy —tAg —'C1 D14
O O A3 O 'Bys Bs O —tA; O Doy
Ci O O —*A;1—*4yn O |’| -'B1 —-Biz A1 D3
OO0 0O O -'A, O O O O Dy

O 0 Cs O -tAy-tAz

By changing the rows and columns from (1,...,6) to (2,1,4,3,6,5) and from (1, 2, 3,4)
to (1,3,2,4), we obtain the following result.

Proposition 1.10. (cf.[KKMOT, Proposition 1.6]) The isotropy subalgebra of (Spm %
GLp, AL ® A1) at Xpg € M(2m,n)(m > p > q > 0,n > p+ q) is isomorphic to gpq =
{(A, D)} where

Ag A1 'Big Agz Baz  Bs

O A B O O By —tA; —'C1 —*An Dy
4_ 0G40 O “An| | —'Bi A —Bi Dy
O O O A; By 'Bys |’ O O -'A; Dy

O 0O O C3-tA3-tAg 0O 0 O Dy
OO0 O O O -tA

with the block size (p — q,9,9,m — p,m — p,p — q) X (¢,4,p — ¢,n — p — q). Hence the
isotropy subgroup Gpq at Xp 4 is locally isomorphic to

(GL(p — q) x GL(n — p — q) x Spy x Sp(m — p)) - U(k)

where k= (p—q)(2m —2p+20) + 3(0 — @)(p— g+ 1) + (p+ ) (n —p—q).
Similarly the isotropy subalgebra of (GSpm X SLy, Ay ® A1, M (2m,n)) at Xpq (m >
p>4q >0,n > p+q) is isomorphic to g, , = {(A", D)} where A" = alyy + A, D' =
—a—t4 Gy —~tAy1 Dy
~'By  —a+A1 -Biz Dy
O O — -t A2 D24
O O @) Dy

with o = #{;(trD,; —trA).

% _ (Spq M(2¢,n— 2q) « _ (Spm M(2m,n —2m)
Here we put H, 4 = < 0 To(n — 2) JH = o GLin - 2m) )

_ (Spq M(2g9,n—2q) « _ (Spm M(2m,n—2m)
SH”’Q_(O STu(n — 2q) SHam =\ "0 SL(n—2m) )’

; GSpg M(2q,n — 2q) N GSpm M(2m,n — 2m)
H,, = SLnﬁ( 0" i ey ) end (Hy) = SLan (T BT ).
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Proposition 1.11. ([KKMOT, Proposition 1.7])

1. The GL,, (resp. SLy)-part of an isotropy subgroup of (Spm X GLyn, A1 @ Ay)(resp.
(Spm*xSLp, Ai®A1)) of any orbit contains a subgroup isomorphic to Hy, 4(resp. SHy 4)
for some q satisfying m > q andn > 29 > 0. If n > 2m = 2q, we can replace
Hpm(resp. SHym) by Hy, . (resp. SHy, ).

2. The (GLy x SLy)-part of an isotropy subgroup of (GL1 X Spm X SLyp, A1 ® A1 @ Ay)
contains a subgroup isomorphic to {(a, (*p4G)) | @ € GL1,A € Spg, B € Ty(n —
2q),det B = o?9,C € M(2q,n — 2q)} for some q satisfying m > q and n > 2q > 0.

8. The SLy-part of an isotropy subgroup of (GSpm X SLy, A1 ® A1) contains H;, 4. If
n > 2m = 2q, we can replace Hy, ,, by (Hy,,,)*
2 A classification

In this section, we classify FPs of type ((Spm; X GLm, X GL1) XG Ly, (AMBABA)®A)
with m; > 2 and n > 4 under various restricted scalar multiplications. In the following
Theorem 2.1 to Theorem 2.3, we gather the known results which we will use for our
classification.

Theorem 2.1. ([Kac, Theorem 2; SK, Section 8])
1. (SLp X GLp, A1 ® A1,V (m) ® V(n)) withm > 1 andn > 2,
2. (SLyy X SLp, A1 @ A1,V (m) @ V(n)) withm #n andn > 2,
3. (Spm X GLp, Ay @ Ay) is a FP if and only if m > 1 and n > 1.
4. (Spm X SLp, A1 ® A1) is a FP if and only if 2m < n or n = odd (> 1).
Theorem 2.2. ([KKY])
1. ((GLmy X GLp,) X GLy, (A1 B A1) ® A1) is a FP if and only if m1 > 1 and n > 1.
2. ((Spmy X GLmy) X GLy, (A1 B A1) ® A1) is a FP if and only if mi > 1 and n > 1.

Theorem 2.3. ([KKMOT, Theorem 2.3])

1. ((SLpm; X GLp,) X SLyp, (A1 B A1) ® A1) (n > 2) is a FP if and only if my # n.

2. ((SLp, X SLyy) X GLy, (A1 B A1) ® A1) (n > 2) is a FP if and only if my # ma or
miy = mo > n.
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((SLpy X SLimy) X SLp, (AMMB A1) QA1) (n > 2) is a FP if and only if (n # my,n #
Mo, # my +my ,my # mg) or with m; = mg > n.

((GSpm, X SLmy) X SLp, (A1 B A1) @ A1) (m1 > 2, n > 2) is a FP if and only if
mg > n orn = odd > my orn > mg = odd or n > max{2mi, ma}.

((Spm; X GLpmy) X SLp, (MM H A1) ® Ay) (m1 > 2, n > 2) is a FP if and only if
n>2mi orn = odd.

((Spmy; X SLmy) X GLp, (A B A1) @ A1) (m1 > 2, n > 2) is a FP if and only if
Mg > n or mg > 2my or mgy = odd.

((Spmq X SLmy) X SLyp, (A1 B A1) ® A1) (m1 > 2, n>2) is a FP if and only if one
of the following conditions holds.

(a) ma >n > 2my or mg >n = odd,

(b) n > 2my + ms and (mg > 2my or my = odd),

(c) 2mi + mg > n > mg, (mg > 2m; or my = odd), n > 2m; + 1 and n # my
mod 2.

Here we put S(i1,...,4) = Z?c:lEik,k € M(n,m) (n > 41 > --- > 4y > 1) where
E;; denotes the matrix unit in M(n,m). We also write S(i1,...,it) = ey E ;€
M(n,t) (n > i1 > - >4 > 1) where E] ; denotes the matrix unit in M(n,t). Hence we
have S(i1,...,4t) = (S(i1,...,%) | O) € M(n,m).

d

Lemma 2.4. ((KKMOT, Lemma 2.4])

1.

For any q and m, (Spg X GLp,, A1 ® A1) = (GSpg X SLy, A1 @ A1) is a FP while
(Spg % SLp,, A1 ® A1) is a FP if and only if 2¢ < m or m = odd.

For any m and n, (ST,(n) X GLyp, Ay @ A, M(n,m)) = (Tyu(n) X SLpy, A1 ®
A1, M(n,m)) = (Ty(n) x GLy, Ay ® Ay,, M(n,m)) is a FP with the orbits rep-
resented by S(i1,...,it) € M(n,m) (n>1d1 > -+ >4 > 1).

