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by taking the sum over the Dirichlet characters satisfying the conditions, we
obtain the result.
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On a certain class of cuspidal prehomogeneous vector spaces

and its basic relative invariants

Takeyoshi KOGISO∗† and Yoshiteru KUROSAWA‡

Abstract

In this note, we give a certain class of cuspidal prehomogeneous vector spaces and determine

explicitly two basic relative invariants of a cuspidal prehomogeneous vector space (GL(4) ×
GL(3)×SL(2), Λ∗

1 ⊗ 1⊗ 1+Λ1 ⊗Λ∗
1 ⊗Λ∗

1, M(1, 4)⊕M(4, 3)⊕M(4, 3)) which is a special case

of the class. We consider everything over the complex number field C.

Introduction

Let G be a linear algebraic group and ρ its rational representation on a finite dimensional vector
space V , all defined over the complex number field C. If V has a Zariski-dense G-orbit O, we call
the triplet (G, ρ, V ) a prehomogeneous vector space. In this case, we call v ∈ O a generic point,
and the isotropy subgroup Gv = {g ∈ G | ρ(g)v = v} at v is called a generic isotropy subgroup.
We call a prehomogeneous vector space (G, ρ, V ) a reductive prehomogeneous vector space if G is
reductive.

Let ρ : G → GL(V ) be a rational representation of a linear algebraic group G on an m-
dimensional vector space V and let n be a positive integer with m > n. A triplet C1 := (G ×
GL(n), ρ ⊗ Λ1, V ⊗ V (n)) is a prehomogeneous vector space if and only if a triplet C2 := (G ×
GL(m − n), ρ∗ ⊗ Λ1, V

∗ ⊗ V (m − n)) is a prehomogeneous vector space. We say that C1 and C2

are the castling transforms of each other. Two triplets are said to be castling equivalent if one is
obtained from the other by a finite number of successive castling transformations.

Assume that (G, ρ, V ) is a prehomogeneous vector space with a Zariski-dense G-orbit O. A non-
zero rational function f(v) on V is called a relative invariant if there exists a rational character
χ : G → GL(1) satisfying f(ρ(g)v) = χ(g)f(v) for g ∈ G. In this case, we write f ↔ χ. Let
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Si = {v ∈ V | fi(v) = 0} (i = 1, . . . , l) be irreducible components of S := V \O with codimension
one. When G is connected, these irreducible polynomials fi(v) (i = 1, . . . , l) are algebraically
independent relative invariants and any relative invariant f(v) can be expressed uniquely as f(v) =
cf1(v)m1 · · · fl(v)ml with c ∈ C× and m1, . . . ,ml ∈ Z. These fi(v) (i = 1, . . . , l) are called the basic
relative invariants of (G, ρ, V ).

Prehomogeneous vector spaces (G, ρ, V ) with dimG = dimV are called cuspidal prehomoge-
neous vector spaces (cf. [CoMc]). Cuspidal prehomogeneous vector spaces are important in the
sense of contraction (cf. [Gy]) of prehomogeneous vector spaces and include arithmetical interest-
ing examples such as the space of binary cubic forms and (SL(5)×GL(4), Λ2⊗Λ1, V (10)⊗V (4)).
However it is very difficult to determine the structures of the basic relative invariants and its b-
function. For example, the microlocal structure of (SL(5)×GL(4), Λ2⊗Λ1, V (10)⊗V (4)) is most
complicated in all irreducible prehomogeneous vector spaces.

In this note, we give a certain class of cuspidal prehomogeneous vector spaces and determine
explicitly two basic relative invariants of a cuspidal prehomogeneous vector space (GL(4)×GL(3)×
SL(2),Λ∗

1 ⊗ 1⊗ 1 + Λ1 ⊗Λ∗
1 ⊗Λ∗

1,M(1, 4)⊕M(4, 3)⊕M(4, 3)) which is a special case of the class.
This is an interesting example of the cuspidal prehomogeneous vector spaces.

In Section 1, we give a certain class of cuspidal prehomogeneous vector spaces which was
observed in [Kas, Theorem 3.22]. In Section 2, we construct two basic relative invariants of the
cuspidal prehomogeneous vector space (GL(4)×GL(3)×SL(2),Λ∗

1⊗1⊗1+Λ1⊗Λ∗
1⊗Λ∗

1,M(1, 4)⊕
M(4, 3) ⊕ M(4, 3)) which is a special case of the class in Section 1.

