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Abstract

  In this paper, we give the detailed proof of a classification of finite rcductive prc-
homogeneous vector spaces of type ((Sp., Å~ GLm, Å~ GLi) Å~ GLn, (Ai D Ai M Ai) op
Ai)(mi 2 2,n 2 4) under various restricted scalar multiplications, which are omitted
in [KKMOT]. They are related with hypergeometric functions [O].

Introduction

   Let G be a connected linear algebraic group, V a finite dimensional vector space (dim

V 2 1), and p a rational representation of G on V, all defined over the complex numt)er
field C. If V has a Zariski-dense G-orbit, we call a triplet (G,p,V) a preho7nogeneous
vector space (abbrev. PV). When there is no confusion, we sometimes write (G, p) instead
of (G, p, V). When G is reductive, we call it a reductive PV. For any rational representation

p : G -> GL(V) with finitely many orbits, (G,p, V) must be a PV. Such a PV is called a
finite PV (abbrev. FP). We would like to classify all reductive FPs of type (G Å~ GLn,pX

Ai)(n ) 2) which are related with hypergeometric functions. All reductive FPs with
full scalar multiplications are comp}etely classified in [KKY]. However if we restrict the

scalar multiplications, then the diMculty of different type arises, and only the special cases

of the restriction of acalar multiplications are studied. In [KKMOT], all reductive FPs
of ((G Å~ GLi) Å~ SL., (p op Ai) CD Ai,(V(m) op V(1)) XV(n)) with n 2 2 under various
restricted scalar multip}ications are completely classified, but the main part of the proof

of the most complicated type ((Sp., Å~ GL., Å~ GLi) Å~ GLn, (Ai EB Ai M Ai) X Ai) with
mi ) 2 and n ) 4 are not written in details. In this paper, we give the complete proof
for this omitted case. Note that such FPs with mi = 1 (i.e., Spi = SL2)(resp. n == 2,3)
are classified in [Kal (resp. Theore-m 3.11 in [KKMOT]). We denote t,he represent,at,ion
(Ai op 1 ci9 1) ([D (1 <29 Ai X 1) CD (1 X 1 XAi) of Sp., Å~ GL., Å~ GLi by Ai EE Ai EI] Ai.

   In Section 1, we give the preliminaries. In particular, we review some basic facts
related with Grassmann variety and the orbits. We also give the orbital decomposition of
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(Spm Å~ GLn,Ai X Ai) and the isotropy subalgebra of each orbit in the convenient form
for later use.

   In Section 2, we quote Theorems in [KKMOT], by which we classify FPs of type
((Spmi Å~ GLm2 Å~ CLi) Å~ CLn, (Ai EH Ai EI] Ai)XAi) with mi ) 2 and n 2 4 under various
restricted scalar multiplications.

   In Section 3, we give the list of finite prehomogeneous vector spaces of type ((Spm, Å~

GLm2 Å~ GLi) Å~ GLn, (Ai ff Ai ee Ai)XAi) with mi ) 2 and n ) 4 under various restricted
scalar multiplications.

Notation We denote Åën by V(n). As usual, C stands for the field of complex numbers.
We denote by ei•") the i-th fundamental vector in Cn. We often write e, for simplicity. For

positive integers m, n, we denote by M(m, n) the totality of m Å~n matrices over C. If m =
n, we simply write M(n) instead of M(n, n). We also use the notations M(m, n)' = {X E
M(m, n) l rankX == min{m, n}} and M(m, n)" = {X E M(m, n) l rankX < min{m, n}}.
For r< n, we put Mh,. = {(XIO) EM(m,n) IXE M(m,r)}. We denote by I. (or
I(n)) the identity matrix of size n. We denote by tA the transposed matrix of a matrix
A. Two triplets are called isomorphic and denoted by (G,p, V) ;! (G', p', V') if there exits

a group isomorphism u : p(G) --ÅÄ p'(G) and an isomorphism T : V --> V' of vector spaces
satisfying T(p(g)(v)) =: (ap(g))T(v) for all g E G and v E V.

   We denote by GLn (resp. SLn, SO., Spin., Sp., (G2), E6, E7) the general linear group
{X E M(n)l detX l O} (resp. the special linear group {X E GL.1 detX == 1}, the special
orthogonal group {X E SL.l tXX = I.}, the spin group, the symplectic group {X E
GL2nl tXJnX = Jn} where J. = (-9. io"), exceptional algebraic groups (G2),E6,E7).

When the expression of n is complicated, we also write GL(n) instead of GLn etc. Further
we denote by GSp. the general symplectic group {X E GL2. 1 tXJnX == xJnwith x E
GLi} = {cvA l a E GLi,A E Sp.} :: (GLi Å~ Sp.)/{(1,I2.),(-1,-I2.)}. We denote by
T.(n) the group of all nonsingular upper matrices and put ST.(n) = T.,(n) n SL.. Then
we write H.,, =: {(BS) E GL. I A E Sp,,B E T.(n - 2q),C E M(2q,n- 2q)} and
SHn,q = SLn n Hn,q with 2q S n.

   We denote by Ai the standard representation of CL. on V(n). For a subgroup H
of GL., the restriction AilH is also simply denoted by Ai. More generally, Ak (k ==
1,...,r) denotes the fundamental irreducible representation of a simple algebraic group
of rank r. We have (GSp.,Ai) =N (GLi Å~ Sp.,Ai oo Ai). In general, we denote by p*
the dual representation of a rational representation p. It is known that (H, o, V) is a FP

if and only if (H,a*,V*) is a FP for any algebraic group H, not necessari1.y reductive
(see [P]). Hence (G,pS") (D ••• (D pS*)) is a FP if and only if (G,pi O••• (D pi) is a FP

where p(*) implies p or its dual p*. Also if Gi and G2 are reductive, then we have
(Gi Å~ G2,pi") XpS")) ii! (Gi Å~ G2,pi Xp2). Using these facts and by the form of FPs (see

(KKYI), it is not necessary to consider the dual representation as far as we dea} with FPs.

For a representation p:G --> GL(V) and apoint v of V, we denote by G. the isotropy
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subgroup {g E G 1 p(g)v = v} at v.

1 Preliminaries

Proposition 1.1. ([KKMOT, Proposition 1.1]) Assume that (H Å~ GL.,p<g) Ai) is a FP.
Then (HÅ~SLn, pQAi) is also a FP of and onZy of the GL.-part of the connected component
of the isotropy s2Lbgroup of each orbit is not contained in SL.. in this case, they have the

same orbits.

Proposition 1.2. ([KKMOT, Proposition 1.2]) Let a : H -> GL. be a representation of
an algebraic groiLp H.

  1. Jfm < n, then (H Å~ SL.,a op Ai,M(m,n)) is a FP of and only if (H Å~ GL.,aX
     Ai,M(m,n)) is a FP. In this case, they have the same orbits.

  2. ifm ) n and the number of orbits ofHÅ~ SL. in M(m,n)' is finite, then (H Å~
     SL.,a op Ai,M(m,n)) is a FP if and onZy of (H Å~ GL.,u op Ai,M(m, n)) is a FP.
     in this case, they have the same orbits.

   Next we shall review the relation between the Grassmann variety and finite prehomo-
geneity ([SK, Section 8]).

Definition 1.3. Let V be an m-dimensional vector space. For any n satisfying m ) n ) O,
Grassn(V) = {WlW is an n-dimensional subspace of V} is an n(m-n)-dimensional variety
which is called the Grassmann variety.

   Then the fo11owing assertion holds.

Proposition 1.4. ([SK, Proposition 1 in Section 8]) (Correspondence of orbits). Let G
be any algebTaic group. FoT m l}r n }lr 1, and for any representation p : G - GL., con-
sider a triplet (G Å~ CL., pop Ai, M(m, n)) and a triplet (G, p, UZ=oGrassk(V(m))) withozLt

assiLming the prehomogeneity. Then G Å~ GL.-orbits in M(m,n) correspond bijectively to
G-orbits in Un..oGrassk(V(m)).

   In particular, when we assume a number of G Å~ GL.-orbits on M(m,n) is finite,
also a number of G-orbits on UZ=oGrassk(V(m)) is finite. Moreover for any t satisfying
n > t 2 1, a number of G-orbits on Utk=oGrassk(V(m)) is finite. Therefore a number
of G Å~ GLt-orbits on M(m,t) is finite. In genera}, if an irreducible algebraic variety W

is decomposed into finitely many orbits by the action of a algebraic group H, VV has a
Zarisaki dense H-orbit. Hence the following Lemma is obtained, which is fundamental for
a classification of FPs.
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Lemma 1.5. ([KKMOT, Lemma 1.3]) Let C be any algebraic gro2tp, not necessarily re-
dztctive, and p its representation, not neeessaTily irreducible.

  1. Form>n2 2, if (G Å~ GL.,pop Ai,V(m) XV(n)) is a FP, then a tTiplet (G Å~
    CLk,p (D Ai,V(m) XV(k)) is also a FP for any k satisfying n ) k ) 1.

  2. Forn)m >- 2, of (G Å~GL.,pXAi,V(m)XV(n)) is a FP, then a triplet (GÅ~
    GLk,pXAi,V(m) op V(k)) is also a FP for any k.