If m # n, then a triplet (STy(n) X SLpy, A1 ® A1, M(n,m)) is also a FP with the
orbits represented by S(i1,...,4) € M(n,m) (n >3 > --- >4 > 1).

For any m,n and q with n > 29 > 0, a triplet (SHy g X GLy, At ® Ay, M(n,m)) is

a FP where SH, 4 = (qu ]\gi(l?q(;%n“—;qg))

For any m,n and g with n > 2q > 0 where 2¢ < m or m = odd, a triplet (Hpq X

SLi, Ay ® Ay, M(n,m)) is a FP where Hy g = (qu M:F(Q(qr’zri;qz)q))'
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6. For any m,n and q with n > 2¢ > 0 and n # m, a triplet (H,’L’q X Sy, A1 ®

. GSpy M(2g,n — 2q)
1 q s
A1, M(n,m)) is a FP where H,,= SL,N ( 0 Tyn-2) )
7. For m,n and q withn > 2q¢ > 0 and n # m mod 2 where 2¢ < m or m = odd, a
triplet (SHp g X SLym, Ay ® A1, M (n,m)) is a FP.

Theorem 2.5. ([KKY])
((Spm; X GLmy X GL1) X GLy, (A1 BA BB A1) ® A1) iés a FP if and only if my > 1 and
n>1.

When we classify FPs of type ((Spm; X GLpm, X GL1) X GLy,, (A BBA;BA;) ® Ay) with
m1 > 2 and n > 4 under various restricted scalar multiplications, the following lemmas
are essential.

Lemma 2.6. ([KKMOT, Lemma 3.3])

1. (Spm X (GLn X SLl),Al (034 (A1 H Al))
(g (Spm X GLnaAl QA +M® 1)) is a FP.

2. (Spm X (SL, x GL1),A1 ® (A1 B Ay)) is a FP if and only if n > 2m or n = odd.
More generally, let Sy be a subgroup of GSp, x (SL, X GL1) defined by Sk =
{(A,B,a) |a € GL1,A € GSpp,det A= oF, B € SL,}. Then (S, A1 ® (A BA)),
i.e., M(2m,n) ® V(2m) 3 (X,y) = (AX'B, ady) = (/2 A’ Xt B, o 2m+k)/2m Aly)
with (A, B,a) € Sy and A’ € SPy,, is a FP if and only if (n = 1; k # —m) or
(2m > n = even; k#0) or (2m >n= odd > 3; k #2m/(n—1),-2m/(n+1)) or
n > 2m.

3. (GSpm X (SLyp x SL1), A1 ® (A1 B A1) is a FP if and only if n > 2.
4. (Spm x (SLy, x SL1),A1 ® (A1 B Ay)) is a FP if and only if n > 2m.
Lemma 2.7. ([KKMOT, Lemma 3.4])

1. (Tu(m) X (GLn X GLl),Al [ (Al BEIAl))
& (STu(m) x (GLn x GL1), A1 ® (A1 B A1)
= (Tu(m) X (GLn X SLl),Al ® (Al H Al))
>~ (Ty(m) x (SL, x GL1), A1 ® (A B Ay)) is a FP.

2. (Ty(m) x (SLp x SL1), A1 @ (A1 B Ay)) is a FP if and only if n > 2.
3. (STu(m) x (GLp, x SL1), A1 ® (A1 B A1)) is a FP if and only if m > 3.

4. (STy(m) X (SLp x SL1),A\1 @ (M1 EBA1)) isa FPif and only if m > 3,n>2,m#n
and m #n+ 1.
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5. (STu(m) x (SLp, x GL1),A1 ® (A1 B A)) is a FP if and only if (n = 1,m > 3) or
(n>2,m # n). More generally, let G, be a subgroup of To,(m)x (SL, xGL1) defined
by G, = {(A,B,a) | @ € GL1,A € T,(m),det A = o', B € SL,}. Then (Gr,A\1 ®
(A{BAY)) ie., M(m,n)®V(m) 3> (X,y) = (AX?B, aAy) with det A = ™" and
(A,B,a) € Gy, is a FP ifand only if (n =1,m >3) or (n > 2, r #0,—1,—m) or
n>2,r=0, m#n)or(n>2,r=-1; m#n+1) or (n>2,7r=-m; m>3).

Lemma 2.8. ([KKMOT, Lemma 3.5])
1. (H;l’q X (GLm X SLl),Al &® (A1 EBAl)) (n >2q > 0) is a FP.
2. (Hp 4 x (SLm X GL1), Ay ® (A1 B Ay)) (n > 29 > 0) is a FP ifn > m.
8. (Hj g x (SLim x SL1), A1 ® (A1 BAy)) isa FPifn>m+2>5 andn >n—2q > 3.

Proposition 2.9. ((GSpml X GLpp, X SLl) X SLy,, (Al HA; EBAl) ®A1) (m1 >2, n> 4)
is a FP.

Proof. By Proposition 1.11, the SL,-part of an isotropy subgroup of (GSpm,
X SLp, A1 ® A1) contains H.;l’q. Hence by 1 of Lemma 2.8, we have our result. 1

Proposition 2.10. ((GSpm, X SLmy, XGL1) X SLy, (A{BABA)®A;) (m1 > 2, n>4)
is a FP if and only if ma > n orn = odd > mg or n > mg = odd or n > max{2mj, ma}.

Proof. By 4 of Theorem 2.3, these conditions are necessary. If ms > n, then it is a FP
by Proposition 1.2 and Theorem 2.5. So we may assume that n > mgy. By Proposition
1.10, the SL,-part H of an isotropy subgroup of (GSp,, x SL,,A; ® A;) of any orbit
contains Spy: (2m1 > n = 2n’) or STy(n) or H;, , (n > 2¢ > 0). By 2 of Lemma 2.6,
(Spns X (SLm, x GL1), A1 ® (A1 B Ay)) is a FP if and only if (n >) m2 = odd. By 5 of
Lemma 2.7, (ST, (n) X (SLm, x GL1), A1 ® (A;HA4)) is a FP in our case. By 2 of Lemma
2.8, (Hyp g X (S8Limy X GL1), A1 ® (A1 BA1), M(n,m2) ®V (n)) is a FP for n > my. Hence
we obtain our result. i

Proposition 2.11. ((GSpm,; X SLpmy X SL1) X SLy, (AfBAIBA)®A) (m1 > 2, n>4)
is a FP if and only if mp > n or n > max{2m; + 1,ma + 1(> 3)}.