Notation

Let V be an n-dimensional vector space spanned by u1, . . . , un. For G = GL(n), SL(n), we
denote by Λ1 a representation of G on V which is defined by (u1, . . . , un) �→ (u1, . . . , un)g for
g ∈ G. Let

∧k
V (1 ≤ k ≤ n − 1) be a vector space spanned by exterior products ui1 ∧ · · · ∧ uik

(1 ≤ i1 < · · · < ik ≤ n). We denote by Λk (1 ≤ k ≤ n−1) a representation of SL(n) on
∧k

V which
is defined by ui1 ∧· · ·∧uik

�→ Λ1(g)ui1 ∧· · ·∧Λ1(g)uik
for g ∈ SL(n). Let SkV (k ≥ 1) be a vector

space spanned by symmetric tensor products ui1 · · ·uik
(1 ≤ i1 ≤ · · · ≤ ik ≤ n). We denote by kΛ1

(k ≥ 1) a representation of SL(n) on SkV which is defined by ui1 · · ·uik
�→ Λ1(g)ui1 · · ·Λ1(g)uik

for g ∈ SL(n). We denote by ρ∗ the contragredient representation of a rational representation
ρ. For a rational representation ρ, ρ(∗) stands for ρ or ρ∗. We denote by V (n) an n-dimensional
vector space. If V (n) and V (n)∗ appear at the same time, V (n)∗ denotes the dual space of V (n).
We use + instead of ⊕ if ⊗ and ⊕ appear at the same time.

1 A certain class of cuspidal prehomogeneous vector spaces

In [Kas, Theorem 3.22], a certain class of cuspidal prehomogeneous vector spaces was observed.
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1 A certain class of cuspidal prehomogeneous vector spaces

In [Kas, Theorem 3.22], a certain class of cuspidal prehomogeneous vector spaces was observed.

2

Theorem 1.1 (S. Kasai). Let ρ : G −→ GL(V (m)) be an irreducible rational representation
of a connected semisimple linear algebraic group G with the finite kernel. Assume that a triplet
P := (G × SL(2) × GL(l), ρ ⊗ 3Λ1 ⊗ Λ1, V (m) ⊗ V (4) ⊗ V (l)) is castling equivalent to (SL(2) ×
GL(1), 3Λ1 ⊗ Λ1, V (4) ⊗ V (1)). Then T := (G × GL(4l) × GL(3l) × SL(2), ρ ⊗ Λ(∗)

1 ⊗ 1 ⊗ 1 + 1 ⊗
Λ1 ⊗ Λ1 ⊗ Λ1, V (m) ⊗ V (4l)(∗) + V (4l) ⊗ V (3l) ⊗ V (2)) is a reductive cuspidal prehomogeneous
vector space.

Remark 1.2. The triplet (GL(4l)×GL(3l)×SL(2),Λ1⊗Λ1⊗Λ1, V (4l)⊗V (3l)⊗V (2)) is obtained
from the regular trivial prehomogeneous vector space (GL(2l)×GL(l)×SL(2),Λ1⊗Λ1⊗Λ1, V (2l)⊗
V (l) ⊗ V (2)) by applying a castling transformation two times.

Remark 1.3. A correction to [Kas, Theorem 3.22] is given in [Ku, Correction 1.2].

Example 1.4. If G = {1} and l = 1, then P = (SL(2)×GL(1), 3Λ1⊗Λ1, V (4)⊗V (1)). By Theorem
1.1, T = (GL(4) × GL(3) × SL(2),Λ(∗)

1 ⊗ 1 ⊗ 1 + Λ1 ⊗ Λ1 ⊗ Λ1, V (4)(∗) + V (4) ⊗ V (3) ⊗ V (2)) is
a reductive cuspidal prehomogeneous vector space.

Example 1.5. If (G, ρ) = (SL(3),Λ1) and l = 11, then P = (SL(3)×SL(2)×GL(11),Λ1⊗3Λ1⊗
Λ1, V (3) ⊗ V (4) ⊗ V (11)) is castling equivalent to (SL(2) × GL(1), 3Λ1 ⊗ Λ1, V (4) ⊗ V (1)). By
Theorem 1.1, T = (SL(3)×GL(44)×GL(33)×SL(2),Λ1⊗Λ(∗)

1 ⊗1⊗1+1⊗Λ1⊗Λ1⊗Λ1, V (3)⊗
V (44)(∗) + V (44) ⊗ V (33) ⊗ V (2)) is a reductive cuspidal prehomogeneous vector space.

Example 1.6. We define a sequence {ai}i≥0 by a0 = a1 = 1 and ai+2 = 4ai+1 − ai (i ≥ 0). Put
Ai := (SL(ai)×SL(2)×GL(ai+1), Λ1 ⊗ 3Λ1 ⊗Λ1, V (ai)⊗ V (4)⊗ V (ai+1)) (i ≥ 0). Then we see
that A0 = (SL(2) × GL(1), 3Λ1 ⊗ Λ1, V (4) ⊗ V (1)) and Ai+1 is a castling transform of Ai. By
Theorem 1.1, T = (SL(ai)×GL(4ai+1)×GL(3ai+1)×SL(2),Λ1⊗Λ(∗)

1 ⊗1⊗1+1⊗Λ1 ⊗Λ1⊗Λ1,
V (ai)⊗V (4ai+1)(∗) +V (4ai+1)⊗V (3ai+1)⊗V (2)) (i ≥ 0) is a reductive cuspidal prehomogeneous
vector space.

