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2) whose highest weight is q2m−3. By (5.4), the image of Harish-Chandra map of
(PF2m−2)

opp is

(
√
−1)m−1γu((PF2m−2)

opp) = (−)m−1Tm−1 · · ·T1.

It follows that (PF2m−2)
opp acts on Q by the scalar

(
√
−1)m−1(q2m−3,1 +m− 2) · · · (q2m−3,m−2 + 1)q2m−3,m−1

= (
√
−1)m−1

(
m−1∏
i=1

l2m−3,i

)
.

Since

a2m−2,0(Q) =
√
−1

∏m−1
i=1 l2m−3,i

∏m
i=1 l2m−1,i∏m−1

i=1 l2m−2,k(l2m−2,k − 1)
,

there exists a constant dλ, which depends on λ but not on Q ∈ GT (λ), such that

−dλ(
√
−1)m

(
m−1∏
i=1

l2m−3,i

)
Q = a2m−2,0(Q)Q = ϖ0Q.

We have proved the following proposition:

Proposition 5.3. For ϕτλ(g) =
∑

Q∈GT (λ) c(Q; g)Q ∈ C∞
τλ
(K\G), the action of

PF2m is given by

dλL(PF2m)ϕτλ(g)

=
∑

Q∈GT (λ)

{
(L(H)−m+ 1)c(Q; g)ϖ0Q+

2m−2∑
i=1

L(Xi)c(Q; g)[ϖ0, A2m−1,i]Q

}

=P0ϕτλ(g).
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Upper bounds for the integral moments

of Dirichlet L-functions

Keiju Sono

Abstract

In this paper, we apply Soundararajan’s method [12] to the Dirichlet
L-functions associated to primitive Dirichlet characters and evaluate their
2k-th integral moments on the critical line under the assumption of the
generalized Riemann hypothesis.

1 Introduction

Evaluating the moments of the Riemann zeta function or other L-function is an
important problem in analytic number theory. For the Riemann zeta function,
we generally consider the following integral:

Mk(T ) :=
∫ 2T

T

|ζ (1/2 + it)|2k
dt. (1.1)

In most cases, we assume that k is positive, but several mathematicians consider
the case of k is negative (see [3], [9]). For positive k, it is generally expected
that Mk(T ) is asymptotic to CkT (logT )k2

as T → ∞ for some Ck > 0, but in
spite of many efforts, such asymptotic formulas have been established only for
k = 1 (Hardy and Littlewood, [4]) and k = 2 (Ingham, [7]).

However, there are many results on the lower or upper bounds for Mk(T ). For
instance, the lower bound Mk(T ) ≫k T (logT )k2

was obtained by Ramachan-
dra [10] for positive integers 2k, by Heath-Brown [5] for all positive rational
numbers k, and by Ramachandra [11] for all positive real numbers k under the
assumption of the Riemann hypothesis (or simply RH). On the other hand,
Heath-Brown ([5], [6]) proved that the estimate Mk(T ) ≪k T (logT )k2

holds for
all k ∈ [0, 2], assuming RH. Moreover, he showed that the same upper bound
holds unconditionally for k = 1

v , v ∈ N.
Recently a remarkable advance was accomplished by Soundararajan [12]. He

proved that under the assumption of RH, the estimate

Mk(T ) ≪k,ϵ T (logT )k2+ϵ (∀ϵ > 0) (1.2)

holds for all positive k. He started from Hadamard’s factorization for ζ(s), and
obtained a good inequality bounding log

��ζ( 1
2 + it)

��, t ∈ R on RH. Using this

1
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inequality, he gives certain upper bounds for the measure of the set

S(T, V ) := {t ∈ [T, 2T ] log |ζ (1/2 + it)| ≥ V }

for each V > 0. Since Mk(T ) is expressed by

∫ 2T

T

|ζ (1/2 + it)|2k
dt = 2k

∫ ∞

−∞
e2kV meas(S(T, V ))dV

and the contribution of negative V is relatively small, his upper bounds for
S(T, V ) enables one to give the estimate (1.2). The techniques used in the
argument above are very complicated (at least to the author), but fortunately
there is a good survey about his paper (Koltes, [8]), in which many detail
computations omitted in the original paper are supplemented.

In this paper, we apply Soundararajan’s argument above to the moments of
Dirichlet L-functions on the critical line. Assuming the generalized Riemann
hypothesis (or simply GRH), we construct the inequality bounding log|L(1

2 +
it, χ)| (Proposition 2.1). This inequality gives an order estimate for |L( 1

2 +it, χ)|
in Corollary 2.2, which is stronger than the Lindelöf hypothesis for Dirichlet
L-functions in t-aspect (we note that the Lindelöf hypothesis for Dirichlet L-
functions is a consequence of GRH). In Theorem 4.1, by using this inequality,
we evaluate the measure of the set

Sχ(T, V ) := {t ∈ [T, 2T ] log |L (1/2 + it, χ)| ≥ V }

for each V > 0, where χ is always a primitive character modulo q which is
not quadratic (for some technical reason, we do not deal with the quadratic
characters, see the proof of Lemma 3.2). These estimates enables us to evaluate
the sum of the integral moments of Dirichlet L-functions. Precisely, under
the assumption of GRH, the following upper bound is obtained for all k > 0
(Theorem 5.1):

∗∑
χ(modq)

χ2 ̸=χ0

∫ 2T

T

����L
(

1
2

+ it, χ

)����
2k

dt ≪k,ϵ ϕ(q)T (logqT )k2+ϵ (∀ϵ > 0).