Remark 1.6. (Castling transform) (ISK, Proposition 7 in section 2]) Let p be a represen-

tation of an algebraic group H on an m-dimensional vector space V. For any n satisfying
m > n ) 1, the following conditions are equivalent.

  1. (H Å~ GL.,p CD Ai,V&V(n)) is a PV.

  2. (H Å~ CL.m.,p* X Ai,VX V(m - n)) is a PV.

  3• (H Å~ GLm-n,p op Ai,V op V(m - n)) is a PV if H is reductive.

  We say the triplets 1,2 (resp. 1,3if H is reductive) in Remark 1.6 are castling
transforms of each other. This castling transformation is essential for the classification of

irreducible PVs. However, in general, a castling transform of a FP is not necessarily a FP
although it is a PV. For example, a castling transform (SL2 Å~ GL3, 3Ai op Ai, V(4) op V(3))

of a FP (GL2, 3Ai, V(4)) is a PV, but it is not a FP. If it is a FP, then by 1 of Lemma 1.5,

(SL2 Å~ aL2, 3Ai op Ai, V(4) X V(2)) must be a PV, which is a contradiction by dimension

reason.

Proposition 1.7. ([KKMOT, Proposition 1.4]) if (G Å~ GL.,pXAi) with n ) 2 is a
FP, then we have p= pi +•••+pk with k = 1,2,3 where pi,...,pk are irrediLcible
representations.

  Here we review the symplectic group Sp.. The action Ai of Sp. on V(2m) is given
by x F> Ax (A E Sp., x E V(2m)) which satisfies <Ax,Ay> = <x,y> where <.T,y> ==`xJy.

Note that this condition is equivalent to A E Spm.

Lemma 1.8. ([K, Lemma 7.49]) Let vi,...,v. and ?Li,...,u. be linearly independent
elements of V(2m) satisfying <vi,vi•> = <iLi,uj•> for i,o' = 1,...,r. Then there exists
A E Spm satisfying u, = Avi (i = 1, . . . , r).

  Now consider the action Ai Q Ai of Sp. Å~ GL. on M(2m,n) given by X F-> AXtB
for (A,B) E Spm Å~ CL. and X E M(2m,n). Note that this is essentially the same as
the action Ai QAi of GSpm Å~ SL. on M(2m,n) given by X F> AXtB for (A,B) E
GSpm Å~ SLn and X E M(2m,n). It is clear that rankX is invariant under the action
of the group. Since tXJX e t(AXtB)J(AXtB) = B(`XJX)tB, rank(tX,JX) is also
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invariant. Since tXJX is an alternating matrix, its rank is always even. The condition
(rankX, rank tXJX) l (rank Y, rank tYJY) implies that X and Y do not belong to the
same orbit. We shall show the converse.

Proposition 1.9. ([KKMOT, Proposition 1.5]) (The orbital decomposition of (Sp. Å~
GLn, Ai opAi)) lfX, Y E M(2m, n) satisfy rankX == raRkY andrank `LXJX =: rank CYJY,
then we have Y == AXtB for some (A,B) E Sp. Å~ GL.. Hence the orbits of (Spm Å~
GLn,Ai XAi,M(2m,n)) are given by

0p,q = {X EM(2m,n) l rankX= p+q, rank `XJX == 2q}

with m 2p2 q ) O andn 2p+q. The orbit Op,g is represented by Xp,q

M(2m,n) where IS = (IoP) EM(m,p) and I6 = (Ioq) E M(m, q).

=( I'
p

o
o
i6

o
o
)E

  Now we shall calculate the isotropy subalgebra at Xp,q.
given by Lie(Spm) = {(B ?.) l A E M(m),B,C G Sym(m)}
the block size (q,p - q, m - p, q, p - q, m - p) as follows:

[I]he Lie algebra of Sp. is

. We divide this matrix to

A-=

Al A12A13 Bl B12 B13
A21 A2 A23 tB12 B2 B23
A31 A32 A3 tB13 tB23 B3
Cl C12 C13 -tAl -tA21 -tA31

tC12 C2 C23 -tA12 -tA2 -tA32
tC13tC23 C3 -tA13 -tA23 -tA3

E Lie(Spm)•

Similar}y we divide Xp,q to the block size (q,p-q, m-p, q, p-q, m-p) Å~ (q,p-q, q, n-p-q)

and also divide D E Lie(GL.)(= M(n)) to the block size (q,p-q,q,n-p-q) as follows:

Xp,q =

J, o oo
O Ip-, OO

oo oo
oo I,o
oo oo
oo oo

G M(2m, n),D ==

Dl D12 D13 D14
D21 D2 D23 D24
D31 D32 D3 D34
D41 D42 D43 D4

E Lie(GLn)•
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  Then AX,,, + X,,,(`D) == O if and only if (A,D) ==

         Al OO BI B12 O
         A5'Ao2AA2,3`Bo'2tBB,2, BB2,3 (-b"'Ztt"A2,'"bC'Bi2N

         CI O O -tAl -tA21 O ' l-tBl -B12 Al D341 '
         OOOO -tA, O NO O O D,/
         O O C3 O -tA23 -tA3
  By changing the rows and columns from (1,...,6) to (2, 1,4, 3, 6, 5) and from (1,2, 3,4)
to (1,3,2,4), we obtain the following result.

Proposition 1.10. (cf.[KKMOT, Proposition 1.6]) The isotropy subalgebra of (Spm x
GLn, Ai X Ai) at Xp,q E M(2m, n) (m ) p ) q ) O, n ) p+ q) is isomorp hic to gp,q =
{(A, D)} where

         A2A21 tB12 A23 B23 B2
         O AI Bi O O B12 /-tAl -tCl -tA21 Di4N
     A- O. C.i -bAi.O, .O, 71i12,i ,D- t-bBi A.i IB,X,2B;11

         OO O C3 -tA3-tA23 No o o D41
         OO O O O -tA2
with the bZock' size (p - q, q, q, m - p, m - p,p - q) Å~ (q, q,p - q, n - p - q). Hence the

isotTopy subgrozLp Gp,q at Xp,q is locally isomorphic to

         (CL (p - q) Å~ GL(n -p- q) Å~ Sp, Å~ Sp(m -p)) • U(k)

where k == (p - q) (2m - 2p + 2q) + 5(p - q) (p - q+ 1) + (p + q) (n -p- q).

  Similarly the isotropuy subalgebra of (GSpm Å~ SL.,Ai XAi,M(2m,n)) at Xp,q (m 2
p 2 q 2 O, n 2 p+ q) is isomo rphic to gfo,q = {(A', D')} where A' == al2. + A, D' =
(-a -t Ai        -tCl              -tA21 D14N
l -5B' -oro+A' -.-B-Z2A, B;2i wzthdv==isl.:a,(trD4-trA2)•

No o o D,7
HereweputH.,,-

(SoPq MT(.2(q.'".-2q2)q)),Hfi,. (Sgm M62LM(Hn--2,Ilil]Z)),

sH.,,-
(S.Pq ilgSZ9(hn--,Zq))),sHx,.==(Sgm MgZII]i"ff-,,Zl]Z)),

Hh,,-sL.fi(GSoPq Mf.2(q.'n-m2g2)q)),and(Hh.)*==sL.n(GSoPm M62LM(a"--2,Z3Z) )•



A CLASSIFICATION OF SOME PV'S RELATED WITH HGF'S 95

Proposition 1.11. ([KKMOT, Proposition 1.7])

 1. The GL. (resp. SL.)-part of an isotropy subgroiLp of (Sp. Å~ GLn,Ai X Ai)(resp.
   (Sp. Å~SL., Ai opAi)) of any orbit contains a szebgroiLp isomorphic to H.,q(resp. SH.,q)

   for some q satisfying m2q andn) 2q ) O. ifn> 27n == 2q, we can replace
   H.,.(resp. SH.,m) by Hfi,.(resp. SHA,.).

 2. The (GLi Å~ SL.)-part of an isotropy szebgroup of (GLi Å~ Spm Å~ SLn, Ai XAi op Ai)
   contains a subgroiLp isomorphic to {(a,(`i'oiAS)) l a E GLi,A E Spq,B E Tu,(n -
   2q),det B == or2q,C E M(2q,n- 2q)} for some q satisfying m 2 q ana n > 2q > O.

 3. The SL.-part of an isotropy siLbgTozep of (GSp. Å~ SL.,Ai op Ai) contains Hh,q. if

   n > 2m = 2q, we can replace HA,. by (Hh,m)*•

2 Aclassification

 In this section, we classify FPs of type ((Spm, Å~GLm, Å~GLi) Å~GLn, (Ai EEAi EBAi)8)Ai)

with mi ) 2 and n ) 4 under various restricted scalar multiplications. In the following
Theorem 2.1 to Theorem 2.3, we gather the known results which we will use for our
classification.

Theorem 2.1. ([Kac, Theorem 2; SK, Section 8])

 1. (SL. Å~ GL.,Ai XAi,V(m) C8} V(n)) with m 2 1 andn 2 2,

 2. (SLm Å~ SL., Ai X Ai, V(m) X V(n)) with m l n and n ) 2,

 9• (Spm Å~ GL.,Ai op Ai) is a FP of and only ofm2 1 and n2 1.

 4• (Spm Å~ SLn,Ai XAi) is a FP of and only if 2m <n orn= odd () 1).