By Theorem 1.1, we can obtain infinitely many reductive cuspidal prehomogeneous vector spaces.
From here, we shall give the preliminaries for the proof of Theorem 1.1.

Proposition 1.7 (cf. [K] ). Let ρi : G −→ GL(Vi) (i = 1, 2) be a rational representation of a
linear algebraic group G on a finite dimensional vector space Vi. Assume that (G, ρ2, V2) is a preho-
mogeneous vector space with a generic isotropy subgroup H and (H, ρ1|H , V1) is a prehomogeneous
vector space. Then (G, ρ1 ⊕ ρ2, V1 ⊕ V2) is a prehomogeneous vector space.

Lemma 1.8. Let ρ : G −→ GL(V ) be a rational representation of a linear algebraic group G on
an m-dimensional vector space V and let n be a positive integer with m > n. Assume that Q :=
(G×GL(n), ρ⊗Λ1, V ⊗V (n)) is a prehomogeneous vector space and the G-part of its generic isotropy

subgroup is reductive. When the representation space V ⊗ V (n) is identified with

n︷ ︸︸ ︷
V ⊕ · · · ⊕ V , the
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representation ρ ⊗ Λ1 is given by (ρ ⊗ Λ1)(g,A)(v1, . . . , vn) = (ρ(g)v1, . . . , ρ(g)vn)tA for (g,A) ∈
G × GL(n) and v1, . . . , vn ∈ V. Then we have the following assertions.
(1) Let v0 = (v(0)

1 , . . . , v
(0)
n ) be a generic point of Q and let H be the G-part of the generic isotropy

subgroup (G × GL(n))v0 at v0. Then v
(0)
1 , . . . , v

(0)
n are linearly independent and there exists the

rational representation φ : H −→ GL(n) such that (G × GL(n))v0 = {(h, φ(h)) ∈ G × GL(n)|h ∈
H}.
(2) Let {f (0)

1 , . . . , f
(0)
m−n} be a basis of 〈v(0)

1 , . . . , v
(0)
n 〉⊥ := {f ∈ V ∗|f(v) = 0 for all v ∈ 〈v(0)

1 , . . . , v
(0)
n 〉}

as vector spaces, where 〈v(0)
1 , . . . , v

(0)
n 〉 denotes the n-dimensional subspace of V generated by

v
(0)
1 , . . . , v

(0)
n . Then f0 := (f (0)

1 , . . . , f
(0)
m−n) ∈

m−n︷ ︸︸ ︷
V ∗ ⊕ · · · ⊕ V ∗ is a generic point of (G×GL(m− n),

ρ∗⊗Λ1, V ∗⊗V (m−n)) which is a castling transform of Q. Furthermore, there exists the rational
representation ψ : H −→ GL(m−n) such that (G×GL(m−n))f0 = {(h, ψ(h)) ∈ G×GL(m−n)|h ∈
H} and ρ|H = φ∗ ⊕ ψ.

Proof. (1) Put W = {(v1, . . . , vn) ∈
n︷ ︸︸ ︷

V ⊕ · · · ⊕ V |v1, . . . , vn are linearly independent}. Note that

W is a nonempty open subset in

n︷ ︸︸ ︷
V ⊕ · · · ⊕ V and G × GL(n) acts on W by ρ ⊗ Λ1. Let O be the

open orbit of Q. Since

n︷ ︸︸ ︷
V ⊕ · · · ⊕ V is irreducible, we have O ⊂ W. Since v

(0)
1 , . . . , v

(0)
n are linearly

independent, for h ∈ H, there exists a unique A ∈ GL(n) such that (ρ(h)v(0)
1 , . . . , ρ(h)v(0)

n )tA =
(v(0)

1 , . . . , v
(0)
n ). Hence we can define a map φ : H −→ GL(n) by (ρ(h)v(0)

1 , . . . , ρ(h)v(0)
n )tφ(h) =

(v(0)
1 , . . . , v

(0)
n ) for h ∈ H. Since ρ : G −→ GL(V ) is a rational representation, we see that φ is a

rational representation. Thus we obtain (1).
(2) Since H is reductive and ρ|H : H −→ GL(V ) is a rational representation, there exist v

(0)
n+1, . . . , v

(0)
m

∈ V and the rational representation ψ : H −→ GL(m − n) such that {v(0)
1 , . . . , , v

(0)
m } is a ba-

sis of V as vector spaces and (ρ(h)v(0)
1 , . . . , ρ(h)v(0)

m ) = (v(0)
1 , . . . , v

(0)
m )

(
tφ(h)−1 0
0 ψ(h)

)
for

h ∈ H. Let {w(0)
1 , . . . , w

(0)
m } be the dual basis of {v(0)