Here, the sum above is over all non-quadratic primitive characters modulo q.
The implied constant above depends only on k and ϵ. The arguments and com-
putations are almost the same as those in the original paper [12] (in many parts
we only have to replace T to qT and multiply cχ). We omit many computations,
since the similar ones are demonstrated in Koltes’ survey [8] in detail. The only
differences are that we slightly generalize the asymptotic formula introduced
in [2] to obtain an upper bound for certain sum over primes involving Dirich-
let characters in Lemma 3.1 (the difference arises from the point that L(s, χ)
does not have a pole at s = 1), and that we use the orthogonality of Dirichlet
characters in Lemma 3.3.

2
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functions is a consequence of GRH). In Theorem 4.1, by using this inequality,
we evaluate the measure of the set

Sχ(T, V ) := {t ∈ [T, 2T ] log |L (1/2 + it, χ)| ≥ V }

for each V > 0, where χ is always a primitive character modulo q which is
not quadratic (for some technical reason, we do not deal with the quadratic
characters, see the proof of Lemma 3.2). These estimates enables us to evaluate
the sum of the integral moments of Dirichlet L-functions. Precisely, under
the assumption of GRH, the following upper bound is obtained for all k > 0
(Theorem 5.1):

∗∑
χ(modq)

χ2 ̸=χ0

∫ 2T

T

����L
(

1
2

+ it, χ
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2

2 The main proposition and an order estimate
for L(1

2 + it, χ)

Firstly, we prepare the following main proposition, which is an analogous result
of Soundararajan’s inequality for the Riemann zeta function [12].

Proposition 2.1. Assume GRH. Let χ be a primitive Dirichlet character mod-
ulo q, T > 0 be sufficiently large, t ∈ [T, 2T ], x ≥ 2. Let λ0 = 0.4912 · · · be the
number which satisfies e−λ0 = λ0 + λ2

0
2 . Then, for any λ ≥ λ0, we have

log
����L

(
1
2

+ it, χ

)���� ≤ Re
∑
n≤x

χ(n)Λ(n)

n
1
2+ λ

logx +itlogn

log( x
n )

logx
+

1 + λ

2
· logqT

logx
+O

(
1

logx

)
.

(2.1)

Proof. Let Zχ be the set of all non-trivial zeros of L(s, χ) and a = 0 or 1 be the
number such that χ(−1) = (−1)a. Then, by Hadamard’s factorization, we have

L
′

L
(s, χ) = −1

2
log

q

π
− 1

2
Γ

′

Γ

(
s + a

2

)
+ B(χ) +

∑
ρ∈Zχ

(
1

s − ρ
+

1
ρ

)
. (2.2)

Here, B(χ) is a constant dependent on χ, whose the real part is given by

ReB(χ) = −
∑

ρ∈Zχ

Re
1
ρ
.

We put

Fχ(s) = Re
∑

ρ= 1
2+iγ∈Zχ

1
s − ρ

=
∑

ρ= 1
2+iγ∈Zχ

σ − 1
2

(σ − 1
2 )2 + (t − γ)2

for s = σ + it. If σ = Re(s) ≥ 1
2 , Fχ(s) is non-negative. We take the real parts

of the both sides of (2.2). Then, by Stirling’s formula,

−Re
L

′

L
(s, χ) =

1
2
log(qT ) − Fχ(s) + O(1) (2.3)

holds for t ∈ [T, 2T ]. By integrating both sides of (2.3) with respect to σ = Re(s)
from 1

2 to σ0 (> 1
2 ), we obtain

log
����L

(
1
2

+ it, χ

)���� − log |L (σ0 + it, χ)|

=
(

1
2
log(qT ) + O(1)

)(
σ0 −

1
2

)
− 1

2

∑

ρ= 1
2+iγ∈Zχ

log
(σ0 − 1

2 )2 + (t − γ)2

(t − γ)2

≤
(

σ0 −
1
2

)(
1
2
log(qT ) − 1

2
Fχ(s0) + O(1)

)

(2.4)

3
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for s0 = σ0 + it. On the other hand, as an analogue of Perron’s formula, the
following identity holds for x ≥ 2, c = max{1, 2 − σ} :

1
2πi

∫ c+i∞

c−i∞
−L

′

L
(s + w,χ)

xw

w2
dw =

∑
n≤x

χ(n)Λ(n)
ns

log
x

n
.

By moving the path of integration to the left and picking up the residues, the
left hand side equals

−L
′

L
(s, χ)logx −

(
L

′

L
(s, χ)

)′

−
∑

ρ∈Zχ

xρ−s

(ρ − s)2
−

∞∑
k=0

x−2k−s−a

(2k + s + a)2
.

Hence the following identity holds:

−L
′

L
(s, χ) =

∑
n≤x

χ(n)Λ(n)
ns

log x
n

logx
+

1
logx

(
L

′

L
(s, χ)

)′

+
1

logx

∑
ρ∈Zχ

xρ−s

(ρ − s)2
+

1
logx

∞∑
k=0

x−2k−s−a

(2k + s + a)2
.

(2.5)

By integrating both sides of (2.5) with respect to σ = Re(s) from σ0 to ∞, and
taking their real parts, we have

log|L(s0, χ)|

= Re


∑

n≤x

χ(n)Λ(n)
ns0 logn

log x
n

logx
− 1

logx

L
′

L
(s0, χ)

+
1

logx

∑
ρ∈Zχ

∫ ∞

σ0

xρ−s

(ρ − s)2
dσ +

1
logx

∞∑
k=0

∫ ∞

σ0

x−2k−s−a

(2k + s + a)2
dσ


 .