Theorem 2.2. (IKKY])

 lt ((GLm, Å~ CLm,) Å~ GLn, (Ai EE Ai) •X Ai) is a FP of and only of mi }i) 1 andn2 1.

 2• ((Spm, Å~ GLm,) Å~ GLn,(Ai MAi) oo Ai) is a FP if and onZy lf mi 2 1 andn) 1.

Theorem 2.3. ([KKMOT, Theorem 2.3])

 1• ((SLm, Å~ GLm,) Å~ SL., (Ai EE Ai) X'• Ai) (n 2 2) is a FP of and only of mi 7e n.

 2• ((SLm, Å~ SL.,) Å~ GLn,(Ai EE Ai)XAi) (n m> 2) is a FP of and only ifmi l m2 or

   ml == m2 > n.
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 9. ((SLm, Å~ SL.,) Å~ SL., (Ai EE Ai) C8) Ai) (n 2 2) is a FP if and only if (n 7C mi,n 7E

  m2,nlml +m2 ,ml fm2) or with ml == m2 > n.

 4• ((GSpm, Å~ SLm2)Å~ SLn, (Ai EH Ai) op Ai) (mi ) 2, n2 2) is a FP if and only of
  m2 > n or n = odd > m2 or n > m2 == odd or n > max{2mi, m2}.

 5• ((Spm, Å~ GLm,) Å~ SLn, (Ai EH Ai) op Ai) (7ni ) 2, n 2 2) is a FP if and only of

  n>2mi orn== odd.
 6• ((Spm, Å~ SLm,)Å~ GLn,(Ai Ee Ai) X Ai) (mi ) 2, n) 2) is a FP if and only of
  m2 >n or m2 > 2mi or m2 -- odd.

 7• ((Spm, Å~ SLm,) Å~ SLn, (Ai EE Ai)XAi) (mi ) 2, n2 2) is a FP if and only if one
  of the following conditions holds.

   (a? m2 >n>2mi or m2 >n= odd,
   (b? n> 2mi +m2 and (m2 > 2mi or m2 = odd),

   (c? 2mi + m2 >n> m2, (m2 > 2mi or m2 = odd), n> 2mi +1 andnl m2
    mod 2.
 Here we put S(ii,...,it) == Z)Z=i Ei,,k E M(n,m) (n ) ii > ••• > it 2 1) where
Ei,j denotes the matrix unit in M(n,m). We also write S(ii,•••,it)' = 2tk=i ES,,k E

M(n,t) (n 2 ii > ••• > it ) 1) where ES•"• denotes the matrix unit in M(n,t). Hence we
have S(ii, . . . , it) = (S(ii, . . . , it)' l O) E M(n, m).

Lemma 2.4. ([KKMOT, Lemma 2.4])

 1. For any q and m,(Sp, Å~ GL.,Ai (8) Ai) -N- (GSp, Å~ SL.,Ai C8) Ai) is a FP while
  (Spq Å~ SLm,Ai CD Ai) is a FP of and only if 2q <m orm = odd.

 2. For any m and n, (ST.(n) Å~ GLm,Ai op Ai,M(n,m)) ;! (Tu,(n) Å~ SLm,Ai op
  Ai,M(n,m)) -N- (T.(n) Å~ GLm,Ai QAi,,M(n,m)) is a FP with the orbits Tep-
  resented by S(ii,...,it) E M(n, 7n) (n 2 ii > ••• > it 2 1).

 3. Ifm 7E n, then a tTiplet (ST.(n) Å~ SL.,Ai op Ai,M(n,m)) is aZso a FP Mth the
  orbits rep resented by S(ii, . . . , it) E M(n, m) (n 2 ii > • • • > it >- 1)•

 4. For any m,n and q with n> 2q > O, a triplet (SH.,q Å~ GLm,Ai XAi,M(n,m)) is
  a Fp where sH.,, = (SoPq ilgS2.q(h"--22qq))).

 5. For any m,n andq with n> 2q >O where 2q <m orm == odd, a triplet (Hn,q Å~
  SLm,Ai xAi,M(n,m)) is a Fp where H.,, = (SoPq Mf.2(9.' "-"2q2)q))
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 6. For any m,n and q with n > 2q > O and n # m, a triplet (Hh,q Å~ SLm,Ai <29
   Ai,M(n,m)) is a Fp where HA,, = sL. fi (GgPq Mf.2(q.' "m-2q2)q)).

 7. For m,n and q with n > 2q > O and n l m mod 2 where 2q < m or m = odd, a
   triplet (SH.,q Å~ SL.,Ai X Ai,M(n, m)) is a FP.

Theorem 2.5. ([KKY])
((Spm, Å~ GLm, Å~ GLi) Å~ GLn, (Ai EB Ai EE Ai) op Ai) is a FP of and only of mi ) 1 and

n)1.
  When we classify FPs of type ((Sp., Å~ GL., Å~ GLi) Å~ GL., (Ai EE Ai EB Ai) (>9 Ai) with

mi ) 2 and n ) 4 under various restricted scalar multiplications, the fol}owing lemmas
are essential.

Lemma 2.6. ([KKMOT, Lemma 3.3])

 1. (Sp. Å~ (GL. Å~ SLi),Ai X (Ai EB Ai))
   (2i: (Sp. Å~ GL.,Ai X• Ai + Ai oo 1)) is a FP.

 2• (Spm Å~ (SLn Å~ GLi),Ai X(AiMAi)) is a FP if and only ifn> 2m orn= odd.
   More generally, let Sk be a subgroitp of GSp. Å~ (SL. Å~ GLi) defined by Sk =
   {(A,B, or) l or E GLi,A E GSp.,detA == ork,B E SL.}. Then (Sk,Ai X (Ai EE Ai)),
   i•e., M(2m, n) O V(2m) D (X, y) F-> (AX`B, aAy) == (ak/2MA'xtB, cy(2m+k)/2mAiy)

   with (A,B, or) E Sk and A' E SP., is a FP if and only if (n = 1; kf -m) or
   (2m )n == even; kl O) oT (2m >n= odd ) 3; k l 2m/(n - 1),-27n/(n+ 1)) oT

   n> 2m.
 3. (GSp. Å~ (SLn Å~ SLi),Ai X (Ai H] Ai)) is a FP if and only ifn)2. .

 4• (Spm Å~ (SLn Å~ SLi),Ai oo (Ai EH Ai)) is a FP of and only ifn> 2m.

Lemma 2.7. ([KKMOT, Lemma 3.4])

 1. (Tu(m) Å~ (GLn Å~ GLi)7Ai op (Ai NAi))
   ;! (ST.(m) Å~ (GLn Å~ GLi), Ai Q (Ai EB Ai))
   2)l (T.(m) Å~ (GL. Å~ SLi),Ai op (Ai Efi Ai))
   !! (T.(m) Å~ (SL. Å~ GLi),Ai oo (Ai EB Ai)) is a FP.

 2. (T.(m) x (SL. Å~ SLi),Ai op (Ai EB Ai)) is a FP if and only ifn) 2.

 3. (ST.(m) Å~ (GL. Å~ SLi),Ai op (Ai MAi)) is a FP of and only ofm2 3.

 4. (ST.(m) Å~ (SL. Å~ SLi),AiQ(Ai ee Ai)) is a FP if and only ifm) 3,n2 2,mln

   andmtn+1.
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 5. (ST.(m) Å~ (SL. Å~ GLi),Ai X (Ai EE Ai)) is a FP of and only if (n = 1,m2 3) or
   (n ) 2,m l n). More generally, let G. be a subgroup ofT.(m) Å~(SLn Å~CLi) defined
   by G. = {(A,B, or) l a E GLi,A E T.(m),detA= of,B E SL.}. Then (G.,Ai X
   (Ai ee Ai)),i.e., M(m, n) OV(m) ) (X, y) F> (AXtB, aAy) with det aA = aM+T and
   (A,B, a) E G., is a FP if and only if (n =: 1,m) 3) or (n 2 2, rlO, -1, -m) oT
   (n ) 2,r= O; ml n) or (n ) 2,r == -1; mln+ 1) or (n ) 2,r= -m; m) 3).

Lemma 2.8. ([KKMOT, Lemma 3.5])

 1. (HA,, Å~ (GL. Å~ SLi), Ai X (Ai ee Ai)) (n ) 2q ) O) is a FP.

 2. (Hh,, Å~ (SL. Å~ GLi),Ai X (Ai ee Ai)) (n > 2q > O) is a FP ifn> m.

 3• (HA ,, Å~ (SL. x SLi), Ai oo (Ai MAi )) is a FP of n > m+2 ) 5 and n > n- 2q ) 3.

Proposition 2.9. ((GSp., Å~ CL., Å~ SLi) Å~ SL., (Ai EI] Ai EH Ai)XAi) (mi ) 2, n ) 4)
is a FP.

Proof. By Proposition 1.11, the SL.--part of an isotropy subgroup of (GSpm,
Å~ SLn,Ai op Ai) contains HA,q. Hence by 1 of Lemma 2.8, we have our result. I

Proposition 2.10. ((GSp., Å~ SL., Å~ GLi) Å~ SL., (Ai EEAi EEAi) CbAi) (mi ) 2, n ) 4)

is a FP if and only if m2 >n orn= odd > m2 orn> m2 = odd or n> max{2mi,m2}.