Proof. By 3 of Theorem 2.3, ((SLym, X SL1) X SL,, (A1 BA;) ® A1) is a FP if and only
ifn # 1,n # mo,n # ma+ 1 and my # 1. Note that we deal with the case n > 4. If
mo > 7, then it is a FP by Propositions 1.2 and 2.9. So we assume that n > mg+1 > 3.
If 2my > n = even (= 2n’), it is a non FP since (Sp, X (SLm, X SL1), A1 ® (Ay B A1)
with 7 = 2n’ > my + 1 is a non FP by Lemma 2.6. Now we show that it is a non FP
when 2m; 4+ 1 > n = odd. If we put n = 2q + 1, the SL,-part of a generic isotropy

subgroup of (GSpm; X SLp, A1 ® A1) is H = {<aOA a’_“2q> | « € GLi, A € Spg}. We
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show that (H X (SLm, xSL1), A1 ®(A1BA)) is a non FP. First assume that my = even. If
(3, (D)) € M(n,ma)@V (n) is transfered to ((§) ), (1)) by H X (SLm, x SLy), the action
X +— X' is (Spg x SL(m3), A1 ® A1) which is a non FP. When my = odd, we consider
similarly an element of type ((§9),(9)) with X € M(n — 1,mz — 1), then the action
X — X' is (Spg x SL(mg — 1), A ® A1) which is a non FP. If n = mg + 2 (resp. my = 2),
see Lemma 2.12 (resp. Lemma 2.13). Hence we may assume n > max{2m;+1,ma+2} with
my > 3. In this case, the SL,-part of an isotropy subgroup of (GSpm, X SLn, A1 ® A1)
of any orbit contains STy(n) or Hy, , (n > n— 2q > 2) by Proposition 1.11. By 4 of
Lemma 2.7, (STy(n) x (SLm, x SL1), A1 ® (A1 B A1)) is a FP in our case. If n — 2¢g > 3,
(Hpg X SLimy, A1 ® Ay + Ay ® 1, M(n,mz) ® V(n)) is a FP by Lemma 2.8. If n — 2¢ = 2,
we have ¢ = my and we can replace H, , by H, ,, by Proposition 1.11 and hence it is a

n,mi

FP. 1

Lemma 2.12. ((GSpm, XSLp, xSLi) xSL(m2+2), (ABABA)®A;) withme > 2m;,
is a FP.

Proof. The process of the proof is similar as that of Proposition 2.11. It is enough
to show that (Hj, X (SLm, x SL1),A1 ® (A1 B Ay)) is a FP when my > ¢t > 0 and
29 = ma —t + 1 since other cases are proved in Lemma 2.8. The number of orbits
related with M (mg + 2,m3)” is finite by Proposition 1.2. Any point in M (mgz + 2,mg)’

!
is Hj, ; X SLm,-equivalent to s 0 i) 12‘10‘1) with S(i1,...,4t) € M(t + 1,t) and
1, s U

]:lzq71 = (12q~1>‘ Since the Hj, ,-part of the isotropy subalgebra at this point contains

@)
{(~aly—2+A)® ("% ara) @G )| A€ Lie(Spg-1), B € Lie(Tu(n—2q—1)),tr B =
(2¢ — 1)a — d}, it is a FP. 1

Lemma 2.13. ((GSpm, X SLy X SL1) X SLy, (A BA; BA;) ® Ay) withn > 2mq + 1, is
a FP.

Proof. Similarly as Lemma 2.12, it is enough to show that (H}, , x (SL2 x SL1),A1 ®
(A Ay)) is a FP when mg =2 > ¢ =1 > 0. Any point in M(n,2)’ is transformed to
(es,€1) (n >4 > 2q+1) by Hy, . xSLy and the H,, -part of the isotropy subalgebra contains
{(§2) ®(—alyq 2+ A)® (724 )| A€ Lie(Spg-1), B € Lie(Ty(n — 29 — 1)),tr B =
2qa + d}, and hence it is a FP. 1

Lemma 2.14. Let SHy 4, SHy, o and Hpq (n > 2q > 0) be as in Proposition 1.11.
1. (SHn,q X (GLm x GL1), A1 ® (AL B A1) is a FP.

2. (a) (SHpq x (GLm x SL1), A1 ® (A1 B Ay)) is a FP if n —2q > 3.
(b) (SHy o X (GLm x SLy), A1 ® (A1 B A1) is a FPifn —2q > 2.
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3. (a) (SHpq X (SLm x GL1),A1 @ (A1 BAy)) isa FPifn—2¢ >3, (n—2q9>m or
n Zm mod 2) and (m > 2q or m = odd ).
(b) (SHy; ; X (SLyy x GL1), A1 ® (A1 B A1) ds a FPifn—292>2, (n—2q>m or
n#m mod 2) and (m > 2q or m = odd ).

4. (Hn:q X (GLm X SLl),Al (034 (Al EA])) is a FP.
5. (Hpg % (SLm x GL1), A1 ® (Ay B A1)) is a FP if m > 2q or m = odd.
6. (Hn,q X (SLm X SLl),Al & (Al EBA])) is a FPifm > 2q+ 1.

Proof. Just similarly as in the beginning part of the proof of Lemma 2.8, it is enough to
show that, for m >t > 0,
(1) M(2g,m — t) ©® V(2q) > (W, z) = (AW'D, aAz),
(2) M(n —2q,t)® V(n —2q) 3 (S,y) — (BS'C,aBy)
are FPs at the same time where A € Spg, B € ST,(n — 2q) (resp. B € SL(n — 2q) for
SH} . B € Ty(n—2q) for H,4) and the full subgroup of type {((§9),a) | C € GL;,D €
GL(m —t)} of GLy, x GLy (resp. GLy, x SLy, SLy, x GL1, SLy, x SLy) acts. Hence we
have 1 by 1 of Lemmas 2.6 and 2.7. We have 2 by 1 of Theorem 2.3, Lemma 2.6 and 3 of
Lemma 2.7.

For 3, (1) and (2) are related with (det C)(det D) = 1 and a € GL;. First assume that
t =0. Then D € SL,, and (1) is a FP by 2 of Lemma 2.6. (2) becomes y — aBy which
is a FP even when a = 1 since n — 2¢ > 2. Next assume that ¢ = m. Then C € SL,,
and (1) becomes just z — aAx which is a FP even when a = 1. If m = 1, (2) for SH, 4
(resp. SH; ) is a FP by 5 of Lemma 2.7 (resp. 1 of Theorem 2.3) since n —2q > 3 (resp.
n—2q >2). If m > 2, (2) is a FP since m # n—2q. Finally assume that m > ¢ > 0. Then
(1) is always a FP (cf. 1 of Lemma 2.6) and the restriction of scalars occurs in the following
3 cases (a)-(c). (a) When 2¢ > m —t = even, we have det D = 1 (and hence det C' = 1) in
a generic isotropy subgroup of (1). Then (2) for SH, , with ¢t = 1 is a FP by 5 of Lemma
2.7 since n—2q > 3 . Since (n —2¢ > m(>t) orn #m mod 2) and m =¢ mod 2 implies
that n —2q # t, (2) for SHy, 4 with ¢ > 2 (resp. SH,; , with t > 1) is a FP by 5 of Lemma
2.7 (resp. 1 of Theorem 2.3). (b) When 2¢ > m — ¢+ 1 = even, we have adet D =1 in a
generic isotropy subgroup of (1). In this case, we have t > 2 since m > 2q or m = odd. If
we put (BS'C,aBy) = (B'StC’,o/ B'y) with B’ € T,(n—2q), C' € SL:, o/ € GL;, we see
easily that det B’ = (¢/)” with r = (n—2¢)/(t—1). Hence this reduces to 5 of Lemma 2.7.
We have r £ —(n — 2q) since otherwise ¢t = 0, a contradiction. When n — 2q = ¢, we have
r # 0. When n—2¢g =t+1, we have r # —1 since otherwise ¢ = 0, a contradiction. Hence
(2) is a FP. (c) When 2¢ > m—t+1 = even(= 2(u+1)), we have det D = « in the isotropy
subgroup of (1) at (e1,...,€yut1,€q41,---,€qtu, €ut1), and hence det C' = a~ 1. If we put
(BS'C,aBy) = (B'S'C’, o/ B'y) with B’ € Ty(n — 2q), C' € SLy, o € GL1, we see easily
that det B’ = (/)" with r = —(n — 2¢)/(¢ + 1). Hence this reduces to 5 of Lemma 2.7.
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When ¢ =1, (2) is a FP since n — 2¢ > 3 for SH,, 4 (resp. n — 2g > 2 for SHy ). When
t > 2, we have 7 # —(n — 2q) since otherwise ¢ = 0, a contradiction. When n — 2q = ¢,
then clearly » # 0. Since n—2¢ > morn Zm mod 2, we have n —2q # t + 1 = m.
Hence (2) is a FP.