(2.6)

The last two integrals are evaluated as follows:
������
∑

ρ∈Zχ

∫ ∞

σ0

xρ−s

(ρ − s)2
dσ

������
≤

∑
ρ∈Zχ

∫ ∞

σ0

x
1
2−σ

|ρ − s0|2
dσ =

x
1
2−σ0

logx
· Fχ(s0)
σ0 − 1

2

,

and
∞∑

k=0

∫ ∞

σ0

x−2k−s−a

(2k + s + a)2
dσ = O

(
1

logx

)
,

since
∫ ∞

σ0

x−s−a

(s + a)2
dσ = O

(
1

logx

)
,

����
∫ ∞

σ0

x−2k−s−a

(2k + s + a)2
dσ

���� ≤
1

4k2logx
(k ≥ 1).
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1
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ns0 logn
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n
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− 1

logx

L
′

L
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+
1

logx

∑
ρ∈Zχ
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σ0
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������
∑

ρ∈Zχ

∫ ∞

σ0
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dσ

������
≤

∑
ρ∈Zχ

∫ ∞

σ0

x
1
2−σ

|ρ − s0|2
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x
1
2−σ0

logx
· Fχ(s0)
σ0 − 1

2

,

and
∞∑

k=0

∫ ∞

σ0

x−2k−s−a

(2k + s + a)2
dσ = O

(
1

logx

)
,

since
∫ ∞

σ0

x−s−a

(s + a)2
dσ = O

(
1

logx

)
,

����
∫ ∞

σ0

x−2k−s−a

(2k + s + a)2
dσ

���� ≤
1

4k2logx
(k ≥ 1).

4

In addition, by (2.3), we have

Re
L

′

L
(s0, χ) = Fχ(s0) −

1
2
log(qT ) + O(1).

Therefore, from (2.6), we have

log|L(s0, χ)| ≤Re
∑
n≤x

χ(n)Λ(n)
ns0 logn

·
log x

n

logx
− Fχ(s0)

logx
+

log(qT )
2logx

+
x

1
2−σ0

(logx)2
· Fχ(s0)
σ0 − 1

2

+ O

(
1

logx

)
.

(2.7)

Combining (2.4) and (2.7), we obtain

log
����L

(
1
2

+ it, χ

)����

≤ Re
∑
n≤x

χ(n)Λ(n)
ns0 logn

·
log x

n

logx
+

1
2
(logqT )

(
σ0 −

1
2

+
1

logx

)

+ Fχ(s0)

{
x

1
2−σ0

(logx)2
· 1
σ0 − 1

2

− 1
2
(σ0 −

1
2
) − 1

logx

}
+ O

(
1

logx

)
.

(2.8)

We put σ0 = 1
2 + λ

logx for λ > 0. Then, the term involving Fχ(s0) becomes
negative when λ ≥ λ0. Therefore, for such λ, the inequality of this proposition
holds.

As a consequence of Proposition 2.1, we obtain the following order estimates
for L( 1

2 + it, χ) under the assumption of GRH:

Corollary 2.2. Assume GRH. Let χ be a primitive Dirichlet character modulo
q and λ0 = 0.4912 · · · be the number given in Proposition 2.1. Then, for any
ϵ > 0, the inequality

����L
(

1
2

+ it, χ

)���� ≤ exp
((

1 + λ0

4
+ ϵ

)
logqT

loglogqT

)
(2.9)

holds for t ∈ [T, 2T ] when qT is sufficiently large. In particular, we have
����L

(
1
2

+ it, χ

)���� ≤ exp
(

3logqT

8loglogqT

)
(2.10)

for t ∈ [T, 2T ] when qT is sufficiently large.

Proof. The proof is almost the same as the one in [8], in which the case of the
Riemann zeta function is treated. We put λ = λ0, x = (logqT )2−δ (δ > 0) in
(2.1). Then, by taking δ > 0 sufficiently small, we have

log
����L

(
1
2

+ it, χ

)����

5
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≤
∑

n≤(logqT )2−δ

1√
n

+
1 + λ0

2(2 − δ)
· logqT

loglogqT
+ O

(
1

loglogqT

)

≤
(

1 + λ0

4
+ ϵ

)
logqT

loglogqT
.

Thus we obtain (2.9). Moreover, since λ0 < 1
2 , the inequality (2.10) holds.

3 Auxiliary lemmas

In this section, we prepare several lemmas to prove the main theorem in the
next section.

Lemma 3.1. Assume GRH. Let χ be a non-principal character modulo q, T > 1
be sufficiently large, and t ∈ [T, 2T ]. Then, the following estimate holds:

∑
n≤x

χ(n)Λ(n)
n2it

≪
√

xlog(qxT ). (3.1)

Proof. We denote the left hand side of (3.1) by ψ(x, t; χ), and define ψ0(x, t; χ)
by

ψ0(x, t; χ) =
{

ψ(x, t; χ) (if x is not power of primes)
ψ(x, t; χ) − χ(x)Λ(x)

2x2it (x = pm, p : prime,m ∈ N).

By almost the same argument given in [2] (in this book, the case t = 0 is
considered), ψ0(x, t; χ) is approximated by the integral

J(x, T
′
; χ) :=

1
2πi

∫ c+iT
′

c−iT ′
−L

′
(z + 2it, χ)

L(z + 2it, χ)
· xz

z
dz

for sufficiently large T
′
> 1 (if necessary, we slightly change the value of this T

′

so that L(z+2it, χ) does not have any zero on Im(z) = ±T
′
), and by computing

this integral, we have

ψ0(x, t; χ) = −
∑

ρ∈Zχ

|Imρ−2t|<T ′

xρ−2it

ρ − 2it
− L

′
(2it, χ)

L(2it, χ)


+

∑
n≥0

x−2n−a−2it

2n + a + 2it




+ O

(
x(logx)2

T ′ +
x(logq(2t + T

′
))2

T ′ logx
+ logx

)
.