Proof. By 4 of Theorem 2.3, these conditions are necessary. If m2 > n, then it is a FP
by Proposition 1.2 and Theorem 2.5. So we may assume that n > m2. By Proposition
1,10, the SL.-part H of aii isotropy subgroup of (GSp., Å~ SL.,Ai oo Ai) of any orbit
contains Sp., (2mi ) n = 2n') or ST.(n) or HA,q (n > 2q > O). By 2 of Lemma 2.6,
(Spn, Å~ (SLm, Å~ GLi),Ai op (Ai EB Ai)) is a FP if and only if (n >) m2 = odd. By 5 of
Lemma2.7, (ST.(n) Å~ (SL., Å~ GLi),Ai CD (Ai EB Ai)) is a FP in our case. By 2 of Lemma
2.8, (HA,, Å~ (SLm, Å~ GLi),Ai op (Ai ee Ai),M(n, m2) OV(n)) is a FP for n > m2. Hence

we obtain our result. 1Proposition 2.11. ((GSp., Å~ SL., Å~ SLi) Å~ SL., (Ai [e Ai EH Ai) op Ai) (mi ) 2, n ) 4)

is a FP if and onZy of m2 > n or n > max{2mi + 1, m2 + 1() 3)}.

Proof. By 3 of [l?heorem 2.3, ((SL., Å~ SLi) Å~ SL., (Ai Efi Ai) •X Ai) is a FP if and only

ifnl 1,nf m2,nl 7n2+1 and m2 t 1. Note that we deal with the case n) 4. If
m2 > n, then it is a FP by Propositions 1.2 and 2.9. So we assume that n > m2 +1 ) 3.
If 2mi 2 n == even (== 2n'), it is a non FP since (Sp., Å~ (SLm, Å~ SLi),Ai X (Ai EE Ai))

with n = 2n' > m2 +1 is a non FP by Lemma 2.6. Now we sbow that it is a non FP
when 2mi +1 2 n = odd. If we put n = 2q+1, the SL.-part of a generic isotropy
subgroup of (GSpm, Å~ SLn,Al QAI) is H == {(C'61 .-"2q) l or C GLI,A E Spq}. We
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show that (H Å~ (SLm, Å~ SLi), Ai X(Ai EBAi)) is a non FP. First assume that m2 = even. If
((i), (?)) E M(n, m2)OV(n) is transfered to (( Xo' ), (?)) by Hx (SL., xSLi), the action

X F> X' is (Spq Å~ SL(m2),Ai XAi) which is a non FP. When m2 = odd, we consider
similarly an element of type ((i9),(?)) with X E M(n - 1,m2 - 1), then the action
X F> X' is (Spq Å~ SL(m2 - 1),Ai XAi) which is a non FP. If n = m2 +2 (resp. m2 == 2),

see Lemma 2.12 (resp. Lemma 2.13). Hence we may assume n > max{2mi+1, m2+2} with
m2 ) 3. In this case, the SL.-part of an isotropy subgroup of (GSp7n, Å~ SLn,Ai op Ai)
of any orbit contains ST.(n) or HA,q (n > n- 2q ) 2) by Proposition 1.11. By 4 of
Lemma 2.7, (ST.(n) Å~ (SL., Å~ SLi), Ai X (Ai EB Ai)) is a FP in our case. If n- 2q ) 3,

(HA,, Å~ SLm2,Ai XAi + Ai Xl,M(n, m2)GV(n)) is a FP by Lemma 2.8. If n- 2q = 2,
we have q = mi and we can replace HA,q by Hh',., by Proposition 1.ll and hence it is a

Lemma 2.12. ((GSp., Å~SL., Å~SLi)Å~SL(m2+2), (Ai MAi EBAi)XAi) with m2 -> 2mi,
is a FP.

Proof. The process of the proof is similar as that of Proposition 2.11. It is enough
to show that (HA,q Å~ (SL., Å~ SLi),Ai X (Ai EB Ai)) is aFP when m2 >t>O and
2q = m2 -t+ 1 since other cases are proved in Lemma 2.8. The number of orbits
related with M(m2 + 2, m2)" is finite by Proposition 1.2. Any point in M(m2 + 2, m2)'

is
 HA,q Å~ SLm2-equivalent to (s(,i,O ,,t) IS6'i) with S(zi, ,zt) EM(t+1,t) and

ISq.i == (I26`i) Since the Hh,q-part of the isotropy subalgebra at this point contains

{(-al2q-2+A) (D (-a,-d .\,) (D (-ao'd b) l A E Lie(Sp,mi),B E Lie(T.(n-2q-1)),trB =

(2q-1)a-d}, it isaFP. I
Lemma 2.13. ((GSp., Å~ SL2 Å~ SLi) Å~ SL., (Ai EE Ai EH Ai) op Ai) with n > 2mi +1, is

a FP.

Proof. Similarly as Lemma 2.12, it is enough to show that (HA,q Å~ (SL2 Å~ SLi),Ai op
(Ai EE Ai)) is a FP when m2 = 2 > t == 1 > O. Any point in M(n, 2)' is transformed to
(ei, ei) (n 2 i >- 2q+1) by HA,q Å~SL2 and the Hh,q-part of the isotropy subalgebra contains

{(g i'd) e (-al2,.2 + A) O (-2g-d b) l A E Lie(Sp,-i),B E Lie(T., (n - 2q - 1)),trB ==

2qa + d}, and hence it is a FP.

Lemma 2.14. Let SHn,q,SHfi,q and H.,q (n > 2q > O) be as in Proposition 1.11.

  1• (SHn,q Å~ (GLm Å~ GLi),Ai (21) (Ai ee Ai)) iS a FPt

  2. (a) (SH.,, Å~ (GL. Å~ SLi),Ai (8} (Ai EE Ai)) is a FP ifn-2q ) 3.
    (b) (SHfi,, Å~ (GL. Å~ SLi), Ai op (Ai EB Ai)) is a FP ifn- 2q ) 2.

1
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  3. (a) (SH.,, Å~ (SL. Å~ GLi),Ai X(Ai NAi)) is a FP ofn --- 2q -> 3, (n-2q >m or

    nlm mod 2) and (m > 2q orm= odd ).
    (b) (SHTfi,, Å~ (SL. Å~ GLi),Ai X (Ai EB Ai)) is a FP ifn-2q ) 2, (n - 2q >m or

    ntm mod 2) and (m > 2q orm == odd ).

  4• (Hn,q Å~ (GLm Å~ SLi),Ai C8} (Ai MAi)) is a FP•

  5• (Hn,q Å~ (SLm Å~ GLi),Ai C8} (Ai ee Ai)) is a FP ifm> 2q orm= odd.

  6. (H.,, Å~ (SL. Å~ SLi), Ai X (Ai Ee Ai)) is a FP ifm> 2q+1.

Proof. Just similarly as in the beginning part of the proof of Lemma 2.8, it is enough to

show that, for m >m t) O,
(1) M(2q,m - t) eV(2q) D (W, x) F> (AW`D, orAx),
(2) M(n - 2q, t) O V(n - 2q) D (S, y) e (BS`C, aBy)

are FPs at the same time where A E Spq,B E ST.(n - 2q) (resp. B E SL(n - 2q) for
SH.',,,, B E T.(n-2q) for H.,,) and the fu11 subgroup of type {((SB),a) l C E GLt,D E

G!L(m -t)} of GLm Å~ GLi (resp. GL. Å~ SLi, SL. Å~ GLi, SL. Å~ SLi) acts. Hence we
have 1 by 1 of Lemmas 2.6 and 2.7. We have2 by 1 of Theorem 2.3, Lemma 2.6 and 3 of
Lemma 2.7.
  For 3, (1) and (2) are related with (det C)(det D) = 1 and a E GLi. First assume that
t == O. ']]hen D E SL. and (1) is a FP by 2 of Lemma 2.6. (2) becomes y e orBy which
is a FP even when a == 1 since n- 2q 2 2. Next assume that t == m. Then C E SLm
and (1) becomes just x F-> orAx which is a FP even when a == 1. If m = 1, (2) for SH.,q
(resp. SHfi,q) is a FP by 5 of Lemma 2.7 (resp. 1 of Theorem 2.3) since n - 2q ) 3 (resp.

n-2g ) 2). Ifm ) 2, (2) is a FP since m ;n-2q. Finally assume that m > t > O. Then
(1) is always a FP (gf. 1 of Lemma 2.6) and the restriction of sca}ars occurs in the fo}lowing

3 cases (a)-(c). (a) When 2q ) m-t = even, we have detD = 1 (and hence detC == 1) in
a generic isotropy subgroup of (1). Then (2) for SH.,q with t = 1 is a FP by 5 of Lemma

2.7 since n-2q 23. Since (n-2q > m(> t) or nfm mod 2) andmEt mod 2 implies
that n- 2q : t, (2) for SH.,q with t 2 2 (resp. SHfi,q with t 2 1) is a FP by 5 of Lemma

2.7 (resp. 1 of Theorem 2.3). (b) When 2q )m-t+1 = even, we have or detD == 1 in a
generic isotropy subgroup of (1). In this case, we have t 2 2 since m > 2q or m == odd. If
we put (BStC, aBy) -- (B'StC',a'B'y) with B' E T.(n-2q), C' E SLt, cy' E GLi, we see
easily that det B' == (al)r with r = (n-2g)/(t-1). Hence this reduces to 5 of Lemma 2.7.