1 , . . . , v
(0)
m }. Since {w(0)

n+1, . . . , w
(0)
m } is a

basis of 〈v(0)
1 , . . . , v

(0)
n 〉⊥, there exists an element P ∈ GL(m − n) such that (w(0)

n+1, . . . , w
(0)
m ) =

(f (0)
1 , . . . , f

(0)
m−n)P. Since (ρ∗(h)w(0)

n+1, . . . , ρ∗(h)w(0)
m ) = (w(0)

n+1 , . . . , w
(0)
m )tψ(h)−1 for h ∈ H, we

have (ρ∗(h)f (0)
1 , . . . , ρ∗(h)f (0)

m−n)t(tP−1ψ(h)tP ) = (f (0)
1 , . . . , f

(0)
m−n) for h ∈ H. Since ρ(g)(〈v(0)

1 , . . . ,

v
(0)
n 〉) = 〈v(0)

1 , . . . , v
(0)
n 〉 if and only if ρ∗(g)(〈v(0)

1 , . . . , v
(0)
n 〉⊥) = 〈v(0)

1 , . . . , v
(0)
n 〉⊥, we see that the

G-part of the isotropy subgroup (G × GL(m − n))f0 at f0 coincides with H. Then we have
(G×GL(m−n))f0 = {(h, tP−1ψ(h)tP ) ∈ G×GL(m−n)|h ∈ H}. Since dim(G×GL(m−n))f0 =
dimH = dim(G × GL(m − n)) − dim(V ∗ ⊗ V (m − n)), we see that f0 is a generic point. Thus we
obtain (2).

Lemma 1.9. For irreducible rational representations iΛ1 (i = 1, 2) and Λ1 of SL(2), the tensor
product representation iΛ1 ⊗ Λ1 decomposes to the direct sum representation of two irreducible
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0 ψ(h)

)
for

h ∈ H. Let {w(0)
1 , . . . , w

(0)
m } be the dual basis of {v(0)

1 , . . . , v
(0)
m }. Since {w(0)

n+1, . . . , w
(0)
m } is a

basis of 〈v(0)
1 , . . . , v

(0)
n 〉⊥, there exists an element P ∈ GL(m − n) such that (w(0)

n+1, . . . , w
(0)
m ) =

(f (0)
1 , . . . , f

(0)
m−n)P. Since (ρ∗(h)w(0)

n+1, . . . , ρ∗(h)w(0)
m ) = (w(0)

n+1 , . . . , w
(0)
m )tψ(h)−1 for h ∈ H, we

have (ρ∗(h)f (0)
1 , . . . , ρ∗(h)f (0)

m−n)t(tP−1ψ(h)tP ) = (f (0)
1 , . . . , f

(0)
m−n) for h ∈ H. Since ρ(g)(〈v(0)

1 , . . . ,

v
(0)
n 〉) = 〈v(0)

1 , . . . , v
(0)
n 〉 if and only if ρ∗(g)(〈v(0)

1 , . . . , v
(0)
n 〉⊥) = 〈v(0)

1 , . . . , v
(0)
n 〉⊥, we see that the

G-part of the isotropy subgroup (G × GL(m − n))f0 at f0 coincides with H. Then we have
(G×GL(m−n))f0 = {(h, tP−1ψ(h)tP ) ∈ G×GL(m−n)|h ∈ H}. Since dim(G×GL(m−n))f0 =
dimH = dim(G × GL(m − n)) − dim(V ∗ ⊗ V (m − n)), we see that f0 is a generic point. Thus we
obtain (2).

Lemma 1.9. For irreducible rational representations iΛ1 (i = 1, 2) and Λ1 of SL(2), the tensor
product representation iΛ1 ⊗ Λ1 decomposes to the direct sum representation of two irreducible

4

representations as follows:

(1.1) iΛ1 ⊗ Λ1 =

{
2Λ1 ⊕ 1 (i = 1)
3Λ1 ⊕ Λ1 (i = 2)

Here 1 : SL(2) −→ GL(C) is the unit representation.

Proof. Let Vj = {F (u, v) =
∑j

m=0 xm+1u
j−mvm | x1, . . . , xj+1 ∈ C} (j = 1, 2, 3) be the

vector space of all homogeneous polynomials in two variables u, v of degree j. When a rep-
resentation space of jΛ1 (j = 1, 2, 3) is identified with Vj , the representation jΛ1 is given by

jΛ1(A)F (u, v) = F ((u, v)A) = F (au + cv, bu + dv) for A =

(
a b

c d

)
∈ SL(2) and F (u, v) ∈ Vj .

