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Upper bounds for the integral moments
of Dirichlet L-functions

Keiju Sono

Abstract
In this paper, we apply Soundararajan’s method [12] to the Dirichlet
L-functions associated to primitive Dirichlet characters and evaluate their
2k-th integral moments on the critical line under the assumption of the
generalized Riemann hypothesis.

1 Introduction

Evaluating the moments of the Riemann zeta function or other L-function is an
important problem in analytic number theory. For the Riemann zeta function,
we generally consider the following integral:

2T
M (T) := / ¢ (1/2 + it)|*" dt. (1.1)
T

In most cases, we assume that k is positive, but several mathematicians consider
the case of k is negative (see [3], [9]). For positive k, it is generally expected
that Mj,(T) is asymptotic to CxT(logT)¥* as T — oo for some Cj, > 0, but in
spite of many efforts, such asymptotic formulas have been established only for
k =1 (Hardy and Littlewood, [4]) and k = 2 (Ingham, [7]).

However, there are many results on the lower or upper bounds for M (T"). For
instance, the lower bound M (T) >, T(logT)** was obtained by Ramachan-
dra [10] for positive integers 2k, by Heath-Brown [5] for all positive rational
numbers k, and by Ramachandra [11] for all positive real numbers k£ under the
assumption of the Riemann hypothesis (or simply RH). On the other hand,
Heath-Brown ([5], [6]) proved that the estimate My (T) < T (logT)*" holds for
all k € [0,2], assuming RH. Moreover, he showed that the same upper bound
holds unconditionally for k = %, v € N.

Recently a remarkable advance was accomplished by Soundararajan [12]. He
proved that under the assumption of RH, the estimate

My(T) <p.e T(logT)* ¢ (Ve > 0) (1.2)

holds for all positive k. He started from Hadamard’s factorization for {(s), and
obtained a good inequality bounding log ‘C(% + it)‘, t € R on RH. Using this
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inequality, he gives certain upper bounds for the measure of the set
S(T,V):={te[T,2T]|log | (1/2+it)| > V}

for each V' > 0. Since My (T) is expressed by

2T [e)
/ 1€ (1/2 + it)|** dt = 2k / "V meas(S(T,V))dV

T —o0

and the contribution of negative V' is relatively small, his upper bounds for
S(T,V) enables one to give the estimate (1.2). The techniques used in the
argument above are very complicated (at least to the author), but fortunately
there is a good survey about his paper (Koltes, [8]), in which many detail
computations omitted in the original paper are supplemented.

In this paper, we apply Soundararajan’s argument above to the moments of
Dirichlet L-functions on the critical line. Assuming the generalized Riemann
hypothesis (or simply GRH), we construct the inequality bounding log|L(3 +
it, x)| (Proposition 2.1). This inequality gives an order estimate for |L(3 +it, x)|
in Corollary 2.2, which is stronger than the Lindelof hypothesis for Dirichlet
L-functions in t-aspect (we note that the Lindel6f hypothesis for Dirichlet L-
functions is a consequence of GRH). In Theorem 4.1, by using this inequality,
we evaluate the measure of the set

Sy (T,V):={t e [T,2T]|log|L(1/2+1it,x)| >V}

for each V' > 0, where x is always a primitive character modulo ¢ which is
not quadratic (for some technical reason, we do not deal with the quadratic
characters, see the proof of Lemma 3.2). These estimates enables us to evaluate
the sum of the integral moments of Dirichlet L-functions. Precisely, under
the assumption of GRH, the following upper bound is obtained for all £ > 0

(Theorem 5.1):
1

2T
/;

Here, the sum above is over all non-quadratic primitive characters modulo gq.
The implied constant above depends only on k£ and €. The arguments and com-
putations are almost the same as those in the original paper [12] (in many parts
we only have to replace T' to ¢7" and multiply ¢, ). We omit many computations,
since the similar ones are demonstrated in Koltes’ survey [8] in detail. The only
differences are that we slightly generalize the asymptotic formula introduced
in [2] to obtain an upper bound for certain sum over primes involving Dirich-
let characters in Lemma 3.1 (the difference arises from the point that L(s, x)
does not have a pole at s = 1), and that we use the orthogonality of Dirichlet
characters in Lemma 3.3.