For 4, (1) and (2) are FPs at the same time by 1 of Lemmas 2.6 and 2.7.

For 5, (1) and (2) are related with (det C)(det D) = 1 and @ € GL;. If t = 0, then
D € SL,, and (1) is a FP by 2 of Lemma 2.6 since m > 2g or m = odd. (2) becomes
y + aBy which is a FP even when o = 1. If ¢ = m, then C € SL,;, and (2) isa FP by 1 of
Lemma 2.7. (1) becomes just z — aAz which is a FP even when o = 1. Finally assume
that m > ¢ > 0. Then (1) is always a FP (cf. 1 of Lemma 2.6) and the restriction of scalars
occurs in the following 3 cases (a)-(c). (a) When 2g > m — ¢ = even, we have detD =1
(and hence det C = 1) in a generic isotropy subgroup of (1). However o remains and (2) is
a FP by 1 of Lemma 2.7. (b) When 2¢ > m—t+1 = even, we have adet D = 1 in a generic
isotropy subgroup of (1). In this case, we have t > 2 since m > 2q or m = odd. If we put
(BS'C,aBy) = (B'S'C’, o/ B'y) with B' € Ty(n —2q), C' € SLy, o/ € GL1, we see easily
that det B’ = (det B)(«')” with r = (n —2q)/(t — 1). Hence det B’ and o/ have no relation
and (2) is a FP by Lemma 2.7. (c) When 2¢ > m —t + 1 = even(= 2(u + 1)), we have
det D = a € GL; in the isotropy subgroup of (1) at (e1,...,€ut1, €941, - -+ Egtu, €ut1), and
hence det C = a~!. If we put (BS'C, aBy) = (B'S*C’,o/ B'y) with B’ € T,,(n—2q), C' €
SL:, o € GLy, we see easily that det B’ = (det B)(¢/)" with 7 = —(n—2q)/(t+1). Hence
det B’ and ¢ have no relation, and (2) is a FP by 1 of Lemma 2.7.

For 6, (1) and (2) are related with (detC)(det D) = land a=1. If t =0, (1) is a
FP by 4 of Lemma 2.6 since m > 2¢ + 1. (2) becomes just y — By with B € T,(n — 2q)
which is a FP. If t = m, (2) is a FP by 2 of Lemma 2.7 since m > 2. (1) becomes just
z + Az with A € Sp, which is a FP. Finally assume that m > ¢ > 0. (1) is always a FP
by 1 of Lemma 2.6, and the restriction of scalars occurs in the following 3 cases (a)-(c).
When (a) 2¢g > m—t = even (resp. (b) 2¢ > m—t+1 = even), then det D = 1 (and hence
C € SL;) in a generic isotropy subgroup. However since ¢ > m —2¢ > 1 in our case, (2) is
a FP by 2 of Lemma 2.7. (¢) When 2¢ > m —t+1 = even(= 2(u+1)), we have det D = 1
(and hence C' € SL;) in the isotropy subgroup of (1) at (1, ..., €ut1, €q+1s- - - » €gtus €utl)-
Since m —1 > 2g > m — ¢+ 1, we have ¢ > 3, and hence (2) is a FP by 2 of Lemma 2.7. g

Proposition 2.15. ((Spm; X GLym, X GL1) X SLy, (AMfBABA) QA1) (m1 > 2, n>4)
is a FP if and only if 2m1 < n or n = odd.

Proof. By 1 of Lemma 2.4, the condition is necessary. If 2m; < n or n = odd, the
S Lp-part of an isotropy subgroup of (Sppm, x SLy, A1 ® A1) contains SHy, 4 (n > 2q > 0)
by Proposition 1.11. Hence we obtain our result by 1 of Lemmas 2.7 and 2.14. i

Proposition 2.16. ((Spm; X GLm, X SL1) X SLy, (MMBABA)® A1) (m1 >2, n>4)
is a FP if and only if n > 2m4 + 1.
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Proof. ((Spm; % SL1) X SLy,, (A1 A1) ® Ay) is a FP if and only if n > 2my +1 by 7
of Theorem 2.3. Under this condition, the SL,-part of an isotropy subgroup of (Spm, X
SLp, A1 ® Ay) contains SHy 4 (n —2q > 3,m1 > q) or SH;,,, (n—2my = 2,9 = mq) by
Proposition 1.11. Hence we obtain our result by 2 of Lemma 2.14 ]

Proposition 2.17. ((Spm; X SLmy X GL1) X SLp, (MM BAiBA)®A) (m1 > 2, n>4)
is @ FP if and only if one of the following conditions holds.

1. mg >n > 2my or mg > n = odd,
2. n>2my + mg and (mz > 2m; or mg = odd),
3. 2my +ma > n > ma, (ma > 2my or my = odd), n>2m;+1 and n # ma mod 2.

Proof. By' 7 of Theorem 2.3, if it is a FP, these conditions are necessary. Assume that
mgq > n. Then by Propositions 1.2 and 2.15, it is a FP if and only if n > 2m; or n = odd.
Now assume that the condition 2 or 3 is satisfied. By Proposition 1.11, the SL,-part of
an isotropy subgroup of (Spm, X SLn, A1 ® A1) contains ST, (n) or SHyp 4 (n > 29 > 0)
or SHy ,, (n—2q =2 and ¢ = m;). By 5 of Lemma 2.7, (STy(n) X (SLm, x GL1),A1 ®
(A1 B Ay)) is a FP in our case. The condition 2 or 3 implies the condition in 3 of Lemma
2.14, and hence we have our result. ]

Proposition 2.18. ((Spm, X GLm, X SL1) X GLyp, (A1 BA BA) QA1) (my > 2, n>4)
is a FP. Note that in this case, it is always FP without the condition on n by Lemma 1.5.
This is isomorphic to ((GLy X (Spm, X SL1) X GLp,) X SLy, (A1 @ (AL BA)BA)QA).