T :=

{
t(a) =

(
a 0
0 a−1

)
∈ SL(2) | a ∈ C×

}
is a maximal torus of SL(2) and its character

group X(T ) is given by X(T ) = {εn : T −→ C×|n ∈ Z}, where εn(t(a)) = an for t(a) ∈ T . Since
jΛ1(t(a))uj−mvm = (au)j−m(a−1v)m = εj−2m(t(a))uj−mvm for 0 ≤ m ≤ j, we see that the set
of all the weights of jΛ1 (j = 1, 2, 3) is {εj−2m | m ∈ Z, 0 ≤ m ≤ j}, where the multiplicity
of the weight εj−2m (0 ≤ m ≤ j) is one. Since iΛ1 ⊗ Λ1(t(a))ui−mvm ⊗ u = (au)i−m(a−1v)m ⊗
(au) = εi+1−2m(t(a))ui−mvm ⊗ u and iΛ1 ⊗ Λ1(t(a))ui−mvm ⊗ v = (au)i−m(a−1v)m ⊗ (a−1v) =
εi−1−2m(t(a))ui−mvm ⊗ v for 0 ≤ m ≤ i, we see that the set of all the weight of iΛ1 ⊗Λ1 (i = 1, 2)
is {εi+1−2l | l ∈ Z, 0 ≤ l ≤ i + 1}, where the multiplicity of the weight εi+1−2l (l = 0, i + 1) (resp.
(0 < l < i+1)) is one (resp. two). We shall show the case i = 1. Since 2Λ1⊕1(t(a))(u2−mvm, 0) =
((au)2−m(a−1v)m, 0) = ε2−2m(t(a))(u2−mvm, 0) and 2Λ1 ⊕ 1(t(a))(0, 1) = (0, 1) = ε0(t(a))(0, 1)
for 0 ≤ m ≤ 2, we see that all the weights of 2Λ1 ⊕ 1 coincide with those of Λ1 ⊗ Λ1, in-
cluding weight multiplicities. Thus we obtain Λ1 ⊗ Λ1 = 2Λ1 ⊕ 1. We shall show the case
i = 2. Since 3Λ1 ⊕ Λ1(t(a))(u3−mvm, 0) = ((au)3−m(a−1v)m, 0) = ε3−2m(t(a))(u3−mvm, 0) and
3Λ1 ⊕ Λ1(t(a))(0, u1−m′

vm′
) = (0, (au)1−m′

(a−1v)m′
) = ε1−2m′

(t(a))(0, u1−m′
vm′

) for 0 ≤ m ≤ 3
and 0 ≤ m′ ≤ 1, we see that all the weights of 3Λ1 ⊕Λ1 coincide with those of 2Λ1 ⊗Λ1, including
weight multiplicities. Thus we obtain 2Λ1 ⊗ Λ1 = 3Λ1 ⊕ Λ1.

Proposition 1.10. {(3Λ1⊗Λ∗
1(A,B), 2Λ1⊗Λ1(A,B), Λ1(A))|A ∈ SL(2), B ∈ GL(l)} is a generic

isotropy subgroup of (GL(4l) × GL(3l) × SL(2),Λ1 ⊗ Λ1 ⊗ Λ1, V (4l) ⊗ V (3l) ⊗ V (2)).

Proof. Recall Remark 1.2. We shall calculate a generic isotropy subgroup of R0 := (GL(2l) ×
SL(2)×GL(l), Λ1⊗Λ1⊗Λ1, V (2l)⊗V (2)⊗V (l)). When its representation space is identified with
M(2l), the representation Λ1⊗Λ1⊗Λ1 is given by Λ1⊗Λ1⊗Λ1(C,A,B)X = CXt(Λ1⊗Λ1(A,B)) for
(C,A,B) ∈ GL(2l)×SL(2)×GL(l), X ∈ M(2l). Then I2l ∈ M(2l) is a generic point and the generic
isotropy subgroup at I2l is {(Λ∗

1 ⊗Λ∗
1(A,B), Λ1(A), Λ1(B))|A ∈ SL(2), B ∈ GL(l)}. Since two rep-

resentations Λ1 and Λ∗
1 of SL(2) are equivalent, {(Λ1 ⊗Λ∗

1(A, B), Λ1(A), Λ1(B)) | A ∈ SL(2), B ∈
GL(l)} is a generic isotropy subgroup of R0. Since R1 := (GL(2l) × SL(2) × GL(3l), Λ∗

1 ⊗ Λ∗
1 ⊗

5
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Λ1, V (2l)∗ ⊗ V (2)∗ ⊗ V (3l)) is a castling transform of R0, by Lemmas 1.8 and 1.9 , we see that
{(Λ1 ⊗ Λ∗

1(A,B), Λ1(A), 2Λ1 ⊗ Λ∗
1(A,B))|A ∈ SL(2), B ∈ GL(l)} is a generic isotropy subgroup

of R1. Then {(2Λ1 ⊗ Λ∗
1(A,B), Λ1(A), Λ∗

1 ⊗ Λ1(A,B)) | A ∈ SL(2), B ∈ GL(l)} is a generic
isotropy subgroup of R2 := (GL(3l)× SL(2)×GL(2l), Λ1 ⊗Λ1 ⊗Λ1, V (3l)⊗ V (2)⊗ V (2l)). Since
R3 := (GL(3l)× SL(2)×GL(4l), Λ∗