*

2k
dt <p.e $(q)T(loggT)¥+ (Ve > 0).

X (modq)
X2#Xo
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2 The main proposition and an order estimate
for L(% +it,x)

Firstly, we prepare the following main proposition, which is an analogous result
of Soundararajan’s inequality for the Riemann zeta function [12].

Proposition 2.1. Assume GRH. Let x be a primitive Dirichlet character mod-
ulo q, T > 0 be sufficiently large, t € [T,2T), © > 2. Let A\g = 0.4912--- be the

number which satisfies e = \g + % Then, for any A > Ao, we have

1 log(£) 1+ X logqT 1
Lz +itx <Rez Aln) log(;) 142 logal .
2 n2+logz+7‘t10gn logz 2 logz logx

log

Proof. Let Z,, be the set of all non-trivial zeros of L(s, x) and a = 0 or 1 be the
number such that x(—1) = (—1)®. Then, by Hadamard’s factorization, we have

’

-t 4 (552) o 3 (500) e

pez, \NC TP P

Here, B(x) is a constant dependent on x, whose the real part is given by

ReB(x) = — Y Ref

pPEZy

p:%-ﬂ"yGZX p:%—&-z'yEZX

for s = o +it. If o = Re(s) > 1, F\(s) is non-negative. We take the real parts

of the both sides of (2.2). Then, by Stirling’s formula,

“Re™(s,X) = log(aT) ~ Fy(s) + O(1) (2.3)

holds for t € [T, 2T]. By integrating both sides of (2.3) with respect to o = Re(s)
from § to o9 (> %), we obtain

1
L (2 —|—z't,x> ’ —log|L (g +it, x)|

- <1log(qT) + 0(1)> (ao - ;) _ % Y log (00 = 3)* + (t=)°

log

\]
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for s9 = og + it. On the other hand, as an analogue of Perron’s formula, the
following identity holds for z > 2, ¢ = max{1,2 — o} :

1 et L v x(n)A(n)
—f(3+w7X)ﬁdw:ZT

n<z

1 ' os™
omi )i &

By moving the path of integration to the left and picking up the residues, the
left hand side equals

/
/

—s > —2k—s—a

L L P T
— (8 X)losr (L(S’X)> ~ 2 Gy ’§<2k+s+a>2'

Hence the following identity holds:

’

Z x(n logf 1 L,( )
ns logz logx L\X

n<x

/

2.5
—s 1 > 1.72](}787& ( )

1 xzf
 oun 2o 5t oar 2o 2
logx = (p—s) logz e~ (2k+s+a)

X

By integrating both sides of (2.5) with respect to o = Re(s) from o to oo, and
taking their real parts, we have

10g|L(507 X)|

x(n)A(n) logs 1 L (50 %)

= Re - —
= nslogn logr logx L (2.6)

—2ksa

1 /°° xP~ /
+— ——do
logx pEZZX oo (P— logx Z oo (2k+s5+a)?

The last two integrals are evaluated as follows:

> [l Y [ = Bl
b e

pPEZy pPEZy

72k: s—a 1
——do =0 —
Z/H (2k + s+ a)? 7 (logx)’
since

e’} =54 1
= do= -
/UO Grar® O(W)»

and

0 —2k—s—a 1
< >1).
/[, (2k + s+ a)QdU' ~ 4k?logx (k=21)

0
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In addition, by (2.3), we have

Re™(s0,x) = Fi(s0) — 5loa(aT) + O(1).

Therefore, from (2.6), we have

log|L(so. )| <Re S~ XWA() logi Fi(so)  loa(eT)
nslogn  logx logz 2logx

n<lz
1
xz7% F

. x(s0) 1
i (logz)? 09 — 3 o (10gx) .