Proof. If the GL,-part of a generic isotropy subgroup contains Sp, (n = 2n’) or T, (n),
it is a FP by 1 of Lemma 2.6 (resp. by the 3rd form of 1 of Lemma 2.7). Otherwise it
contains Hy 4 (n > 2¢g > 0) by Proposition 1.11. Then by 4 of Lemma 2.14, we have our
result. 1

Proposition 2.19. ((Spm, X SLmy X GL1) X GLy, (A1 BA BA) ® A1) (m1 > 2, n > 4)
is a FP if and only if ma > n or ma > 2my or mg = odd. Note that this is isomorphic to
((GL1 X (Spmy X SLimy) X GL1) X SLy, (A1 ® (A1 B A1) BA1) ® Ay).

Proof. These conditions are necessary by 6 of Theorem 2.3. If mp > n, it is a FP
by Proposition 1.2. So we may assume that n > mg > 2m; or n > mp = odd. By
Proposition 1.11, the G L,-part of an isotropy subgroup of (Spm, X GLn, A1 ® A1) contains
Spn (2m1 > n = 2n'), Ty(n) or Hyq (n > 2g > 0). Hence by 2 of Lemma 2.6, 1 of Lemma
2.7 and 5 of Lemma 2.14, we have our result. 1

Proposition 2.20. ((Spm, X SLm, X SL1) X GLy, (A1 BA1 BA) ®A1) (M1 > 2, n>4)
is a FP if and only if ma > n ormg > 2my + 1.
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Proof. First assume that n > mg and 2my + 1 > my. Then the GL,-part of the isotropy
subgroup of (SLm, X GLp, A1 & A1, M(mg,n)) at (Im,| O) is H = (SLg’”) ). Then
(Spm, x SL1) x H acts on {(X]| O) € M(2m1+1,n) | X € M(2m1+ 1,m2)} as ((Spm, X
SL1)*SLp,, (A1EBA;)®A;) which is a non FP in our case by 7 of Theorem 2.3. If mg > n,
then by Propositions 1.2 and 2.18, it is a FP. So we may assume that n > mg > 2m; + 1.
Then, by Proposition 1.11, the G L,-part of an isotropy subgroup of (Spm, X GLyn, A1 ®A1)
contains Ty, (n) or Hy 4 (n > 2g > 0). Since mg > 2, (Ty(n) X (SLmy X SL1), A1®(A1HA1))
is a FP by 2 of Lemma 2.7. Since mg > 2m3 + 1 > 2¢q + 1, we have our result by 6 of
Lemma 2.14. 1

Proposition 2.21. ((Spm, X SLm, X SL1) X SLy,, (A1 B A BA) Q@A) (m1 > 2, n> 4)
is a FP if and only if mg > n > 2my + 1 or (n > 2my + ma + 1 and map > 2my + 1).

Proof. Assume that myo > n. Then by Propositions 1.2 and 2.16, it is a FP if and
only if n > 2mg + 1. If n = meg, it is a non FP since (SLpy, X SLp, A1 ® A1) is a non
FP. Hence we assume that n > my. We shall show that if 2m; + mg + 1 > n(> me),
itisanon FP. If n = 2my +ma + 1 or n = 2my + my, it is clearly a non FP since
(SPmy X SLm,) C SLom, +m, etc. Hence we may assume that n > mo > n — 2m;. Then
there exists g satisfying n —2g = mg or n —2¢ =mg + 1 (m1 > q¢ > 0). The SL,-part of
some isotropy subgroup of (Spm, X SLy, A1 ® A1) is contained in SHy; , = (S”O(q) g L(:_Qq))
by Proposition 1.10. Then (SH}, , X (§Lm, X SL1), A ® (A B A1) (n—2q = mz or my+1)
is a non FP. Hence we may assume that n > 2m; + mg + 1. Then by Propositions 1.2 and
2.20, we obtain our result. 1

Proposition 2.22. ((GSppm, X SLp, X SL1) XGLy, (ABABA)®A;) (m1 > 2, n>4)
is a FP if and only if mg > 2.

Proof. If mg = 1, it is a non FP since ((SL; X SL1) X GL,, (A1 B A1) ® A1) is a non
FP by 2 of Theorem 2.3. Assume that mg > 2. The GL,-part of an isotropy subgroup of
(GSpm; x GLp, Ay ® A1) contains GSp, (n = 2¢), T,(n) or H = (Ggpq ]\{lg2q,n R 2q)>
u(n - 2Q)
with n > 2¢ > 0. By 3 of Lemma 2.6, (GSpq X (SLm, x SL1), A1 ® (A BAy)) is a FP. By
2 of Lemma 2.7, (Ty(n) X (SLm, x SL1),A1 ® (A1 BA;)) is a FP. Hence it is enough to
show that (H X (SLm, X SL1), A1 ® (A1 BA;)) (mg > 2) is a FP. For this, just by the same
argument of the beginning part of the proof of Lemma 2.8, it is enough to show that, for
any t satisfying me > ¢ > 0,
(1) M(2g,m2 —t) &V (2q) > (W, z) — (AW'D, Ax)
(2) M(n —2q,t) > (S,y) — (BS*C, By)
are FPs at the same time, where A € GSp,y, D € GL(mg —t),B € T,(n — 2q),C € GL;
and (det C)(det D) = 1. If t = 0, then D € SLy,, and (1) is a FP by 3 of Lemma 2.6. (2)
becomes just y — By which is a FP. If t = my, then C € SL,,, and (2) is a FP by 2 of
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Lemma 2.7. (2) becomes just z — Az which is a FP. Finally assume that my > ¢t > 0.
Then (1) is a FP by 1 of Lemma 2.6. The restriction of scalars occurs in the following 3
cases (a)-(c). (a) When 2¢q > mg — t = even (resp. (b) 2¢ > mg —t + 1 = even), we have
(det A)™27*(det D)% = 1 and det C = (det A)(™ /29 (resp. (det A)™2~*+1(det D)% =1
and detC' = (det A)m—t+1)/ 24) in a generic isotropy subgroup. Hence no restriction of
scalars occurs in (2). So by 1 of Lemma 2.7, (2) is a FP. (¢) When 2g > my — ¢t +1 =
even, we have det D = (det A)1~(m2-%))/2¢ (and hence det C = (det A)(m2—t-1)/29) in
the isotropy subgroup at (e1,...,€ut1,€q+41,-- - €q4usCut1) € M(2g,mo —t 4 1) with
mg —t = 2u+ 1. Note that if we write (AW'D, Az) = (AW'D’,o/ A'z) with A’ € Sp,
the condition det D’ = o implies that det D = (det A)1=(m2=)/24 If my — ¢ > 1, we
have detC' % 1 and hence (2) is a FP by 1 of Lemma 2.7. If my —¢t = 1 and ¢t > 2,
then (2) is a FP by 2 of Lemma 2.7. Now assume that mg = 2 and ¢ = 1. By the
simple calculation of the isotropy subalgebra, we see that the H-part of the isotropy

0 e(2q) ab * *
subgroup of (H x SLy, A1 ® Ap) at < (n—2q) 1 > contains {(| 0 ab™! 0 ,aA) |
€, 0 0 0 (ab)~!
A€ Spyi, a,be GL1} xTy(n—2g—1) C GL,. Hence (H x (SLy x SL1), A1 ® (A1 BAy))
is a FP, and we obtain our result. 1

Proposition 2.23. ((GL1 X (Spm; X SL1)XSLp,) X SLy, (A @(A1BA)HA1)®A1) (my1 >
2, n>4) is a FP if and only if ma >n or (n > mg and n > 2mq + 1).