Here, the third term of the right hand side appears if and only if 2t < T
′
. Easily

we have
L

′
(2it, χ)

L(2it, χ)
≪ (logqT )2,

6
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≤
∑
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1√
n

+
1 + λ0

2(2 − δ)
· logqT

loglogqT
+ O

(
1

loglogqT

)

≤
(

1 + λ0

4
+ ϵ

)
logqT

loglogqT
.
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ψ(x, t; χ) − χ(x)Λ(x)

2x2it (x = pm, p : prime,m ∈ N).

By almost the same argument given in [2] (in this book, the case t = 0 is
considered), ψ0(x, t; χ) is approximated by the integral

J(x, T
′
; χ) :=

1
2πi

∫ c+iT
′

c−iT ′
−L

′
(z + 2it, χ)

L(z + 2it, χ)
· xz

z
dz

for sufficiently large T
′
> 1 (if necessary, we slightly change the value of this T

′

so that L(z+2it, χ) does not have any zero on Im(z) = ±T
′
), and by computing

this integral, we have

ψ0(x, t; χ) = −
∑

ρ∈Zχ

|Imρ−2t|<T ′

xρ−2it

ρ − 2it
− L

′
(2it, χ)

L(2it, χ)


+

∑
n≥0

x−2n−a−2it

2n + a + 2it




+ O

(
x(logx)2

T ′ +
x(logq(2t + T

′
))2

T ′ logx
+ logx

)
.

Here, the third term of the right hand side appears if and only if 2t < T
′
. Easily

we have
L

′
(2it, χ)

L(2it, χ)
≪ (logqT )2,

6

∑
n≥0

x−2n−a−2it

2n + a + 2it
≪ 1 (uniformly).

Moreover, under the assumption of GRH, we have

∑

ρ= 1
2+iγ∈Zχ

|γ−2t|<T ′

����
xρ−2it

ρ − 2it

���� ≪ x
1
2 (logq(2t + T

′
))logT

′
,

since Re(ρ) = 1
2 for all ρ ∈ Zχ. Therefore, we get

∑
n≤x

χ(n)Λ(n)
n2it

∼ψ0(x, t; χ)

≪ x
1
2 (logq(2t + T

′
))logT

′
+ (logqT )2 +

x(logx)2

T ′

+
x(logq(2t + T

′
))2

T ′ logx
+ logx.

By putting T
′
=

√
x, we obtain (3.1).

Lemma 3.2. Let χ be a Dirichlet character modulo q such that χ2 ̸= χ0 ( χ0

denotes the principal character ). Then, under the assumption of GRH, for
T ≤ t ≤ 2T , 2 ≤ x ≤ (qT )2, σ ≥ 1

2 , the following estimate holds:
��������

∑
n≤x

n ̸=prime

χ(n)Λ(n)
nσ+itlogn

·
log x

n

logx

��������
≪ log3(qT ).

Here, log3x := logloglogx.

Proof. The left hand side is the sum over n = pk, where p runs the set of prime
numbers and k ≥ 2. In these, the sum over n = pk, k ≥ 3 is at most

∑
n=pk

p:prime

k≥3

1
nσ

≤
∑
k≥3

∞∑
n=2

1

n
k
2

=
∑
k≥3

(
ζ

(
k

2

)
− 1

)
= O(1).

Hence our main problem is to evaluate the sum

∑
n≤x

n=p2

p:prime

χ(n)Λ(n)
nσ+itlogn

·
log x

n

logx
. (3.2)
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One can easily see that the difference between
∑

p≤z
χ(p2)logp

p2it and
∑

n≤z
χ(n2)Λ(n)

n2it

is at most ������
∑
p≤z

χ(p2)logp

p2it
−

∑
n≤z

χ(n2)Λ(n)
n2it

������
≪

√
z(logz)2

for z ≥ 2. Therefore, if χ2 ̸= χ0, by Lemma 3.1 we have

∑
p≤z

χ(p2)logp

p2it
≪

√
zlog2(qzT ). (3.3)

Moreover, by Abel’s summation formula, if z ≤ qT , we have

∑
p≤z

χ(p2)
p2it

=
∑
p≤z

χ(p2)logp

p2it
· 1
logp

≪
√

zlog2(qzT )
logz

+
∫ z

2

√
ulog2(quT )
ulog2u

du

≪
√

z

logz
log2(qT ).

(3.4)

We return to the sum (3.2). We write x = y2,
√

2 ≤ y ≤ qT . If y ≤ log4qT ,
������
∑
p≤y

χ(p2)
p2σ+2it

·
log y

p

logy

������
≤

∑
p≤log4qT

1
p

= O (log3qT ) ,

since
∑

p≤x
1
p ≪ loglogx. Next, we assume y > log4qT . Then

������
∑
p≤y

χ(p2)
p2σ+2it

·
log y

p

logy

������
≤ O(log3qT ) +

������
∑

log4qT<p≤y

χ(p2)
p2σ+2it

·
log y

p

logy

������
. (3.5)

By Abel’s summation formula, the second term of the right hand side of (3.5)
is the absolute value of

∑
p≤y

χ(p2)log y
p

p2itlogy
· 1
y2σ

−
∑

p≤log4qT

χ(p2)log y
p

p2itlogy
· 1
(log4qT )2σ

+
∫ y

log4qT

2σ

u2σ+1

∑
p≤u

χ(p2)log y
p

p2itlogy
du.