1 ⊗Λ∗
1 ⊗Λ1, V (3l)∗ ⊗ V (2)∗ ⊗ V (4l)) is a castling transform of

R2, by Lemmas 1.8 and 1.9 , we see that {(2Λ1⊗Λ∗
1(A,B), Λ1(A), 3Λ1⊗Λ∗

1(A,B)|A ∈ SL(2), B ∈
GL(l)} is a generic isotropy subgroup of R3. Since two representations 2Λ1 and (2Λ1)∗ of SL(2)
are equivalent, we obtain our assertion.

proof of Theorem 1.1. Thus we can prove Theorem 1.1. By Propositions 1.7 and 1.10 , we see that
T is a prehomogeneous vector space. Since dimG = −l2 + 4ml− 3, we see that the dimension of a
group of T is equal to that of a representation space of T . Thus we obtain our assertion.

2 Basic relative invariants of a cuspidal prehomogeneous

vector space (GL(4)×GL(3)×SL(2),M(1, 4)⊕M(4, 3)⊕M(4, 3))

In this section, we will construct two basic relative invariants of the cuspidal prehomogeneous
vector space (G, ρ, V ) = (GL(4)×GL(3)× SL(2),Λ∗

1 ⊗ 1⊗ 1 + Λ1 ⊗Λ∗
1 ⊗Λ∗

1,M(1, 4)⊕M(4, 3)⊕
M(4, 3)) which is a special case of the class in §1 (See Example 1.4). This example is related to
parabolic type (not necessarily irreducible) associated an sl2-triple (cf. [R]) and Dynkin-Kostant
type for the exceptional groups, that is, E8-type (cf. [Uk]).
The group action on the space is the following:

(2.1) M(1, 4) ⊕ M(4, 3) ⊕ M(4, 3) � (p,X, Y ) �→ (pg−1
4 , (g4Xg−1

3 , g4Y g−1
3 )g−1

2 )

for an element g = (g4, g3, g2) ∈ GL(4)×GL(3)×SL(2). This space is a cuspidal prehomogeneous
vector space with dimG = dimV = 28. Therefore a generic isotropy subgroup is finite. Here we
chose an element (p0, X0, Y0) = ((1001), t(I3| 0), t(0 |I3)) as a generic point of the prehomogeneous
vector space.

Lemma 2.1. For elements A = (aij), B = (bij), C = (cij) ∈ M(3), we define a polynomial
α(A,B,C) on M(3) ⊕ M(3) ⊕ M(3) as follows:

(2.2) α(A,B,C) := det(A+B+C)−{det(B+C)+det(A+C)+det(A+B)}+{detA+det B+det C}

Then α(A,B,C) is a symmetric trilinear form on M(3) ⊕ M(3) ⊕ M(3).

Proof. By direct calculation, we have

6
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Λ1, V (2l)∗ ⊗ V (2)∗ ⊗ V (3l)) is a castling transform of R0, by Lemmas 1.8 and 1.9 , we see that
{(Λ1 ⊗ Λ∗

1(A,B), Λ1(A), 2Λ1 ⊗ Λ∗
1(A,B))|A ∈ SL(2), B ∈ GL(l)} is a generic isotropy subgroup

of R1. Then {(2Λ1 ⊗ Λ∗
1(A,B), Λ1(A), Λ∗

1 ⊗ Λ1(A,B)) | A ∈ SL(2), B ∈ GL(l)} is a generic
isotropy subgroup of R2 := (GL(3l)× SL(2)×GL(2l), Λ1 ⊗Λ1 ⊗Λ1, V (3l)⊗ V (2)⊗ V (2l)). Since
R3 := (GL(3l)× SL(2)×GL(4l), Λ∗

1 ⊗Λ∗
1 ⊗Λ1, V (3l)∗ ⊗ V (2)∗ ⊗ V (4l)) is a castling transform of

R2, by Lemmas 1.8 and 1.9 , we see that {(2Λ1⊗Λ∗
1(A,B), Λ1(A), 3Λ1⊗Λ∗

1(A,B)|A ∈ SL(2), B ∈
GL(l)} is a generic isotropy subgroup of R3. Since two representations 2Λ1 and (2Λ1)∗ of SL(2)
are equivalent, we obtain our assertion.

proof of Theorem 1.1. Thus we can prove Theorem 1.1. By Propositions 1.7 and 1.10 , we see that
T is a prehomogeneous vector space. Since dimG = −l2 + 4ml− 3, we see that the dimension of a
group of T is equal to that of a representation space of T . Thus we obtain our assertion.