We have T 7! -(n - 2q) since otherwise t = O, a contradiction. When n - 2q == t, we have

r l O. When n-2g = t+1, we have r S -1 since otherwise t = O, a contradiction. Hence
(2) is a FP. (c) When 2q 2 m-t+1 == even(== 2(iL+1)), we have detD == a in the isotropy
subgroup of (1) at (ei,...,eu+i,eq+i,...,eq+u,eu+i), and hence detC == cy-i. If we put
(BStC, orBy) = (B'StC', elB'y) with B' E T.(n - 2q), C' E SLt, cv' E GLi, we see easily

that det B' = (of)' with r = -(n - 2q)/(t + 1). Hence this reduces to 5 of Lemma 2.7.
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When t == 1, (2) is a FP since n- 2g )3 for SH.,g (resp. n- 2q ) 2 for SHfi,q). When
t -> 2, we have rl -(n - 2q) since otherwise t= O, a contradiction. When n- 2q = t,
then clearly r l O. Since n- 2q > m or n f m mod 2, we have n - 2q l t+ 1 = m.
Hence (2) is a FP.

   For-4, (1) and (2) are FPs at the same time by 1 of Lemmas 2.6 and 2.7.
   For 5, (1) and (2) are related with (det C)(det D) = 1 and a E GLi. If t = O, then
D E SL. and (1) is a FP by 2 of Lemma 2.6 since 7n > 2q or m == odd. (2) becomes
y F-> aBy which is a FP even when a = 1. Ift= m, then C E SL. and (2) is aFP by 1 of
Lemma 2.7. (1) becomes just x F--> aAx which is a FP even when dv = 1. Finally assume
that m > t > O. Then (1) is always a FP (cf. 1 of Lemma 2.6) and the restriction of scalars

occurs in the following 3 cases (a)-(c). (a) When 2q ) m-t -- even, we have detD = 1
(and hence det C = 1) in a generic isotropy subgroup of (1). However or remains and (2) is

aFP by 1 of Lemma 2.7. (b) When 2g )m-t+1 == even, we have adetD == 1 in a generic
isotropy subgroup of (1). In this case, we have t 2 2 since m > 2g or m == odd. If we put
(BStC, cMBy) == (B'StC', ofB'y) with B' E T.(n - 2q), C' E SLt, ct' E GLi, we see easily

that det B' = (detB)(a')T with r == (n-2q)/(t- 1). Hence det B' and of have no relation

and (2) is a FP by Lemma 2.7. (c) When 2q 2 m-t+1 = even(= 2(u+1)), we have
det D = dv E GLi in the isotropy subgroup of (1) at (ei,...,eu+i,eq+i,..•,eq+u,eu+i), and
hence detC == ami. If we put (BStC, aBy) == (B'StC',ofB'y) with B' E Tu(n-2q), C' E
SLt, ce' E GLi, we see easily that det B' = (detB)(a')r with r == -(n-2q)/(t+1). Hence
det B' and a' have no relation, and (2) is a FP by 1 of Lemma 2.7.

   For 6, (1) and (2) are related with (det C)(det D) = 1 and a == 1. Ift == O, (1) is a

FP by 4 of Lemma 2.6 since m > 2q + 1. (2) becomes just y e By with B E T.(n - 2g)
which is a FP. If t = m, (2) is a FP by 2 of Lemma 2.7 since m ) 2. (1) becomes just
x H> Ax with A E Spq which is a FP. Finally assume that m > t > O. (1) is always a FP
by 1 of Lemma 2.6, and the restriction of scalars occurs in the following 3 cases (a)-(c).

When (a) 2q ) m-t == even (resp. (b) 2q ) m-t+1 = even), then detD = 1 (and hence
C E SLt) in a generic isotropy subgroup. However since t ) m-2q > 1 in our case, (2) is

aFP by 2 of Lemma 2.7. (c) When 2q 2m-t+1 = even(== 2(zL+1)), we have detD == 1
(and hence C E SLt) in the isotropy subgroup of (1) at (ei, • • • , eu,+i, eq+i, • • • ; eq+u., eu+i)•

Since m-1 > 2q )m-t+1, we have t) 3, and hence (2) is a FP by 2 of Lemma 2.7. 1

Proposition 2.15. ((Sp., Å~ GL., Å~ GLi) Å~ SL., (Ai EB Ai EB Ai)XAi) (mi 2 2, n 2 4)
is a FP if and only if 2mi <n orn == odd.

Proof. By 1 of Lemma 2.4, the condition is necessary. If 2nzi < n or n = odd, the
SL.-part of an isotropy subgroup of (Sp., Å~ SL., Ai X Ai) contains SHn,q (n > 2q 2 O)

by Proposition 1.11. Hence we obtain our result by l of Lemmas 2.7 and 2.14. 1

Proposition 2.16. ((Sp., Å~ GL., Å~ SLi) Å~ SL., (Ai EE Ai MAi)XAi) (mi ) 2, n ) 4)
is a FP of and only ofn> 2mi+1.
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Proof• ((Spm, Å~ SLi) Å~ SLn, (Ai EH Ai) X Ai) is a FP if and only if n > 2mi +1 by 7
of Theorem 2.3. Under this condition, the SLn-part of an isotropy subgroup of (Spm, Å~
SLn,Ai XAi) contaiRs SH.,q (n - 2g ) 3, mi 2 q) or SHfi,m,(n - 2mi == 2,q = mi) by

Proposition 1.ll. Hence we obtain our result by 2 of Lemma 2.14 1

Proposition 2.17. ((Sp., Å~ SL., Å~ GLi) Å~ SL., (Ai EB Ai NAi) C9 Ai) (mi ) 2, n ) 4)

is a FP of and only if one of the following conditions hoZds.

  1. m2 >n> 2mi or m2 >n= odd,

  2. n> 2mi + m2 and (m2 > 2mi or m2 == odd),

  3. 2mi+ m2 >n> m2, (m2 > 2mi or m2 =odd), n>2mi+1 andnf m2 mod 2.

Proof. By 7 of Theorem 2.3, if it is a FP, these conditions are necessary. Assume that
m2 > n. Then by Propositions l.2 and 2.15, it is a FP if and only if n > 2mi or n = odd.
Now assume that the condition 2 or 3 is satisfied. By Proposition 1.11, the SLn-part of
an isotropy subgroup of (Sp., Å~ SL.,Ai X Ai) contains ST.(n) or SH.,q (n > 2q > O)
or SHA,. (n -2q == 2 and q = mi). By 5 of Lemma 2.7, (ST.(n) Å~ (SLm, x GLi),Ai op
(Ai EB Ai)) is a FP in our case. The condition 2 or 3 implies the condition in 3 of Lemma

2,14, and hence we have our result. 1
Proposition 2.18. ((Sp., Å~ GL., Å~ SLi) Å~ GL., (Ai EE Ai EE Ai) cD Ai) (mi ) 2, n ) 4)

is a FP. Note that in this case, it is always FP without the condition on n by Lemma 1.5.
This is isomorphic to ((GLi Å~ (Sp., Å~ SLi) Å~ GL.,) Å~ SLn, (Ai op (Ai EB Ai) MAi) C9 Ai)•

Proof. If the GLn-part of a generic isotropy subgroup contains Sp., (n == 2n') or Tu,(n),

it is a FP by 1 of Lemma 2.6 (resp. by the 3rd form of 1 of Lemma 2.7). Otherwise it
contains H.,q (n > 2q > O) by Proposition 1.11. Then by 4 of Lemma 2.14, we have our

Proposition 2.19. ((Sp., Å~ SL., Å~ GLi) Å~ GL., (Ai EB Ai EH Ai) XAi) (mi 2 2, n 2 4)

is a FP of and only if m2 >n or m2 > 2mi or m2 = odd. Note that this is isomorphic to
((GLi Å~ (Spm, Å~ SL.,) Å~ GLi) Å~ SL., (Ai x (Ai N Ai) ee Ai) op Ai).

Proof. These conditions are necessary by 6 of Theorem 2.3. If m2 > n, it is a FP
by Proposition 1.2. So we ma.y assume that n ) m2 > 2mi or n 2 m2 = odd. By
Proposition 1.11, the GL.-part of an isotropy subgroup of (Spm, Å~ CLn, Ai op Ai) contains

Spn, (2mi )n= 2n'),Tu(n) or H.,q (n > 2q > O). Hence by 2 of Lemma 2.6, 1 of Lemma

2.7 and5of Leinma 2.14, we have our result. -
Proposition 2.20. ((Sp., Å~ SL., Å~ SLi) Å~ GL., (Ai EE Ai EE Ai) XAi) (mi ) 2, n 2 4)

is a FP of and only of m2 >n or m2 > 2mi +1.
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Proof. First assume that n 2 7n2 and 2mi + 1 ) 7n2. Then the GLn-part of the isotropy
subgroup of (SLm, Å~ GLn,Ai X Ai,7Vl(m2,n)) at (I.,l O) is H == (SL6M2):). Then

(Sp., Å~ SLi) Å~H acts on {(Xl O) E M(2mi +1,n) lX E M(2mi + 1,m2)} as ((Spm, Å~
SLi)Å~SLm,, (Ai EeAi)opAi) which is a non FP in our case by 7 ofTheorem 2.3. If m2 > n,

then by Propositions 1.2 and 2.18, it is a FP. So we may assume that n ) m2 > 2mi + 1.
Then, by Proposition 1.11, the GLn-part of an isotropy subgroup of (Spm, x CLn, Ai XAi)
contains T.(n) or H.,q (n > 2g > O). Since m2 ) 2, (T.(n) Å~(SLm, Å~SLi),Ai op (Ai eeAi))

is a FP by 2 of Lemma 2.7. Since m2 > 2mi+1 2 2q +1, we have our result b.y 6 of

Proposition 2.21. ((Sp., Å~ SL., Å~ SLi) Å~ SL., (Ai EB Ai MAi)XAi) (mi >- 2, n ) 4)
is a FP of and only of m2 >n> 2mi +1 or (n> 2mi + m2 +1 and m2 > 2mi + 1).