Proof. First we show that it is a non FP for 2my +1 > n > ma. If n = meg, it is clearly a
non FP. If n = 2m, + 1, it is a non FP since the SL,-part of a generic isotropy subgroup
of (GL1 X Spml X SL1 X SL,, A1 ® (A1 EBAl) ®A1) is (Sprm X SLy, A EBAl) C (SLn, A1)
and ((Spm, X SL1) X SLpy,, (A1 B A1) ® A1) with 2m; +1 > mg is a non FP by 7 of
Theorem 2.3. So we may assume that 2mq > n > my. If n = 27/, it is a non FP since
(Spry X (SLpy, x SLy), A1 ® (A1 BB Ay) with n = 2n' > my is a non FP by 4 of Lemma
2.6. If n = 2n’ + 1, it is a non FP since the SL,-part of a generic isotropy subgroup of
(GLl X (Spml X SLl) X SLy, A ® (A] EBAl) ®A1) 1s (Spn/ x SLi, A1 H A1) C (SLn, Al)
and ((Spps X SL1) X 8Ly, (A1 BA1) ® A1) (2n' + 1 > my) is a non FP by 7 of Theorem
2.3. If mg > n, then by Propositions 1.2, it reduces to Proposition 2.18, and it is a
FP. Finally assume that n > my and n > 2m; + 1. The (GL; x SL,)-part H of an
isotropy subgroup of (GLi X Sppm, X SLp,A; ® A1 ® Aj) contains (GLy x ST,(n)) or
{(e, (OfolA €)) |l aeGLi,A€ Spy, BeTy(n—2q),det B=a?,C e M(2q,n— 2q)} with
n > 2q > 0. By 5 of Lemma 2.7, (ST, X (SLm, X GL1),A1 ® (A1 B Ay)) is a FP in our
case. Hence, to prove that (H x SL(ms), A1 ® A1) is a FP, just similarly as the beginning
part of the proof of Lemma 2.8, it is enough to show that for n > 2¢ > 0,

(1) M(2g,mz — t) & V(2q) 2 (W,z) = (a"LAWD, Az),

(2) M(n—2q,t) ®V(n —2q) 3 (S,y) — (BS'C,aBy)

are F'Ps at the same time where o« € GL, A € Spg, D € GL(my — t), B € Ty,(n — 2q),C €
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GLy, (det C)(det D) = 1,det B = 9. If t = 0, then D € SL(m2) and (1) is a FP by 1
of Lemma 2.6. (2) becomes just y — aBy which is a FP even when det(aB) = o™ = 1
since n > 2mj + 1 implies n — 2¢ > 2. If t = my, then C € SL(mg) and (1) becomes
just z — Az, which is always a FP. Now (2) reduces to 5 in Lemma 2.7 with r = 2q.
Soif mg =1and n—2¢ > 3, it is a FP. If my = 1 and n — 2¢ = 2, the condition
n > 2m; + 1(m1 > ¢) implies ¢ = my. In this case, the SL,-part of a generic isotropy
subgroup of (GL1 X Spm, XSLp, A1 ®A1 QA1) is (Gszzgml) GL*(Z) YNSLy,. Since V(2)&V(2) 3
(z,y) = (Bz,aBy) with B € GLy,det B = o*™, is a FP, (2) is a FP. If my > 2, it is a
FP by 5 of Lemma 2.7 since r = 2¢q # 0, —1, —(n — 2¢). Finally assume that mg >t > 0.
Then (1) is a FP by (1) of Lemma 2.6. The restriction of scalars occurs in the following
3 cases (a)-(c). (a) When 2¢g > mg —t = even (resp. (b),(c) When 2¢g > my —t+1 =
even), then we have a—24(m2~%) (det D)% = 1 in a generic isotropy subgroup for (a),(b)
(resp. in the isotropy subgroup at (e1,...,€ut1,€q41,- - - €gtus €ut1) € M(2g,mg —t+ 1)
with mg — t = 2u + 1 for (c)). Hence we have det C = a~ ™% for (a)-(c). If we
write (BS'C,aBy) = (B'S'C',o’B'y) with C' € SL;, we have det B’ = (¢/)" with r =
(tn — man + 2gmg)/my. Hence (2) reduces to 5 of Lemma 2.7. If ¢ = 1, then it is a FP
for n —2q > 3. If n — 2q = 2, by the same argument as above, it is also a FP. Assume
that ¢ > 2. Then r # —(n — 2¢) since otherwise we have tn = 0. If n — 2¢g = ¢, then we
have r #0. If n — 2g = ¢t + 1, then we see that r # —1. In both cases, otherwise we have
t(n —mg) =0. Hence (2) is also a FP by 5 of Lemma 2.7. ]

Proposition 2.24. ((GLy X (Spm, X SLp,) X SL1)XSLy, (M@ (A1 BA)BA)®A;) (mq >
2,n > 4) is a FP if and only if one of the following conditions holds.

1. mg >n,
2. mg=mn>2my +1,
3. n>mg and n > 2my + 1 and (mg > 2my or mg = odd).

Proof. First assume that n > mgy and 2m; > mgy = even. Then it is a non FP since
(GL1 % (SPm; X SLpm,) X SLp, Ay @ (A1 BB A;) ® Ay) is a non FP in this case by 6 of
Theorem 2.3. Next assume that 2m; +1 > n > mg. If my = n, then the SL,-part of
a generic isotropy subgroup of (GL; X SLy, X SLy, Ay @ A1 ® Ay) is SL,, and ((Spm, X
SLi) X SLp, (A1 B A7) ® A1) is a non FP in this case by 7 of Theorem 2.3. So it is
anon FP. If n = 2m; + 1 > my, then the SL,-part of a generic isotropy subgroup of
(GLy X (Spmy X SL1) X SLyp, Ay ® (A1 B A1) ® A1) is Spm, x SLy and ((Spm, x SL1) X
SLpm,, (A1 A1) ®A;) is a non FP in this case by 7 of Theorem 2.3. Hence it is a non FP.
If 2my > n = 2n’ > my, it is a non FP since (Spp X (SLm, X SL1), Ay @ (A1 B A1) is a
non FP by 4 of Lemma 2.6. If 2my > n = 2n/ +1 > ma, it is a non FP since the SL,-part
of a generic isotropy subgroup of ((GL; X Spm, X SL1) X SLp, (A1 ® A B A7) @ Ay) is
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(5200 9 and ((Spw x SL1) X SLm,, (A1 B A1) ® Ay) is a non FP in this case by 7 of
Theorem 2.3. If mgy > n, then by Propositions 1.2 and 2.9, it isa FP. If mg =n > 2m+1,
for the orbits related with M (n)’, it reduces to ((Spm; X SL1) X SLy, (A1 B A1) ® Ay)
which is a FP in this case by 7 of Theorem 2.3. For the orbits related with A (n)”, by
Proposition 1.2, it reduces to Proposition 2.9. Finally assume that n > mg and n > 2m;+1
and (mg > 2mj or mg = odd). Then the (GL1 x SL,)-part of an isotropy subgroup of
(GL1 X Spm; X SLp, A1 ® A1 ® A1) contains (GL1 X STy (n)) or H = {(a, ( O‘OIA ENlac
GLy, A € Spy, B € Ty(n — 2q),det B = a®,C € M(2q,n — 2q)} withn —2 > 2g > 0.
Note that (STy(n) X (GLm, x SL1),A1 ® (A; B A;)) is a FP by 3 of Lemma 2.7 since
n > 4. Hence, just similarly as the beginning part of the proof of Lemma 2.8, it is enough
to prove that, for n —2 > 29 > 0 and my >t > 0,