2 Basic relative invariants of a cuspidal prehomogeneous

vector space (GL(4)×GL(3)×SL(2),M(1, 4)⊕M(4, 3)⊕M(4, 3))

In this section, we will construct two basic relative invariants of the cuspidal prehomogeneous
vector space (G, ρ, V ) = (GL(4)×GL(3)× SL(2),Λ∗

1 ⊗ 1⊗ 1 + Λ1 ⊗Λ∗
1 ⊗Λ∗

1,M(1, 4)⊕M(4, 3)⊕
M(4, 3)) which is a special case of the class in §1 (See Example 1.4). This example is related to
parabolic type (not necessarily irreducible) associated an sl2-triple (cf. [R]) and Dynkin-Kostant
type for the exceptional groups, that is, E8-type (cf. [Uk]).
The group action on the space is the following:

(2.1) M(1, 4) ⊕ M(4, 3) ⊕ M(4, 3) � (p,X, Y ) �→ (pg−1
4 , (g4Xg−1

3 , g4Y g−1
3 )g−1

2 )

for an element g = (g4, g3, g2) ∈ GL(4)×GL(3)×SL(2). This space is a cuspidal prehomogeneous
vector space with dimG = dimV = 28. Therefore a generic isotropy subgroup is finite. Here we
chose an element (p0, X0, Y0) = ((1001), t(I3| 0), t(0 |I3)) as a generic point of the prehomogeneous
vector space.

Lemma 2.1. For elements A = (aij), B = (bij), C = (cij) ∈ M(3), we define a polynomial
α(A,B,C) on M(3) ⊕ M(3) ⊕ M(3) as follows:

(2.2) α(A,B,C) := det(A+B+C)−{det(B+C)+det(A+C)+det(A+B)}+{detA+det B+det C}

Then α(A,B,C) is a symmetric trilinear form on M(3) ⊕ M(3) ⊕ M(3).

Proof. By direct calculation, we have

6

α(A,B,C) =
∑

σ∈S3

sgn(σ)a1σ(1)b2σ(2)c3σ(3) +
∑
σ∈S3

sgn(σ)a1σ(1)c2σ(2)b3σ(3)

+
∑

σ∈S3

sgn(σ)b1σ(1)a2σ(2)c3σ(3) +
∑
σ∈S3

sgn(σ)b1σ(1)c2σ(2)a3σ(3)

+
∑

σ∈S3

sgn(σ)c1σ(1)a2σ(2)b3σ(3) +
∑
σ∈S3

sgn(σ)c1σ(1)b2σ(2)a3σ(3).

Thus we obtain our assertion.

For an element X ∈ M(4, 3), define X(i) ∈ M(3) (1 ≤ i ≤ 4) by the matrix obtained by
deleting the i-th row from X. Then, for X,Y, Z ∈ M(4, 3), we put

(2.3) αi(X,Y, Z) := (−1)i−1α(X(i), Y (i), Z(i)) (1 ≤ i ≤ 4)

and A(∗, ∗, ∗) := t(α1(∗, ∗, ∗) α2(∗, ∗, ∗) α3(∗, ∗, ∗) α4(∗, ∗, ∗)) ∈ M(4, 1). Thus we define the
mapping Φ from M(4, 3) ⊕ M(4, 3) to M(4) as follows:

(2.4) Φ(X,Y ) := (
1
3
A(X,X,X) | A(X,Y,X) | A(Y,X, Y ) | 1

3
A(Y, Y, Y )) ∈ M(4)

Here we remark the followings:

Lemma 2.2. For F i
(X,Y )(u, v) := 1

3αi(X,X,X)u3+αi(X,Y,X)u2v+αi(Y,X, Y )uv2+1
3αi(Y, Y, Y )v3

(1 ≤ i ≤ 4) , we have
F i

(X,Y )g−1
2

(u, v) = F i
(X,Y )((u, v)tg−1

2 ) for g2 ∈ SL(2).

Proof. We may check the compatibility for elements

(
a 0
0 a−1

)
,

(
1 ε

0 1

)
,

(
0 1
−1 0

)
∈ SL(2).

F i

(X,Y )t

 

a 0

0 a−1

!(u, v)

= 1
3αi(aX, aX, aX)u3+αi(aX, a−1Y, aX)u2v+αi(a−1Y, aX, a−1Y )uv2+ 1

3αi(a−1Y, a−1Y, a−1Y )v3

= 1
3a3αi(X,X,X)u3 + aαi(X,Y,X)u2v + a−1αi(Y,X, Y )uv2 + 1

3a−3αi(Y, Y, Y )v3

= 1
3αi(X,X,X)(au)3 + αi(X,Y,X)(au)2(a−1v) + αi(Y,X, Y )(au)(a−1v)2 + 1

3αi(Y, Y, Y )(a−1v)3

= F i
(X,Y )((u, v)

(
a 0

0 a−1

)
),

F i

(X,Y )t

 

1 ε

0 1

!(u, v)

= 1
3αi(X + εY,X + εY,X + εY )u3 + αi(X + εY, Y,X + εY )u2v

+αi(Y,X + εY, Y )uv2 + 1
3αi(Y, Y, Y )v3

= 1
3{αi(X,X,X) + 3εαi(X,Y,X) + 3ε2αi(Y,X, Y ) + ε3αi(Y, Y, Y )}u3

+{αi(X,Y,X) + 2εαi(Y,X, Y ) + ε2αi(Y, Y, Y )}u2v

+{αi(Y,X, Y ) + εαi(Y, Y, Y )}uv2 + 1
3αi(Y, Y, Y )v3

7
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= 1
3αi(X,X,X)u3 + αi(X,Y,X){εu3 + u2v}