Combining (2.4) and (2.7), we obtain

1

A(n) log£ 1 1
< w4 (1oggT) (00— = + ——
Re Z nSOIOgn " logz + 2( ogql) ( 70 + 10gx> (2.8)

300 1 1 1 1 1
F — —— — —(0g— =) — —— ol—.
+ Fx(s0) { (logz)? o9 — 3 2(00 2) logx} + <logx>
We put o9 = % + ez for A > 0. Then, the term involving F)(sg) becomes

negative when \ > \g. Therefore, for such A, the inequality of this proposition
holds. O

(2.7)

log

As a consequence of Proposition 2.1, we obtain the following order estimates
for L(% + it, x) under the assumption of GRH:

Corollary 2.2. Assume GRH. Let x be a primitive Dirichlet character modulo
q and A\g = 0.4912--- be the number given in Proposition 2.1. Then, for any
€ > 0, the inequality

1 14+ Xo logqT
L=+t < 2.9
Gz (B mir) e
holds for t € [T,2T] when ¢T is sufficiently large. In particular, we have
1 3logqT
L=+t < _— 2.1
‘ (2 o X)‘ P (810g10qu ) (210

for t € [T,2T] when qT is sufficiently large.

Proof. The proof is almost the same as the one in [8], in which the case of the
Riemann zeta function is treated. We put A = Ao, z = (loggT)?>~? (§ > 0) in
(2.1). Then, by taking § > 0 sufficiently small, we have

1

log
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14+ Xo logqT 1
< . O
- Z f + 2(2—0) logloggT + loglogqT

n<(logqT)2—9

1+ Xo logqT
< €| ———.
- 4 loglogqT

Thus we obtain (2.9). Moreover, since Ag < %, the inequality (2.10) holds. O

3 Auxiliary lemmas

In this section, we prepare several lemmas to prove the main theorem in the
next section.

Lemma 3.1. Assume GRH. Let x be a non-principal character modulo q, T > 1
be sufficiently large, and t € [T,2T). Then, the following estimate holds:

Z x(n << Vzlog(qxT). (3.1)

n<x

Proof. We denote the left hand side of (3.1) by ¥(z,t; x), and define ¥g(z,t; x)
by

ol tiy) = (x,t;x)  (if 2 is not power of primes)
OB g tix) - XD (@ = p™,p : prime,m € N).

2 2it

By almost the same argument given in [2] (in this book, the case ¢ = 0 is
considered), 1o (x,t; x) is approximated by the integral

1 [T Lz + 2it, x) Izd
= ZETELX) T s
omi Jo_ipr L(z+2it,x) =

J(@, T’ x) =
for sufficiently large 7" > 1 (if necessary, we slightly change the value of this T’
so that L(z+2it, x) does not have any zero on Im(z) = £7" ), and by computing
this integral, we have

Ip72it L/ (2Zt X) I72n7a72it
do(z,tix) =~ Y _ >
ez P 2it  L(2it, x) = 2n 4 a + 21t
[Tmp—2t| < T’
1 logq(2t +T"))?
1o [tz | slloga2e 12 N
T T logx

Here, the third term of the right hand side appears if and only if 2¢ < T Easily
we have ,
L (2it, x)

logqT)?



UPPER BOUNDS FOR THE INTEGRAL MOMENTS OF DIRICHLET L-FUNCTIONS 115

x72n7a72it

e 2n + a+ 2t

< 1 (uniformly).

Moreover, under the assumption of GRH, we have

J:p72it 1 ’ ’
Z —| < x2(logg(2t + T ))logT ,
e p—2it
p=5+ivEZy
|y—2t|<T’

since Re(p) = 1 for all p € Z,. Therefore, we get

I

n<z
1 / / 5  z(logx)?
< x7(logg(2t + T ))logT" + (loggT)* + —
1 ))?
sloga(2t+ TV |
T'logx
By putting T = \/z, we obtain (3.1). O

Lemma 3.2. Let x be a Dirichlet character modulo q such that x? # xo ( Xo
denotes the principal character ). Then, under the assumption of GRH, for
T<t<2l,2<x<(qT)?% o> %, the following estimate holds:

x(n)A(n) logy

: loga(gT).
n°titlogn logx < logs(4T)

n<x
n#prime

Here, log;x := logloglogz.