(1) M(2g,m2 —t) & V(2q) > (W,z) — (AW'D, a1 Az)

(2) M(n —2q,t) @ V(n - 2q) > (S,y) = (aBS*C, By)

are FPs at the same time, where o € GL1, A € Spy, D € GL(mg —t),B € Ty(n—2q),C €
GLt,det B = a?? and (det C)(det D) = 1. If t = 0, then D € SL(m3) and (1) becomes a
FP in our case by 2 of Lemma 2.6. (2) becomes just y — By which is a FP even when
a =1 since n —2g > 2. If t = my, then C € SL(m3) and (1) becomes just = — o' Az
which is a FP, and « always remains. In (2), put (aBS!C, By) = (B'S'C,o’ B'y). Then
we have det B’ = (o/)™™ so that (2) reduces to 5 of Lemma 2.7 with r = —n. Soif mg =1
and n —2¢ > 3,itisa FP. If my =1 and n — 2¢q = 2, it is a FP just similarly as in the
proof of Proposition 2.23. If mg > 2, it is a FP by 5. of Lemma, 2.7. Finally assume that
mg >t > 0. Then (1) is with full scalars and it is a FP. The restriction of scalars happens
in the following 3 cases (a)-(c). (a) When 2¢ > mgy — ¢t = even, then detD = 1 (and
hence det C' = 1) in a generic isotropy subgroup. Then (2) reduces to 5 of Lemma 2.7 with
r = —n. Hence just similarly as above, we see that (2) is a FP. (b) When 2¢g > ma—t+1 =
even, then o~ 'det D = 1 and hence det C = o~ in a generic isotropy subgroup. Note
that in this case, t > 2 since otherwise we have 2m; > mo = even, a contradiction.
If we put (aBS*C, By) = (B'S'C’,o/B'y) with C' € SL;, we have det B’ = (¢/)” with
7= (tn—n+2¢)/(1—1t). Hence (2) reduces to 5 of Lemma 2.7. We have r # —(n — 2q)
since otherwise gt =0. If n — 2g=¢, we haver = t(n — 1)/(1 —t) #0. If n — 2g =t + 1,
then r # —1 since otherwise n = 2, a contradiction. Hence (2) is a FP by 5 of Lemma
2.7. (c) When 2¢ > my —t+ 1 = even (= 2(u + 1)), we have det D = o~} € GL; (and
hence det C' = «) in the isotropy subgroup at (ei,...,€ut1;€q41,-- -+ Cq4u, €us1). Then
(2) reduces to 5 of Lemma 2.7 with r = (tn +n — 2¢)/(—t — 1). If ¢t = 1, it is a FP
just similarly in the proof of Proposition 2.23. For t > 2, we have r # —(n — 2q) since
otherwise gt = 0, a contradiction. When n —2q = ¢, we have r = t(n+ 1)/(—t — 1) # 0.
When n — 2qg =t + 1, we have r # —1 since otherwise tn = 0. Thus by 5 of Lemma, 2.7,
it is a FP. i

Proposition 2.25. ((Spm, X GL1 X (SLmy, X SLy)) X SLy, (A1 B (A1 ® (A1 H A))) ®



A CLASSIFICATION OF SOME PV’S RELATED WITH HGF’S 107

Ay) (m1 > 2,n > 4) is a FP if and only if one of the following conditions holds.
1. mg > n =even > 2my,
2. mo >n = odd,
3 n>me>2andn >2mq+ 1.

Proof. If my =1, then it is a non FP since (GL1 X (SL1 XSL1) X SLp, A1 ® (A1 A1) @A)
is a non FP. So we assume that mo > 2. To prove the only if part, it is enough to show
that it is a non FP when 2mj > n = even or 2m; + 1 > n(= odd)> mq. If 2m; > n =
even, it is a non FP since (Spy, X SL,, A1 ® A1) is a non FP in this case. Now assume
that 2my+1 > n = 2n’+1 > my. Then the (GL; x SL(2n' +1))-part of a generic isotropy
subgroup of ((Spm, x GL1) x SL(2n' +1), (M B A1) ® A1) is {{1}, H} with H = (%) 9)
and (H X SLpy,, A1®A;) is a non FP by 7 of Theorem 2.3. Now assume that my > n. Then
by Proposition 1.2, it reduces to the Proposition 2.15, and it is a FP if and only if n > 2m,
orn = odd, i.e., 1 and 2. Next assume that my = n. For the orbits related with M (n)’, the
(GL1 xSLy)-part of an isotropy subgroup of (GL1 X SLpy, X SLy, A1®@A 1 ®A;) is {1} xSL,
and ((Spm, X SL1) X SLy, (A1 A1) ® Ay) is a FP if and only if n > 2m; + 1 by 7 of
Theorem 2.3. For the orbits related with M (n)”, it reduce to Proposition 2.15, and it is a
FP if and only if n > m; or n = odd. Hence if my = n, it is a FP if and only if n > 2my+1.
Finally assume that n > 2m; 4+ 1 and n > mgo > 2. The SL,-part of an isotropy subgroup
of (Spm; X SLy, A1 ® A1) contains STy (n) or SHy 4 (n—2 > 2¢ > 0). By 2 of Lemma 2.7,
(GL1 X (SLm2 XSLl) XSTU,(n), A1®(A1EBA1)®A1) = (Tu(n) X (SLm2 X SLl), A1®(A183A1))
with mgo > 2 is a FP. When it contains SH,, 4, as in the proof of Lemma 2.8, it is enough
to show that, forn —2>2¢g > 0and mqy >t > 0,

(1) M(2q,ma —t) & V(29) 2 (W,z) — («AW'D, aAz)