(3.6)

The first and second term of (3.6) is clearly O(1), and the third term becomes

2σ

∫ y

log4qT

1
u2σ+1





∑
p≤u

χ(p2)
p2it

− 1
logy

∑
p≤u

χ(p2)logp

p2it



 du,

which is also evaluated by O(1), by using the estimates (3.3) and (3.4). Thus
we obtain the result.
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One can easily see that the difference between
∑

p≤z
χ(p2)logp

p2it and
∑

n≤z
χ(n2)Λ(n)

n2it

is at most ������
∑
p≤z

χ(p2)logp

p2it
−

∑
n≤z

χ(n2)Λ(n)
n2it

������
≪

√
z(logz)2

for z ≥ 2. Therefore, if χ2 ̸= χ0, by Lemma 3.1 we have

∑
p≤z

χ(p2)logp

p2it
≪

√
zlog2(qzT ). (3.3)

Moreover, by Abel’s summation formula, if z ≤ qT , we have

∑
p≤z

χ(p2)
p2it

=
∑
p≤z

χ(p2)logp

p2it
· 1
logp

≪
√

zlog2(qzT )
logz

+
∫ z

2

√
ulog2(quT )
ulog2u

du

≪
√

z

logz
log2(qT ).

(3.4)

We return to the sum (3.2). We write x = y2,
√

2 ≤ y ≤ qT . If y ≤ log4qT ,
������
∑
p≤y

χ(p2)
p2σ+2it

·
log y

p

logy

������
≤

∑
p≤log4qT

1
p

= O (log3qT ) ,

since
∑

p≤x
1
p ≪ loglogx. Next, we assume y > log4qT . Then

������
∑
p≤y

χ(p2)
p2σ+2it

·
log y

p

logy

������
≤ O(log3qT ) +

������
∑

log4qT<p≤y

χ(p2)
p2σ+2it

·
log y

p

logy

������
. (3.5)

By Abel’s summation formula, the second term of the right hand side of (3.5)
is the absolute value of

∑
p≤y

χ(p2)log y
p

p2itlogy
· 1
y2σ

−
∑

p≤log4qT

χ(p2)log y
p

p2itlogy
· 1
(log4qT )2σ

+
∫ y

log4qT

2σ

u2σ+1

∑
p≤u

χ(p2)log y
p

p2itlogy
du.

(3.6)

The first and second term of (3.6) is clearly O(1), and the third term becomes

2σ

∫ y

log4qT

1
u2σ+1





∑
p≤u

χ(p2)
p2it

− 1
logy

∑
p≤u

χ(p2)logp

p2it



 du,

which is also evaluated by O(1), by using the estimates (3.3) and (3.4). Thus
we obtain the result.

8

The following lemma holds unconditionally:

Lemma 3.3. Let T > 1 be sufficiently large, 2 ≤ x ≤ qT , and k ∈ Z≥0 satisfies
xk ≤ qT

logqT . Then, for any sequence (ap) ⊂ C, we have

∑
χ(modq)

∫ 2T

T

������
∑
p≤x

χ(p)ap

p
1
2+it

������

2k

dt ≪ ϕ(q)Tk!


∑

p≤x

|ap|2

p




k

.

In particular, there exists certain constants cχ ≥ 0 such that
∑

χ(modq) cχ = ϕ(q)
and the estimate

∫ 2T

T

������
∑
p≤x

χ(p)ap

p
1
2+it

������

2k

dt ≪ cχTk!


∑

p≤x

|ap|2

p




k

holds.

Proof. We write 
∑

p≤x

χ(p)ap

p
1
2+it




k

=
∑

n≤xk

χ(n)ak,x(n)
n

1
2+it

.

Then, by the orthogonality of characters, we have

∑
χ(modq)

∫ 2T

T

������
∑
p≤x

χ(p)ap

p
1
2+it

������

2k

dt

= ϕ(q)
∑

n,m≤xk

n≡m(modq)

(nm,q)=1

ak,x(n)ak,x(m)√
nm

∫ 2T

T

(m

n

)it

dt

≤ ϕ(q)T
∑

n≤xk

|ak,x(n)|2

n
+ O


ϕ(q)

∑
n,m≤xk,n̸=m

n≡m(modq)

|ak,x(n)ak,x(m)|√
nm|logm

n |


 .

(3.7)

Let us evaluate the O-term of (3.7). Since

|ak,x(n)ak,x(m)|√
nm

≤ 1
2

(
|ak,x(n)|2

n
+

|ak,x(m)|2

m

)
,

we have

∑
n,m≤xk,n̸=m

n≡m(modq)

|ak,x(n)ak,x(m)|√
nm|log n

m |
≤ 1

2

∑
n,m≤xk,n̸=m

n≡m(modq)

(
|ak,x(n)|2

n|logm
n |

+
|ak,x(m)|2

m|logm
n |

)

9
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=
∑

n≤xk

|ak,x(n)|2

n

∑
m≤xk,m ̸=n

m≡n(modq)

1
|logm

n |
.

We decompose the sum over m into m < n and m > n. Then the former is

∑
m<n

m≡n(modq)

1
|logm

n |
=

∑
m<n

m≡n(modq)

1
|log(1 − n−m

n )|
≤ n

∑
m<n

m≡n(modq)

1
n − m

= n
∑

m′<n

m′≡0(modq)

1
m′ = n

∑

m′′< n
q

1
qm′′ ≪ n

q
log

n

q
≪ xk

q
log

xk

q
≪ T.

The latter is
∑

n<m≤xk

m≡n(modq)

1
logm

n

=
∑

n<m≤xk

m≡n(modq)

1
log(1 + m−n

n )
≤

∑

1≤m′≤xk

m′≡0(modq)

1

log(1 + m′

n )
.