Proof. Assume that m2 > n. Then by Propositions 1.2 and 2.16, it is a FP if and
only if n > 2mi + 1. If n == m2, it is a non FP since (SL., Å~ SLn,Ai X Ai) is a non
FP. Hence we assume that n > m2. We shall show that if 2mi + m2 + 1 ) n(> m2)i
it is a non FP. If n : 2mi + m2 +1 or n = 2mi + m2, it is clearly a non FP since
(Spmi Å~ SLm2) C SL2mi+m2 etc. Hence we may assume that n> m2 >n-2mi. Then
there exists q satisfying n- 2q = m2 or n- 2q == m2 + 1 (mi ) q 2 O). The SL.-part of
some isotropy subgroup of (Spm, Å~ SLn, Ai op Ai) is contained in SHfi,q = ( SPo(q) sL(.'-2q) )

by Proposition 1.10. Then (SHA,, Å~ (SL., Å~ SLi), Ai •X (Ai MAi) (n-2q == m2 or m2+i)

is a non FP. Hence we may assume that n > 2mi +m2 +1. Then by Propositions 1.2 and

2.20, we obtain our result. -
Proposition 2.22. ((CSp., Å~ SL., Å~ SLi) Å~ GL., (Ai H] Ai EB Ai) oo Ai) (mi ) 2, n 2 4)

is a FP if and only if m2 2 2.

Proof. If m2 == 1, it is a non FP since ((SLi Å~ SLi) Å~ GL., (Ai EE Ai) (8) Ai) is a non

FP by 2 of Theorem 2.3. Assume that m2 2 2. The GL.-part of an isotropy subgroup of
(GSpmi Å~ GLn,Ai xAi) contams GSp, (n =2q),T.(n) oi H= (GgPq MT(.2(q.' n--2q2)q))

with n > 2q > O. By 3 of Lemma 2.6, (GSpq Å~ (SL., Å~ SLi), Ai X (Ai EE Ai)) is a FP. By
2 of Lemma 2.7, (T.(n) Å~ (SL., Å~ SLi), Ai op (Ai EB Ai)) is a FP. Hence it is enough to
show that (H Å~ (SLm, Å~ SLi), Ai X(Ai MAi)) (m2 2 2) is a FP. For this, just by the same

argument of the beginning part of the proof of Lemma 2.8, it is enough to show that, for
any t satisfying m2 2 t ) O,
(1) M(2q, m2 - t) O V(2q) D (W, x) F-> (AW`D, Ax)
(2) M(n - 2q,t) D (S, y) F-> (BS`C, By)

are FPs at the same time, where A E GSpq,D E GL(m2 - t),B E T.(n - 2q),C E GLt
and (det C)(det D) == 1. Ift= 0, then DE SL., and (1) is a FP by 3 of Lemma 2.6. (2)
becomes just ye By which is a FP. If t= m2, then C E SL., and (2) is a FP by 2 of
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Lemma 2.7. (2) becomes just x F> Ax which is a FP. Finally assume that m2 > t > O.
Then (l) is a FP by 1 of Lemma 2.6. The restriction of scalars occurs in the following 3

cases (a)-(c). (a) When 2q 2 m2 -t= even (resp. (b) 2q ) m2 -t+1 == even), we have
(det A)M2-`(detD)29 = 1 and detC = (detA)(M-`)/2q (resp. (detA)M2-`+i(detD)2q = 1
and detC = (detA)(M-t+i)/2q) in a generic isotropy subgroup. Hence no restriction of

scalars occurs in (2). So by 1 of Lemma 2.7, (2) is a FP. (c) When 2q ) m2 -t+1 =
even, we have detD = (detA)(i-(M2-t))/2q (and hence detC = (detA)(M2-t-i)/2q) in

the isotropy subgroup at (ei,...,e.+i,eq+i,...,eq+u,e.+i) E M(2q,m2 -t+ 1) with
m2 -t = 2u + 1. Note that if we write (AWtD,Ax) = (A'I2VtD',ofA'x) with A' E Spq,
the condition detD' == cl implies that detD == (detA)(i-(M2-t))/2q. If m2 -t > 1, we

have detC l1 and hence (2) is a FP by 1 of Lemma 2.7. If m2 -t == 1 andt2 2,
then (2) isaFP by2of Lemma 2.7. Now assume that m2 =2andt =1. By the
simp}e calculation of the isotropy subalgebra, we see that the H-part of the isotropy
subgroup of (H Å~ sL2,Ai cD Ai) at (,s.92,)eigq)) contams {(("otba/7i (.i)-i),aA)l

AE Sp,-i, a,bE GLi}Å~ T.(n-2q-1) c GL.. Hence (H Å~ (SL2 Å~SLi),AiX(Ai EB Ai))

isaFP, and we obtain our result. -
Proposition 2.23. ((GLiÅ~(Sp., Å~SLi)Å~SL.,)Å~SL., (AiX(AiEBAi)El]Ai)XAi) (mi )
2, n)4) is a FP if and only ifm2 >n or (n> m2 andn> 2mi+1).

Proof. First we show that it is a non FP for 2mi+1 2n) m2. Ifn= m2, it is clearly a
non FP. If n =: 2mi + 1, it is a non FP since the SL.-part of a generic isotropy subgroup
of (GLi Å~ Spm, Å~ SLi Å~ SLn, Ai X (Ai EE Ai) X Ai) is (Sp., Å~ SLi, Ai Ee Ai) c (SLn, Ai)

and ((Spm, Å~ SLi) Å~ SLm,,(Ai EH Ai)XAi) with 2mi +1 > m2 is a non FP by 7 of
Theorem 2.3. So we may assume that 2mi 2n> m2. Ifn= 2nt, it is a non FP since
(Spn, Å~ (SLm, Å~ SLi),Ai X (Ai Ee Ai) with n = 2n' > m2 is a non FP by 4 of Lemma
2.6. If n = 2n' + 1, it is a non FP since the SL.-part of a generic isotropy subgroup of
(GLi Å~ (SPmi Å~ SLi) Å~ SLn, Ai op (Ai EE Ai) X Ai) iS (Spnt Å~ SLi, Ai EH Ai) C (SLn, Ai)

and ((Spn, x SLi) Å~ SL.,, (Ai EE Ai) oo Ai)) (2n' +1 > m2) is a non FP by 7 of Theorem

2.3. If m2 > n, then by Propositions 1.2, it reduces to Proposition 2.18, and it is a
FP. Finally assume that n > m2 and n > 2mi + 1. The (GLi Å~ SLn)-part H of a•n
isotropy subgroup of (GLi Å~ Sp., Å~ SL.,Ai op Ai X Ai) contains (GLi Å~ STiL(n)) or
{(or, (aM o'A g)) l cM E GLi,A E Sp,,B E T.(n - 2q),det B = a,2q,C E M(2q,n- 2q)} with

n > 2q > O. By 5 of Lemma 2.7, (ST. Å~ (SL., Å~ GLi),Ai X (Ai EE Ai)) is a FP in our
case. Hence, to prove that (H Å~ SL(m2), Ai XAi) is a FP, just similarly as the beginning

part of the proof of Lemma 2.8, it is enough to show that for n > 2q > O,
(1) Alf(2q, m2 - t) e V(2q) D (W, x) F> (ct-iAWtD, Ax),

(2) M(n - 2q, t) O V(n - 2q) D (S, y) H> (BStC, cvBy)

are FPs at the same time where dv E GLi,A E Spq,D E GL(m2 - t),B E Tu(n - 2q),C E
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GLt,(det C)(detD) = 1,detB = or2q. If t = O, then D c SL(m2) and (1) is a FP by 1
of Lemma 2.6. (2) becomes just y F-> a.By, which is a FP even when det(orB) = cvn == 1

since n > 2mi +1 implies n- 2q -> 2. If t == m2, then C G SL(m2) and (1) becomes
just x e Ax, which is always a FP. INTow (2) reduces to 5 in Lemina 2.7 with r == 2q.