Proof. The left hand side is the sum over n = p*, where p runs the set of prime
numbers and k > 2. In these, the sum over n = p’ﬂ k > 3 is at most

p:prime
k>3

Hence our main problem is to evaluate the sum

x(n)A(n) logy
notitlogn logx

n<x
n=p?
p:prime
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2 2
One can easily see that the difference between 3° % and>-, . %
is at most

ZX 2zltogp Z X(nzgﬁ(n) < Vz(logz)?

p<z n<z
for z > 2. Therefore, if x? # xo, by Lemma 3.1 we have
2o
Z x(p ta 8 « Vzlog?(q=T). (3.3)
p<z
Moreover, by Abel’s summation formula, if z < ¢T', we have

it 1
Z X 21t Z X 2zt0gp

p<z p<z logp

L VF log?(q2T) N / Vulog® (quT) du (3.4)

logz ulog®u

< ilogz(qT).
logz

We return to the sum (3.2). We write 2 = y2, 2 <y < ¢T. If y < log*qT,

Yy
x(p?) log, 1_
p2o+2it ' logy < § : = =0 (logsqT),
p<y p<logqT

since Zp<$ 5 < loglogz. Next, we assume y > log*¢T. Then

X(v*)  logy (@) logy
p2o+2it ’ logy < O(log3qT) + Z W . @ . (3.5)
p<y logtqT <p<y

By Abel’s summation formula, the second term of the right hand side of (3.5)
is the absolute value of

Zx(p2)log% 1 3 x(p?)log 1
p2it10gy p2it10gy (10g4qT) 20

y20'
p<y p<10g4qT

st (3.6)

+ [og“ T u2o+1 Z 22t10gy

The first and second term of (3.6) is clearly O(1), and the third term becomes

Yy
x(p x(p?)logp
20 /1 u2"+1 Z 21t Z p2it du,

4
og™qT p<u p<u

logy

which is also evaluated by O(1), by using the estimates (3.3) and (3.4). Thus
we obtain the result. O
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The following lemma holds unconditionally:

Lemma 3.3. Let T > 1 be sufficiently large, 2 < x < ¢T', and k € Z>¢ satisfies
k < qT

o < L. Then, for any sequence (ap) C C, we have
2k k
> [ <o 3
e q)Tk! ;
x(modq) p<e P p<w

In particular, there exists certain constants ¢, > 0 such that Zx(modq) Cy = #(q)
and the estimate

. 2k k
2 2
a a
/ X(flif dt < e Th! |3 la”
T p<z bz p<w p
holds.
Proof. We write
k
X X ak: z
> Wt =3 e
p<x n<zk

Then, by the orthogonality of characters, we have

2k

2T
Z X(ﬂ)rip dt
x(modq) T p<z b=
ak.(n)ag - (m) /2T (m)it
= —_— — ) dt
nE;n(r:lodq) (37)
(nm,q)=1

|k (n)[? |ak.2(n)ak,.(m))|
< é(q)T Z n + 0 | ¢(q) Z Vnm|logZ|

n<zk n,m<zk n#m
n=m(modgq)

Let us evaluate the O-term of (3.7). Since

|aka(n)akz(m)] _ 1 (lar..(n)? 4 laka( )
vnm -2 n m ’
we have
Z |ak,o(n)ak,(m)| Sl Z |ag,(n)[? + |ag,.(m)[*
Vnml|log | 2 nllog™ m|log™ |

n,m<zk n#m n,m<zk n#m

n=m(modgq) n=m(modq)
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-y |ak.o ()| 3 1
n<xk m<ak m#n |10g |

m=n(modq)

We decompose the sum over m into m < n and m > n. Then the former is

1 1 1
DR IR PR R Y

m<n m<n |10g(1 o Tm)‘ m<n -m
m=n(modgq) mEn(modq) m=n(modq)
zk zk
=n Z —nz ,,<<flg <<—10g—<<T
m' <n

m’=0(modq)
The latter is
1 1 1
Z log™ Z T ey = Z 1, m

n<m<ak n<m<zk IOg(l + 1<m’ <gk log(l + T:Lz
m=n(modgq) m=n(modq) m’ =0(modq)

3
~—
\_/\

Further, we decompose this sum into 1 < m’ <nandn < m’ < z*. Since
1 2 :
m S = (0 <z S 1), the former is

1 2n
>y L ¥y 2z

L<m' <n log(1+ =)

1<m’<n
m’ =0(modgq) m’ =0(modq)
Ifm' > n, then ﬁ < log2 holds. Therefore, the latter is simply evaluated
og(1+2—
by
a®
q

log(1 4 =)  log2

n<m' <zk
m’ =0(modq)

>

m<zk m#n

Consequently we have

< T.