Further, we decompose this sum into 1 ≤ m
′ ≤ n and n < m

′ ≤ xk. Since
1

log(1+x) ≤ 2
x (0 < x ≤ 1), the former is

∑

1≤m′≤n

m′≡0(modq)

1

log(1 + m′

n )
≤

∑

1≤m′≤n

m′≡0(modq)

2n

m′ ≪ xk

q
logxk ≪ T.

If m
′
> n, then 1

log(1+ m
′

n )
≤ 1

log2 holds. Therefore, the latter is simply evaluated

by
∑

n<m′≤xk

m′≡0(modq)

1

log(1 + m′

n )
≪

xk

q

log2
≪ T.

Consequently we have ∑
m≤xk,m ̸=n

m≡n(modq)

1
|logm

n |
≪ T.

Therefore, the O-term in (3.7) is evaluated by

≪ ϕ(q)T
∑

n≤xk

|ak,x(n)|2

n
.

Finally, by applying Soundararajan’s argument [12] to the sum for |ak,x(n)|2
n , we

obtain

10
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=
∑

n≤xk

|ak,x(n)|2

n

∑
m≤xk,m ̸=n

m≡n(modq)

1
|logm

n |
.

We decompose the sum over m into m < n and m > n. Then the former is

∑
m<n

m≡n(modq)

1
|logm

n |
=

∑
m<n

m≡n(modq)

1
|log(1 − n−m

n )|
≤ n

∑
m<n

m≡n(modq)

1
n − m

= n
∑

m′<n

m′≡0(modq)

1
m′ = n

∑

m′′< n
q

1
qm′′ ≪ n

q
log

n

q
≪ xk

q
log

xk

q
≪ T.

The latter is
∑

n<m≤xk

m≡n(modq)

1
logm

n

=
∑

n<m≤xk

m≡n(modq)

1
log(1 + m−n

n )
≤

∑

1≤m′≤xk

m′≡0(modq)

1

log(1 + m′

n )
.

Further, we decompose this sum into 1 ≤ m
′ ≤ n and n < m

′ ≤ xk. Since
1

log(1+x) ≤ 2
x (0 < x ≤ 1), the former is

∑

1≤m′≤n

m′≡0(modq)

1

log(1 + m′

n )
≤

∑

1≤m′≤n

m′≡0(modq)

2n

m′ ≪ xk

q
logxk ≪ T.

If m
′
> n, then 1

log(1+ m
′

n )
≤ 1

log2 holds. Therefore, the latter is simply evaluated

by
∑

n<m′≤xk

m′≡0(modq)

1

log(1 + m′

n )
≪

xk

q

log2
≪ T.

Consequently we have ∑
m≤xk,m ̸=n

m≡n(modq)

1
|logm

n |
≪ T.

Therefore, the O-term in (3.7) is evaluated by

≪ ϕ(q)T
∑

n≤xk

|ak,x(n)|2

n
.

Finally, by applying Soundararajan’s argument [12] to the sum for |ak,x(n)|2
n , we

obtain

10

∑
χ(modq)

∫ 2T

T

������
∑
p≤x

χ(p)ap

p
1
2+it

������

2k

dt ≪ ϕ(q)T
∑

n≤xk

|ak,x(n)|2

n

≪ ϕ(q)Tk!


∑

p≤x

|ap|2

p




k

.

4 Large values of L(1
2 + it, χ)

Now we have prepared all the lemmas to prove the main theorems (Theorem
4.1 and Theorem 5.1). To describe them, we introduce several notations. For
a Dirichlet character χ, sufficiently large T > 1, and any V ∈ R, we define the
set Sχ(T, V ) by

Sχ(T, V ) := {t ∈ [T, 2T ] log |L (1/2 + it, χ)| ≥ V }

and let µ(Sχ(T, V )) be its Lebesgue measure. We establish upper bounds for
this µ(Sχ(T, V )) when V is sufficiently large.

Theorem 4.1. Assume GRH. Let χ be a primitive Dirichlet character modulo
q such that χ2 ̸= χ0. Then, for each V , the following estimate for µ(Sχ(T, V ))
holds:
1) If 10

√
loglogqT < V ≤ loglogqT ,

µ(Sχ(T, V )) ≪ cχTV√
loglogqT

exp
(
− V 2

loglogqT

(
1 − 4

log3qT

))
.

2) If loglogqT < V ≤ 1
2 (loglogqT )log3qT ,

µ(Sχ(T, V )) ≪ cχTV√
loglogqT

exp

(
− V 2

loglogqT

(
1 − 7V

4loglogqT log3qT

)2
)

.

3) If 1
2 (loglogqT )log3qT < V ≤ 3logqT

8loglogqT ,

µ(Sχ(T, V )) ≪ cχT exp
(
− V

129
logV

)
.

4) If V > 3logqT
8loglogqT ,

µ(Sχ(T, V )) = 0.

Here, cχ are the constants given in Lemma 3.3.
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Proof. The case 4) directly follows from Corollary 2.2. Henceforth we assume
V ≤ 3logqT

8loglogqT . For such V , we define A ≥ 1 by

A :=




1
2 log3qT (10

√
loglogqT < V ≤ loglogqT )

loglogqT
2V log3qT (loglogqT < V ≤ 1

2 (loglogqT )log3qT )

1 (V > 1
2 (loglogqT )log3qT )

and put x = (qT )
A
V (< qT ), z = x

1
loglogqT . Combining Proposition 2.1 and

Lemma 3.2, we have

log
����L

(
1
2

+ it, χ

)���� ≤
������
∑
p≤x

χ(p)

p
1
2+

λ0
logx +it

·
logx

p

logx

������
+

(1 + λ0)V
2A

+ O(log3(qT ))

≤ S1(t) + S2(t) +
(1 + λ0)V

2A
+ O(log3(qT )),

(4.1)
where

S1(t) :=

������
∑
p≤z

χ(p)

p
1
2+

λ0
logx +it

·
logx

p

logx

������
, S2(t) :=

������
∑

z<p≤x

χ(p)

p
1
2+

λ0
logx +it

·
logx

p

logx

������
.