So if m2 = 1 and n-2q ) 3, it is a FP. If m2 = 1 and n-2q = 2, the condition
n > 2mi + 1(mi ) g) implies q = mi. In this case, the SL.-part of a generic isotropy
subgroup of (GLi Å~ Sp., Å~SL., Ai opAi opAi) is ( GSPo(M') GL* (2) )fiSL.. Since V(2)eV(2) D

(x,y) H-> (Bx,aBy) with BE GL2,detB = a2M', is a FP, (2) is a FP. If m2 m> 2, it is a

FP by 5 of Lemma 2.7 since r = 2q 7C O, -1,-(n - 2q). Finally assume that m2 >t> O.
Then (1) is a FP by (1) of Lemma 2.6. The restriction of scalars occurs in the following

3 cases (a)-(c). (a) When 2q ) m2 -t= even (resp. (b),(c) When 2q 2 m2 -t+1 ==
even), then we have a-2q(M2-t)(detD)2q == 1 in a generic isotropy subgroup for (a),(b)

(resp. in the isotropy subgroup at (ei, . . . , eu+i, eq+i, . . . , eq+u, eu+i) E M(2q, m2 - t + 1)

with m2 -t = 2u+1 for (c)). Hence we have detC = a-(M2-t) for (a)-(c). If we
write (BStC,aBy) = (B'StC',a'B'y) with C' E SLt, we have detB' = (of)r with r =
(tn - m2n+2qm2)/m2. Hence (2) reduces to 5 of Lemma 2.7. If t == 1, then it is a FP
for n-2q 2 3. Ifn- 2q == 2, by the same argument as above, it is also aFP. Assume
that t ) 2. Then r l -(n - 2g) since otherwise we have tn == O. If n- 2q = t, then we
have r l O. If n - 2q == t+ 1, then we see that r l -1. In both cases, otherwise we have

t(n-m2)=O. Hence (2) is alsoaFP by5of Lemma 2.7. 1
Proposition 2.24. ((GLi Å~(Sp., Å~SL.,)Å~SLi) Å~SL., (AiX(Ai EEAi)EEAi)opAi) (mi )
2,n 2 4) is a FP of and only if one of the foZlowing conditions holds.

1. m2>n,

2. m2 =n> 2mi + 1,

  3. n> m2 andn> 2mi +1 and (m2 > 2mi or m2 == odd).

Proof. First assume that n > m2 and 2mi 2 m2 = even. Then it is a non FP since
(GLi Å~ (Spm, Å~ SLm,) Å~ SLn, Ai (g} (Ai EE Ai) op Ai) is a non FP in this case b.y 6 of

Theorem 2.3. Next assume that 2mi + 1 ) n ) m2. If m2 -- n, then the SLn-part of
a generic isotropy subgroup of (GLi Å~ SLm, Å~ SLn,Ai X• Ai op Ai) is SLn and ((Sprni Å~

SLi) Å~ SLn,(Ai MAi)XAi) is a non FP in this case by 7 of Theorem 2.3. So it is
a non FP. If n = 2mi + 1 > m2, then the SL.-part of a generic isotropy subgroup of
(GLi Å~ (Spm, Å~ SLi) Å~ SLn, Ai X (Ai EB Ai) cD Ai) is Spm, Å~ SLi and ((Spm, Å~ SLi) Å~
SLm,, (Ai EB Ai) op Ai) is a non FP in this case by 7 of Theorem 2.3. Hence it is a non FP.

If 2mi 2 n = 2n' > 7n2, it is a non FP since (Sp., Å~ (SL., Å~ SLi),Ai op (Ai EB Ai)) is a

non FP by 4 of Lemma 2.6. If 2mi 2 n : 2n'+1 > m2, it is a non FP since the SLn-part
of a generic isotropy subgroup of ((GLi Å~ Sp., Å~ SLi) Å~ SLn, (Ai op Ai EE Ai) op Ai) is
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(SP6n')9) and ((Sp.t Å~ SLi) Å~ SL.,,(Ai Ee Ai)QAi) is a non FP in this case by 7 of

Theorem 2.3. If m2 > n, then by Propositions 1.2 and 2.9, it is a FP. If m2 == n > 2mi+1,
for the orbits related with M(n)', it reduces to ((Spm, Å~ SLi) Å~ SLn, (Ai M Ai) X Ai)
which is a FP in this case by 7 of Theorem 2.3. For the orbits related with M(n)", by
Proposition 1.2, it reduces to Proposition 2.9. Finally assume that n > m2 and n > 2mi+1
and (m2 > 2mi or m2 = odd). Then the (CLi Å~ SL.)-part of an isotropy subgroup of
(GLi Å~ Spm, Å~ SLn,Ai XAi op Ai) contains (GLi Å~ ST.(n)) or H = {(or,(ao'AS)) l aE

GLi,A E Sp,,B E T.(n - 2q),detB = or2g,C E M(2q,n- 2q)} with n-2 ) 2q > O.
Note that (ST.(n) Å~ (GL., Å~ SLi),Ai op (Ai EH Ai)) is a FP by 3 of Lemma 2.7 since
n ) 4. Hence, just similariy as the beginning part of the proof of Lemma 2.8, it is enough

to prove that, for n-2 2 2q >O and m2 2t) O,
(1) M(2q, m2 - t) e V(2q) ) (W, x) e (AW`D, a-iAx)
(2) M(n - 2q,t) O V(n - 2q) D (S, y) -> (aBS`C, By)

are FPs at the same time, where cv E GLi,A E Spq,D E GL(m2 -t),B E Tu(n - 2q),C E
GLt, detB = a2g and (det C)(det D) = 1. If t = O, then D E SL(m2) and (1) becomes a

FP in our case by 2 of Lemma 2.6. (2) becomes just y H> By which is a FP even when
or = 1 since n - 2q ) 2. If t == m2, then C E SL(m2) and (1) becomes just x F-> cr.-iAx
which is a FP, and a always remains. In (2), put (aBStC, By) = (B'StC, ofB'y). Then
we have det B' = (ctz')-" so that (2) reduces to 5 of Lemma 2.7 with r = -n. So if m2 = 1

and n- 2q ) 3, it is a FP. If m2 = 1 and n- 2q = 2, it is a FP just simiiarly as in the
proof of Proposition 2.23. If m2 ) 2, it is a FP by 5. of Lemma 2.7. Finally assume that
m2 > t > O. Then (1) is with full scalars and it is a FP. The restriction of scalars happens

in the following 3 cases (a)-(c). (a) When 2q 2 m2 -t = even, then detD = 1 (and
hence det C = 1) in a generic isotropy subgroup. Then (2) reduces to 5 of Lemma 2.7 with

r = -n. Hencejust similarly as above, we see that (2) is aFP. (b) When 2q 2 m2-t+1 =
even, then or'idetD == 1 and hence detC = dvmi in a generic isotropy subgroup. Note

that in this case, t ) 2 since otherwise we have 2mi ) m2 = even, a contradiction.
If we put (aBStC,By) = (B'StC',ofB'y) with C' E SLt, we have detB' = (el)r with
r = (tn -n+ 2q)/(1 - t). Hence (2) reduces to 5 of Lemma 2.7. We have r l -(n - 2q)
since otherwise qt = O. Ifn- 2q = t, we have r == t(n - 1)/(1 - t) f O. If n- 2q = t+ 1,

then r 7E -1 since otherwise n = 2, a contradiction. Hence (2) is a FP by 5 of Lemma
2.7. (c) When 2q 2 m2 -t+1 = even ( = 2(iL + 1)), we have detD == dv.-i E GLi (and
hence detC == or) in the isotropy subgroup at (ei,...,eu+i,eq+i,•.•,eq+u,,eu+i)• Then
(2) reduces to 5 of Lemma 2.7 with r= (tn+n-2q)/(-t- 1). Ift == 1, it is a FP
just similarly in the proof of Proposition 2.23. For t ) 2, we have r l -(n - 2q) since
otherwise qt = O, a contradiction. When n - 2q = t, we have r == t(n + 1)/(-t - 1) # O.
When n- 2q = t+ 1, we have r l -1 since otherwise tn = O. Thus by 5 of Lemma 2.7,

Proposition 2.25. ((Sp., Å~ GLi Å~ (SL., Å~ SLi)) x SL., (Ai EE (Ai op (Ai Eg Ai))) op
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Ai) (mi 2 2,n 2 4) is a FP if and only of one of the following conditions holds.

1. m2 >n= even > 2mi,

2. m2 >n-- odd,

3. n) m2 22 andn> 2mi+l.