[log 72|
m=n(modgq)

Therefore, the O-term in (3.7) is evaluated by

<<¢ Z|akac

n<xk

2
Finally, by applying Soundararajan’s argument [12] to the sum for W, we
obtain
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2k
2

2T
> / > ’;(Qip dt < (q)T Y 7|ak’“’n(n)|

x(modgq) T |p<a n<zk

k

5 el
< Plg)Th | Y -

p<xz

4  Large values of L(3 + it, x)

Now we have prepared all the lemmas to prove the main theorems (Theorem
4.1 and Theorem 5.1). To describe them, we introduce several notations. For
a Dirichlet character y, sufficiently large 7' > 1, and any V € R, we define the
set Sy (T,V) by

SW(T, V) == {t € [T, 2T |log |L (1/2 + it, x)| > V'}

and let p(S,(T,V)) be its Lebesgue measure. We establish upper bounds for
this (S, (7, V)) when V is sufficiently large.

Theorem 4.1. Assume GRH. Let x be a primitive Dirichlet character modulo
q such that x*> # xo. Then, for each V, the following estimate for u(Sy(T,V))
holds:

1) If 10+/TogloggT < V < loglogqT,

TV V2 4
ST, V) < —X——exp | — 1= '
1(Sx (T, V)) < \/WGXP< logloqu( logqu>)

2) If loglogqT < V < 1(loglogqT )logsqT,

e TV V2 s 2
S, (T, V =% — 1- .
HS(TV)) < \/1ogloqueXp ( loglogqT ( 4logloqulog3qT) )

3) If 1(loglogqT)logsqT < V < Slig’li‘gT,

%
p(Sy (T, V)) < ey Texp (—mlogV> :

3logqT
4) IfV > 8loglogqT'’

#(Sx(T,V)) = 0.

Here, ¢, are the constants given in Lemma 3.3.
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Proof. The case 4) directly follows from Corollary 2.2. Henceforth we assume

V< sfjgligT‘ For such V, we define A > 1 by

%log3qT (104/loglogqT < V < loglogqT)
A= loglogdT oo g7 (logloggT < V < i(logloggT)logsqT)
1 (V> 1(logloggT)logsqT)

and put z = (qT)3(< qT), z = g ToEoRT Combining Proposition 2.1 and
Lemma 3.2, we have

x

Iy x(p) gy | (L+A)V
log|L | = < . 1 T
o1 (5 i) | < | 20 ey B2 ot (a7
p<z P &
14+ X))V
<50+ 5:(0) + L2V 4 0(10gy (47,
(4.1)
where
log%

S = |3 A2 gy | A0

= p%‘hogm +it  logx 52, p%‘hogz +it  logx

Now, if t € Sy (T, V) (i.e. log|L(5 + it, x)| = V), at least either one of

7 v
> -] = > — =
S1(t) >V (1 8A> Vioor Sa(t) > SA Va
holds. In fact, if both of these are not valid, then Y% is evaluated by O(logsqT),
which is a contradiction in any case. We put

pi = p({t € [T, 2T1|S:(t) > Vi})

for : = 1,2. Then
w(Sx(T,V)) < pa + pro.