Now, if t ∈ Sχ(T, V ) (i.e. log|L( 1
2 + it, χ)| ≥ V ), at least either one of

S1(t) ≥ V

(
1 − 7

8A

)
=: V1 or S2(t) ≥

V

8A
=: V2

holds. In fact, if both of these are not valid, then V
A is evaluated by O(log3qT ),

which is a contradiction in any case. We put

µi := µ({t ∈ [T, 2T ]|Si(t) ≥ Vi})

for i = 1, 2. Then
µ(Sχ(T, V )) ≤ µ1 + µ2.

First, let us evaluate µ2. Let k be the largest integer which satisfies k ≤ V
A − 1.

Then one can easily check that the condition xk ≤ qT
logqT is satisfied, so we can

apply Lemma 3.3 to

ap =




0 (p ≤ z)

1

p
λ0

logx

· log x
p

logx (z < p ≤ x).

We have

∫ 2T

T

|S2(t)|2dt =
∫ 2T

T

������
∑
p≤x

χ(p)ap

p
1
2+it

������

2k

dt

12
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Proof. The case 4) directly follows from Corollary 2.2. Henceforth we assume
V ≤ 3logqT

8loglogqT . For such V , we define A ≥ 1 by

A :=




1
2 log3qT (10

√
loglogqT < V ≤ loglogqT )

loglogqT
2V log3qT (loglogqT < V ≤ 1

2 (loglogqT )log3qT )

1 (V > 1
2 (loglogqT )log3qT )

and put x = (qT )
A
V (< qT ), z = x

1
loglogqT . Combining Proposition 2.1 and

Lemma 3.2, we have

log
����L

(
1
2

+ it, χ

)���� ≤
������
∑
p≤x

χ(p)

p
1
2+

λ0
logx +it

·
logx

p

logx

������
+

(1 + λ0)V
2A

+ O(log3(qT ))

≤ S1(t) + S2(t) +
(1 + λ0)V

2A
+ O(log3(qT )),

(4.1)
where

S1(t) :=

������
∑
p≤z

χ(p)

p
1
2+

λ0
logx +it

·
logx

p

logx

������
, S2(t) :=

������
∑

z<p≤x

χ(p)

p
1
2+

λ0
logx +it

·
logx

p

logx

������
.

Now, if t ∈ Sχ(T, V ) (i.e. log|L( 1
2 + it, χ)| ≥ V ), at least either one of

S1(t) ≥ V

(
1 − 7

8A

)
=: V1 or S2(t) ≥

V

8A
=: V2

holds. In fact, if both of these are not valid, then V
A is evaluated by O(log3qT ),

which is a contradiction in any case. We put

µi := µ({t ∈ [T, 2T ]|Si(t) ≥ Vi})

for i = 1, 2. Then
µ(Sχ(T, V )) ≤ µ1 + µ2.

First, let us evaluate µ2. Let k be the largest integer which satisfies k ≤ V
A − 1.

Then one can easily check that the condition xk ≤ qT
logqT is satisfied, so we can

apply Lemma 3.3 to

ap =




0 (p ≤ z)

1

p
λ0

logx

· log x
p

logx (z < p ≤ x).

We have

∫ 2T

T

|S2(t)|2dt =
∫ 2T

T

������
∑
p≤x

χ(p)ap

p
1
2+it

������

2k

dt

12

≪ cχTk!


 ∑

z<p≤x

1

p1+
2λ0
logx

·
log2 x

p

log2x




k

≪ cχT (k(log3(qT ) + O(1)))k.

By combining this and trivial inequality

∫ 2T

T

|S2(t)|2kdt ≥ µ2V
2k
2 ,

we obtain
µ2 ≪ cχTV −2k

2 (2klog3(qT ))k

≪ cχT exp
(
− V

2A
logV

)
.

(4.2)

Next, we evaluate µ1. If k ∈ N satisfies

1 ≤ k ≤
log( qT

logqT )

logz
, (4.3)

then zk ≤ qT
logqT holds. Therefore, we can apply Lemma 3.3 to

ap =




1

p
λ0

logx

· log x
p

logx (p ≤ z)

0 (p > z)

and we have

∫ 2T

T

|S1(t)|2kdt ≪ cχTk!


∑

p≤z

1

p1+
2λ0
logx




k

≤ cχTk!


∑

p≤z

1
p




k

≪ cχT
√

k

(
kloglogqT

e

)k

.

By combining this and trivial inequality

∫ 2T

T

|S1(t)|2kdt ≥ µ1V
2k
1 ,

we obtain

µ1 ≪ cχT
√

k

(
kloglogqT

eV 2
1

)k

. (4.4)
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We take k ∈ N by

k =




[ V 2
1

loglogqT ] (V ≤ (loglogqT )2)

[10V ] (V > (loglogqT )2).

Then the condition (4.3) is satisfied in any case and the estimate (4.4) becomes

µ1 ≪




cχT V1√
loglogqT

( 1
e )

V 2
1

loglogqT (V ≤ (loglogqT )2)

cχT
√

V
(

10V loglogqT
eV 2(1− 7

8A )2

)10V

(V > (loglogqT )2).

(4.5)

Finally, by evaluating the right hand sides of (4.2) and (4.5) carefully in each
case (this process is almost the same as the one in [12] or [8]. We only have to
replace logT to logqT and multiply the values by cχ), we obtain the estimates
of the theorem.