Proof. If m2 = 1, then it is a non FP since (GLi Å~ (SLi Å~SLi) Å~SLn, Ai oj) (Ai EEAi)•XAi)

is a non FP. So we assume that m2 2 2. To prove the only if part, it is enough to show
that it is a non FP when 2mi 2 n = even or 2mi +1 2 n(= odd)) m2. If 2mi ) n =
even, it is a non FP since (Spm, Å~ SL.,Ai XAi) is a non FP in this case. Now assume
that 2mi +1 ) n = 2n'+1 ) m2. Then the (GLi Å~ SL(2n'+1))-part of a generic isotropy
subgroup of ((Sp., Å~ GLi) Å~ SL(2n' + 1), (Ai MAi) oo Ai) is {{1}, H} with H = ( SP6"!) :) )

and (HÅ~ SLm,,AiXAi) is a non FP by 7ofTheorem 2.3. Now assume that m2 > n. Then
by Proposition 1.2, it reduces to the Proposition 2.15, and it is a FP if and on}y if n > 2mi
or n = odd, i.e., 1 and 2. Next assume that m2 = n. For the orbits related with M(n)', the

(GLi Å~ SL.)-part of an isotropy subgroup of (GLi Å~ SLm, Å~SLn, Ai opAi opAi) is {l} Å~SLn

and ((Spm, Å~ SLi) Å~ SL., (Ai EE Ai) X Ai) is a FP if and only if n > 2mi + 1 by 7 of
Theorem 2.3. For the orbits related with M(n)", it reduce to Proposition 2.15, and it is a

FP if and only ifn > mi or n = odd. Hence if m2 = n, it is aFP if and only ifn > 2mi+1.
Finally assume that n > 2mi + 1 and n > m2 2 2. The SL.-part of an isotropy subgroup
of (Spm, Å~ SLn,Ai op Ai) contains STu(n) or SH.,q (n -2 2 2q > O). By 2 of Lemma 2.7,
(GLi x (SL., Å~ SLi) Å~ ST., (n), Ai op (Ai EEAi)xAi) =rV: (T., (n) Å~ (SL., Å~ SLi), Ai op(Ai EeAi))

with m2 2 2 is a FP. When it contains SHn,q, as in the proof of Lemma 2.8, it is enough

to show that, for n-22 2q >O and m2 2t) O,
(1) M(2q, m2 - t) e V(2q) D (W, x) F> (ctAW`D, orAx•)
(2) M(n - 2q, t) e V(n - 2q) D (S, y) "-> (crBStC, ctBy)

are FPs at the same time, where dv E GLi,A E Spq,D E GL(m2 -t),B E ST.(n-2q),C E
GLt and (det C)(det D) = 1. If t = O, then D E SL(m2) and (1) is a FP by 3 of Lemma
2.6 since m2 ) 2. (2) becomes just y e aBy which is a FP even when or = 1 since
n- 2q 2 2. If t == m2, then C E SL(m2) and (1) becomes just x F> aAx which is a
FP where cr. does not vanish. So (2) is a FP by 2 of Lemma 2.7. Finall.y assume that
m2 >t> O. First we deal with the case m2 ) 3. (1) is a FP (cf. 1 of Lemma 2.6) and
the restriction of scalars occurs in the fellowing 3 cases (a)-(c). (a) When 2q ) m2 - t =
even, we have det(cyD) = 1 (and hence detC = ceM2-t) in a generic isotropy subgroup.
If we put (dvBStC,aBy) = (B'StC',cy'B'y) with C' E SLt, we have detB' == (of)r with
r = m2(n - 2q)/(t - m2). Hence (2) is reduced to 5 of Lemma 2.7. If t = 1, (2) is a FP

for n-2q 2 3. If t= 1 and n- 2q == 2, as we see in the proof of Proposition 2.24, we
can replace T.(2) to GL2 with the same determinant, and hence (2) is a FP. Assume that
t ) 2. Then we have r l -(n - 2q) since otherwise we have t = O, a contradiction. When
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n-2q = t, then clear}y rl O. When n-2q =t+1, then r# -1 since otherwise m2 == -1,
a contradiction. Hence (2) is a FP by 5 of Lemma 2.7. (b) When 2q ) m2 -t+1 = even,
we have ordet(orD) == 1 (and hence detC == orM2-t+i) in a generic isotropy subgroup. Then

(2) is reduced to 5 of Lemma 2.7 withr= (m2+1)(n-2q)/(t-m2-1). Whent = 1, it is a
FP by similar argument as (a). When t 2 2, we have r l -(n-2q) since otherwise we have

t= O. When n-2q = t, clearly rl O. When n-2g = t+1, we have rl -1 since otherwise
m2 == -2. Hence (2) is aFP. (c) When 2q ) m2 -t+1= even, we have det aD = a (and
hence det C = aM2-t-i) in the isotropy subgroup at (ei, • • • , eu+i, eq+i, • • • , eq+u, eu+i) E

M(2q, m2-t) with m2-t = 2u+1. If 7n2-t = 1, we have t ) 2 since m2 ) 3. Therefore (2)
is a FP by 2 of Lemma 2.7. Assume that m2-t ) 3. Put (aBStC, orBy) = (B'StC', a'B'y)

with C' E SLt. Then we have detB' = (al)r with r = (n - 2g)(m2 - 1)/(1 +t- m2)•
Hence (2) reduces to 5 of Lemma 2.7. When t 2 2, we have r f O, -(n - 2q) and if
r == -1, we have n- 2q lt+1 since otherwise tm2 = O, a contradiction. Hence (2) is a

FP fort) 2. Whent=: 1, (2) isaFP forn-2q)3. Ifn-2q =2, we haveq== mi
and B E ST.(2) can be replaced by B E SL2 by Proposition 1.11. Since m2 -t 2 3, we
have detC 7E 1, and (2) is a FP. Finally consider the case m2 == 2 > t > O, i.e., t = 1.
Put H, = {( aoA .*B) lAE Spq,BE ST.(n -2q),a, E GLi} !; GLi Å~ SH.,q. It is enough
to show that (Hq Å~ (SL2 Å~ SLi),Ai c8} (Ai EB Ai)) is a FP. By a direct calculation of the

isotropy subalgebra of (Hq Å~ SL2,Ai XAi) at (ei,ei) with n -> i -> 2q+ 1, each Hq-part
contains {(g -*d) ([D (al2,-2 + A) (D (2"o-db) l A E Lie(Sp,.i),B E Lie(T.(n - 2q - 1))

with trB= (n-2g)a+d}. Hence one can easily see that it isaFP. -

3 A list

Theorem 3.1. ij we restrict the scalar multiplications of ((GSpm, Å~ GLm, Å~ GLi) Å~
GLn, (Ai EB Ai EE Ai)XAi) with mi 2 2 andn ) 4, then it is a FP of and onZy if it is one
of the following case.

  1• ((GSPmi Å~ GLm2 Å~ SLI) Å~ SLn, (Al EH AI Eff Al) X Ai) with ml 2 2, n ) 4.

  2• ((GSpm, Å~ SL., Å~ GLi) Å~ SL., (Ai Ee Ai MAi)XAi) (mi 2 2, n2 4) with m2 >n
    orn == odd > m2 orn> m2 == odd orn> max{2mi,m2}.

  3• ((GSpm, Å~ SLm, Å~ SLi) Å~ SLn, (Ai EE Ai H] Ai)XAi) (m2 2, n2 4) with m2 >n
    or n > max{2m! + 1, m2 + 1() 3)}.

  4• ((Spm, Å~GLm, Å~ GLi) Å~ SL., (Ai EB Ai EE Ai) op Ai) (mi ) 2, n) 4) with 2mi <n

    or n = odd.

5• ((Spm,Å~GLm, Å~SLi)Å~SLn, (AiMAiEBAi)CbAi) (mi 2 2, n) 4) withn> 2mi+1.

6• ((Spm, Å~ GLm, Å~ SLi) Å~ GLn, (Ai EE Ai Ee Ai) Q Ai) with mi ) 2, n ) 4.
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7• ((Spm, Å~ SLm, Å~ SLi) Å~ GLn, (Ai H] Ai EI Ai)XAi) (mi 2 2, n2 4) with m2 >n

  or m2 > 2mi +1.

8• ((Spm, Å~ SLm, Å~ SLi) Å~ SLn, (Ai ee Ai MAi)XAi) (mi 2 2, n 2 4) with m2 > n >

  2mi + 1 oT (n > 2mi + m2 + 1 and m2 > 2mi + 1).

9. ((Spm, Å~ SLm, Å~ GLi) Å~ GL., (Ai EB Ai EE Ai)XAi) (mi ) 2, n) 4) with 7n2 > n

  or m2 > 2mi or m2= odd.

10. (((GLi Å~ Sp.,)Å~ SL., Å~ SLi) Å~ GL.,((Ai op Ai) Ee Ai EE Ai) op Ai) (mi 2 2, n) 4)

  with m2 2 2.

11. (((GLi Å~ Sp., Å~ SLi) Å~ SL.,) Å~ SL., (Ai X(Ai [e Ai) EH Ai)XAi) (mi ) 2, n ) 4)

  with m2 >n or (n > m2 andn> 2mi +1).

12• ((Spm, Å~ SLm, Å~ GLi) Å~ SLn, (Ai Eff Ai Ee Ai) oo Ai) (mi 2 2, n ) 4) with one of

  the following conditions:

  (a? m2 >n> 2mi or m2 >n = odd,
  (b? n > 2mi +m2 and (m2 > 2mi or m2 = odd),

  (c? 2mi + m2 > n > m2, and n> 2mi + 1, and nf m2 mod 2, and (m2 > 2mi
    or m2 = odd).

13. ((GLi Å~ (Sp., Å~ SL.,) Å~ SLi) Å~ SL., (Ai X(Ai EB Ai) Ee Ai)XAi) (mi 2 2,n 2 4)

  zuith one of the following eonditions:

  (a? m2 > n,
  (b? m2 == n> 2mi +1,
  (e? n> m2 andn> 2mi +1 and (m2 > 2mi or m2 :odd).

14• ((Spmi Å~ GLi Å~ (SL7n2 Å~ SLi)) Å~ SLn, (Ai EB (Ai X(Ai E- Ai)))XAi) (7ni 2 2,n 2 4)

  with one of the foZlowing conditions:

  (a? m2 >n= even > 2mi,

  (b? m2 >n= odd, -  (c? n) m2 )2 andn> 2mi +1.
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