First, let us evaluate pus. Let k be the largest integer which satisfies k < % —1.
Then one can easily check that the condition 2% < loquT

apply Lemma 3.3 to

is satisfied, so we can

0 (p<=2)

ap = log %

T (2 <p<a)
plogz
‘We have
2k
2T 2T
[ iswpa= [ X0 g
T T p§+zt

p<z
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k
2z
1 log™
<oTh | > —  —55
z<p<z P Tiees  loghx
< e, T (k(logs(qT) + O(1))).
By combining this and trivial inequality

2T
/ Sa(0)|P*dt > V2,
T

we obtain

p2 < e TV, 2" (2klogs (¢T))*

1% (42)
< ¢y Texp <—2AlogV> .
Next, we evaluate uq. If k € N satisfies

log qT_
1<k< M7 (4.3)
logz
then zF < 1oqg€:r holds. Therefore, we can apply Lemma 3.3 to
log%
>1\0 : logz (p < Z)
ap _ plogz
0 (p>=2)
and we have
k
p<z P 8
k
< ¢, Tk! Zl
p<z p

klogloggT\
oy TV (B
By combining this and trivial inequality

2T
/ SL 12kt > V2,
T

we obtain

k
kloglogqT
,u1<<cXT\/E (ogozgq ) .

eV;
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We take k € N by
V2
[ ogezar | (V< (logloggT)?)

k=
[10V] (V' > (loglogqT)?).

Then the condition (4.3) is satisfied in any case and the estimate (4.4) becomes
T—— VY (1 % V < (logloegT)2
T st () o™ (V< (logloggT)?)

JI5IRSS (4.5)

10V
e TVV ((esesd ) (V > (logloggT)?).

Finally, by evaluating the right hand sides of (4.2) and (4.5) carefully in each
case (this process is almost the same as the one in [12] or [8]. We only have to
replace logT to loggT" and multiply the values by ¢, ), we obtain the estimates
of the theorem. O

5 Moments of the Dirichlet L-functions

We can apply Theorem 4.1 to the evaluation of the integral moments of the

Dirichlet L-functions on Re(s) = 1.

Theorem 5.1. Assume GRH. Then, for any fized k > 0, we have
[ G
L=+t x
T 2

Here, the sum above is over all primitive Dirichlet characters modulo q such
that x% # xo.

Proof. By evaluating the right hand sides of Theorem 4.1 roughly in the cases
10+/loglogqT < V < 4kloglogqT and V > 4klogloggT, we obtain the following
estimates:

1) If 10+/loglogqT < V < 4kloglogqT,

* 2k

dt <. ¢(q)T(loggT)* +< (Ve > 0).

x(modq)
X2#x0

V2
o(1) S A
U(S\ (T, V) < e T(loggT)*Dexp ( 1og10qu> . (5.1)
2) If V' > 4kloglogqT,
1(Sy (T, V) < e, T(loggT)°WMexp (—4kV) . (5.2)

3) If V < 10y/loglogqT, we use the trivial estimate

u(Sy(T,V)) < T. (5.3)
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We rewrite the integral moment as follows. For 7" > 0,

2T 1 2k
/ L ( +it7x>
T 2

dt
2T
_ / o2klog| L(5+it, )| 3¢
2T  plog|L(%+it,x)|
_ / / 2%ke2HV AV dt

2T
—%/ / Lihog|L(3 it 2y (e dVdt

=2k [T s vy

10+/ToglogqT 4kloglogqT %)
2k / + / + / eV (S, (T, V))dV
—00 10+/ToglogqT 4kloglogqT

=: 2kl + 2k15 + 2k13,

say. Here, 1{t|10g|L(%+it,x)|2V}(t) is the characteristic function on the set
{t | log|L(% +it,x)| > V}. First, by (5.3),

10+/loglogqT
Il < T/ erVdV < TeQOk«/logloqu < T(lquT)k2

—0o0

Next, by (5.1),

4kloglogqT V2
I < cXT(loqu)O(l)/ kY~ egtogaT Y/
10+/ToglogqT

4kloglogqT )
< CXT(loqu)O(l)/ ek logloqudV
10/ ToglogaT

< cXT(loqu)o(l) - 4k(loglogqT) (loqu)k2
< cXT(loqu)k2+€.
Finally, by (5.2),

o0

I3 < ¢, T(loggT)°V / eV av <. cXT(loqu)*ng“.
4kloglogqT

Combining these, we obtain

2T 1
L - +1t, X)

oG

Since the constants c,, satisfy

0< Z < Y e =0(9),

x(modq) x(modq)
27'5Xo

2k
dt <. cXT(loqu)k2+6.
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by taking the sum over the Dirichlet characters satisfying the conditions, we

obtain the result. O
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