5 Moments of the Dirichlet L-functions

We can apply Theorem 4.1 to the evaluation of the integral moments of the
Dirichlet L-functions on Re(s) = 1

2 .

Theorem 5.1. Assume GRH. Then, for any fixed k > 0, we have

∗∑
χ(modq)

χ2 ̸=χ0

∫ 2T

T

����L
(

1
2

+ it, χ

)����
2k

dt ≪ϵ ϕ(q)T (logqT )k2+ϵ (∀ϵ > 0).

Here, the sum above is over all primitive Dirichlet characters modulo q such
that χ2 ̸= χ0.

Proof. By evaluating the right hand sides of Theorem 4.1 roughly in the cases
10
√

loglogqT ≤ V ≤ 4kloglogqT and V > 4kloglogqT , we obtain the following
estimates:
1) If 10

√
loglogqT ≤ V ≤ 4kloglogqT ,

µ(Sχ(T, V )) ≪ cχT (logqT )o(1)exp
(
− V 2

loglogqT

)
. (5.1)

2) If V > 4kloglogqT ,

µ(Sχ(T, V )) ≪ cχT (logqT )o(1)exp (−4kV ) . (5.2)

3) If V < 10
√

loglogqT , we use the trivial estimate

µ(Sχ(T, V )) ≪ T. (5.3)

14
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We take k ∈ N by

k =




[ V 2
1

loglogqT ] (V ≤ (loglogqT )2)

[10V ] (V > (loglogqT )2).

Then the condition (4.3) is satisfied in any case and the estimate (4.4) becomes

µ1 ≪




cχT V1√
loglogqT

( 1
e )

V 2
1

loglogqT (V ≤ (loglogqT )2)

cχT
√

V
(

10V loglogqT
eV 2(1− 7

8A )2

)10V

(V > (loglogqT )2).

(4.5)

Finally, by evaluating the right hand sides of (4.2) and (4.5) carefully in each
case (this process is almost the same as the one in [12] or [8]. We only have to
replace logT to logqT and multiply the values by cχ), we obtain the estimates
of the theorem.

5 Moments of the Dirichlet L-functions

We can apply Theorem 4.1 to the evaluation of the integral moments of the
Dirichlet L-functions on Re(s) = 1

2 .

Theorem 5.1. Assume GRH. Then, for any fixed k > 0, we have

∗∑
χ(modq)

χ2 ̸=χ0

∫ 2T

T

����L
(

1
2

+ it, χ

)����
2k

dt ≪ϵ ϕ(q)T (logqT )k2+ϵ (∀ϵ > 0).

Here, the sum above is over all primitive Dirichlet characters modulo q such
that χ2 ̸= χ0.

Proof. By evaluating the right hand sides of Theorem 4.1 roughly in the cases
10

√
loglogqT ≤ V ≤ 4kloglogqT and V > 4kloglogqT , we obtain the following

estimates:
1) If 10

√
loglogqT ≤ V ≤ 4kloglogqT ,

µ(Sχ(T, V )) ≪ cχT (logqT )o(1)exp
(
− V 2

loglogqT

)
. (5.1)

2) If V > 4kloglogqT ,

µ(Sχ(T, V )) ≪ cχT (logqT )o(1)exp (−4kV ) . (5.2)

3) If V < 10
√

loglogqT , we use the trivial estimate

µ(Sχ(T, V )) ≪ T. (5.3)

14

We rewrite the integral moment as follows. For T > 0,
∫ 2T

T

����L
(

1
2

+ it, χ

)����
2k

dt

=
∫ 2T

T

e2klog|L( 1
2+it,χ)|dt

=
∫ 2T

T

∫ log|L( 1
2+it,χ)|

−∞
2ke2kV dV dt

= 2k

∫ 2T

T

∫ ∞

−∞
1{t|log|L( 1

2+it,χ)|≥V }(t)e
2ktdV dt

= 2k

∫ ∞

−∞
e2kV µ(Sχ(T, V ))dV

= 2k

(∫ 10
√

loglogqT

−∞
+

∫ 4kloglogqT

10
√

loglogqT

+
∫ ∞

4kloglogqT

)
e2kV µ(Sχ(T, V ))dV

=: 2kI1 + 2kI2 + 2kI3,

say. Here, 1{t|log|L( 1
2+it,χ)|≥V }(t) is the characteristic function on the set

{t | log|L( 1
2 + it, χ)| ≥ V }. First, by (5.3),

I1 ≪ T

∫ 10
√

loglogqT

−∞
e2kV dV ≪ Te20k

√
loglogqT ≪ T (logqT )k2

.

Next, by (5.1),

I2 ≪ cχT (logqT )o(1)

∫ 4kloglogqT

10
√

loglogqT

e2kV − V 2
loglogqT dV

≤ cχT (logqT )o(1)

∫ 4kloglogqT

10
√

loglogqT

ek2loglogqT dV

≪ cχT (logqT )o(1) · 4k(loglogqT )(logqT )k2

≪ϵ cχT (logqT )k2+ϵ.

Finally, by (5.2),

I3 ≪ cχT (logqT )o(1)

∫ ∞

4kloglogqT

e−2kV dV ≪ϵ cχT (logqT )−8k2+ϵ.

Combining these, we obtain
∫ 2T

T

����L
(

1
2

+ it, χ

)����
2k

dt ≪ϵ cχT (logqT )k2+ϵ.

Since the constants cχ satisfy

0 ≤
∗∑

χ(modq)

χ2 ̸=χ0

cχ ≤
∑

χ(modq)

cχ = ϕ(q),

15
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by taking the sum over the Dirichlet characters satisfying the conditions, we
obtain the result.
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