(2) M(n —2q,t) ®V(n—2q) 3 (S,y) = (aBS'C, aBy)

are FPs at the same time, where « € GLy, A € Spg, D € GL(ma—t), B € ST,(n—2q),C €
GL; and (det C)(det D) = 1. If t = 0, then D € SL(mg) and (1) is a FP by 3 of Lemma
2.6 since mg > 2. (2) becomes just y — aBy which is a FP even when a = 1 since
n—2q > 2. If t = mg, then C € SL(mgy) and (1) becomes just x — oAz which is a
FP where o does not vanish. So (2) is a FP by 2 of Lemma 2.7. Finally assume that
my >t > 0. First we deal with the case mg > 3. (1) is a FP (cf. 1 of Lemma 2.6) and
the restriction of scalars occurs in the following 3 cases (a)-(c). (a) When 2¢g > my —t =
even, we have det(aD) = 1 (and hence det C = o™7?) in a generic isotropy subgroup.
If we put (aBS!C,aBy) = (B'S'C’, o/ B'y) with C' € SL;, we have det B’ = (a/)" with
r = ma(n — 29)/(t — m2). Hence (2) is reduced to 5 of Lemma 2.7. If t =1, (2) is a FP
forn —2¢ > 3. If t =1 and n — 2q = 2, as we see in the proof of Proposition 2.24, we
can replace T,,(2) to GLy with the same determinant, and hence (2) is a FP. Assume that
t > 2. Then we have r # —(n — 2q) since otherwise we have ¢ = 0, a contradiction. When
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n—2q = t, then clearly r # 0. When n—2q = t+1, then r # —1 since otherwise mo = —1,
a contradiction. Hence (2) is a FP by 5 of Lemma 2.7. (b) When 2¢ > mg —t+ 1 = even,
we have adet(aD) = 1 (and hence det C = o™27**1) in a generic isotropy subgroup. Then
(2) is reduced to 5 of Lemma 2.7 with r = (m2+1)(n—2q)/(t—mg—1). Whent =1,itisa
FP by similar argument as (a). When ¢ > 2, we have r # —(n—2gq) since otherwise we have
t =0. When n—2q = t, clearly r # 0. When n—2q = ¢t+1, we have r # —1 since otherwise
mg = —2. Hence (2) is a FP. (¢) When 2q > mgy — ¢t + 1 = even, we have det aD = o (and
hence det C' = a™27*"1) in the isotropy subgroup at (e1,...,€ut1,€q+1,- - - €qtus Cutl) €
M (2q, ma—t) with mg—t = 2u+1. If my—t = 1, we have ¢t > 2 since mg > 3. Therefore (2)
is a FP by 2 of Lemma 2.7. Assume that mg—t > 3. Put (aBS*C, aBy) = (B'S!C’, &’ B'y)
with C' € SL;. Then we have det B’ = (/)" with 7 = (n — 2q)(mg — 1)/(1 + t — ma).
Hence (2) reduces to 5 of Lemma 2.7. When ¢t > 2, we have 7 # 0,—(n — 2¢q) and if
r = —1, we have n — 2q # ¢ + 1 since otherwise tmy = 0, a contradiction. Hence (2) is a
FP for ¢ > 2. Whent =1, (2)isa FP for n —2¢ > 3. If n — 2¢ = 2, we have ¢ = my
and B € ST,(2) can be replaced by B € SLy by Proposition 1.11. Since my — ¢ > 3, we
have det C # 1, and (2) is a FP. Finally consider the case ma =2 >t > 0, ie, t = 1.
Put Hy = {(%4' J5) | A € Spg, B € ST,(n —2q), € GL1} = GL1 X SHy 4. It is enough
to show that (Hg x (SLa x SL1),A1 ® (A1 B A1)) is a FP. By a direct calculation of the
isotropy subalgebra of (Hy; x SLa, A1 @ A1) at (e;,e1) with n > i > 2g + 1, each Hy-part
contains {(g *,) @ (alzg—2 + A) & 2azd *) | A € Lie(Spg-1), B € Lie(Ty(n — 2q — 1))
with tr B = (n — 2q)a + d}. Hence one can easily see that it is a FP. 1

3 A list

Theorem 3.1. If we restrict the scalar multiplications of ((GSPm, X GLm, X GL1) X
GLp, (A1 BAIBHA) ® Ay) withmy > 2 and n > 4, then it is a FP if and only if it is one
of the following case.

1. ((GSpml X G L, % SLl) X SLy, (Al HA H Al) K A]) with my > 2, n > 4.

2. ((GSpml X SLm2 X GLl) X SLn, (Al EEA] EBAl) ®A1) (m1 > 2, n> 4) with mo >N
orn = odd > my orn > mg = odd or n > max{2m, ma}.

3. ((GSpmy X SLypy x SL1) X SLp, (A BALBA) ®A1) (m1 > 2, n>4) withmg >n
or n > max{2m; +1,mg + 1(> 3)}.

4. ((Spml X GLm2 X GLl) X SL,, (Al BA EBAl) ®A1) (ml >2, n> 4) with 2m; <n
orn = odd.

5. ((SPmy XG Ly X SL1) X SLy, (A{BA1BA))®Ay) (m1 > 2, n > 4) withn > 2my+1.
6. ((Spm1 X GLm2 X SLl) x GL,, (A1 EA B Al) ® A1) with mp > 2, n > 4.
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((Spm1 X SLp, X SLl) X GL,, (A1 B Ay HﬂA]) ®A1) (m1 >2, n>4) withmy >n
ormg > 2mq + 1.

((Spmy X SLmy X SL1) X SLy, (A1BA1BA)®A;) (m1 > 2, n >4) withmg >n >
2mi+1 or (n >2my+ma+1 and ma > 2my + 1).

((Spml x SLm2 X GLl) X GLn, (A1 as] A1 H A]) ® Al) (m1 > 2, n> 4) with mo >n
or mg > 2mq or mo = odd.

(((GL] X Spml) X SLm2 X SLl) X GLn, ((Al ®A1) BﬂAl EA])@Al) (m1 > 2, n > 4)
with mg > 2.

(((GL1 x Sppmy x SL1) X SLm,) X SLy, (A1 @ (A BHA)HA) ® A1) (M > 2, n>4)
with mg >n or (n >mg andn > 2m; +1).

((SPmy X SLmy X GL1) X SLp, (A1 B Ay B A1) ® A1) (mq > 2, n > 4) with one of
the following conditions:

(a) mg >n > 2my or mg >n = odd,

(b) n > 2my +msg and (Mg > 2my or my = odd),

(c) 2my + mg > n > ma, and n > 2m; + 1, and n # mz mod 2, and (mg > 2my

or mg = odd).

((GL1 X (Spmy X SLmy,) X SL1) X SLp, (A @ (A1 BA)BA) Q@A) (m1 >2,n>4)
with one of the following conditions:

(a) ma > n,

(b) my =n>2my +1,

(¢) n>mg and n > 2m; +1 and (mz > 2my or my = odd).
((Sprm X G'Ll X (SLmz X SLl)) X SLn; (Al EB(AI ® (Al EE'AI))) ®A1) (m1 2 Q’n Z 4)
with one of the following conditions:

(a) ma > n = even > 2my,

(b) ma >n = odd,

(c) n>mg >2 andn>2my+ 1.
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