+αi(Y,X, Y ){ε2u3 + 2εu2v + uv2}
+1

3αi(Y, Y, Y ){ε3u3 + 3ε2u2v + 3εuv2 + v3}
= 1

3αi(X,X,X)u3 + αi(X,Y,X)u2(εu + v)
+αi(Y,X, Y )u(εu + v)2 + 1

3αi(Y, Y, Y )(εu + v)3

= F i
(X,Y )((u, v)

(
1 ε

0 1

)
),

F i

(X,Y )t

 

0 1

−1 0

!(u, v)

= 1
3αi(Y, Y, Y )u3 − αi(Y,X, Y )u2v + αi(X,Y,X)uv2 − 1

3αi(X,X,X)v3

= F i
(X,Y )(−v, u) = F i

(X,Y )((u, v)

(
0 1
−1 0

)
).

Thus we can prove the the compatibility of F i
(X,Y )(u, v) for the action of SL(2).

We need the following lemma to prove Proposition 2.4.

Lemma 2.3 (Cauchy-Binet). Let A be an m by n matrix and B an n by m matrix. We denote
by ai (1 ≤ i ≤ n) (resp. bi (1 ≤ i ≤ n)) the i-th column (resp. row) of A (resp. B). Then we have
the following assertions.
(1) If m > n, then det(AB) = 0.
(2) If m = n, then det(AB) = det A detB.
(3) If m < n, then det(AB) =

∑
1≤i1<···<im≤n det(ai1 | · · · |aim) det t(tbi1 | · · · |tbim).

Proposition 2.4. For g2 ∈ SL(2), g3 ∈ GL(3) and g4 ∈ GL(4), we have

(1) Φ((X,Y )g−1
2 ) = Φ(X,Y )(3Λ1(g−1

2 )),
(2) Φ(g4Xg−1

3 , g4Y g−1
3 ) = (det g3)−1(det g4)(tg−1

4 )Φ(X,Y ).

Proof. (1) follows directly from Lemma 2.2. We will prove (2). For X ∈ M(4, 3), we put
S(X) := t(s(1) s(2) s(3) s(4)), where s(i) := (−1)i−1 det X(i) (1 ≤ i ≤ 4). By Lemma 2.3,
we have S(g4X) = (det g4)tg−1

4 S(X) for g4 ∈ GL(4). Then we see that 1
3A(g4X, g4X, g4X) =

(det g4)tg−1
4

1
3A(X,X,X) and 1

3A(g4Y, g4Y, g4Y ) = (det g4)tg−1
4

1
3A(Y, Y, Y ) for g4 ∈ GL(4). Note

that αi(X,Y,X) = (−1)i−1{det((2X + Y )(i)) − 2 det((X + Y )(i)) − det((2X)(i)) + 2 det(X(i)) +
det(Y (i))} (1 ≤ i ≤ 4). Then we see that A(g4X, g4Y, g4X) = (det g4)tg−1

4 A(X,Y,X) and
A(g4Y, g4X, g4Y ) = (det g4)tg−1

4 A(Y,X, Y ) for g4 ∈ GL(4). Thus we obtain (2).

Since detΦ(X0, Y0) = 16, we see that detΦ(X,Y ) is not identically zero. Thus we see that

(2.5)
detΦ((X,Y )g−1

2 ) = detΦ(X,Y )
detΦ(g4Xg−1

3 , g4Y g−1
3 ) = (det g3)−4(det g4)3 detΦ(X,Y )

and hence we have the following Theorem

8
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= 1
3αi(X,X,X)u3 + αi(X,Y,X){εu3 + u2v}

+αi(Y,X, Y ){ε2u3 + 2εu2v + uv2}
+1

3αi(Y, Y, Y ){ε3u3 + 3ε2u2v + 3εuv2 + v3}
= 1

3αi(X,X,X)u3 + αi(X,Y,X)u2(εu + v)
+αi(Y,X, Y )u(εu + v)2 + 1

3αi(Y, Y, Y )(εu + v)3

= F i
(X,Y )((u, v)

(
1 ε

0 1

)
),

F i

(X,Y )t

 

0 1

−1 0

!(u, v)

= 1
3αi(Y, Y, Y )u3 − αi(Y,X, Y )u2v + αi(X,Y,X)uv2 − 1

3αi(X,X,X)v3

= F i
(X,Y )(−v, u) = F i

(X,Y )((u, v)

(
0 1
−1 0

)
).

Thus we can prove the the compatibility of F i
(X,Y )(u, v) for the action of SL(2).

We need the following lemma to prove Proposition 2.4.

Lemma 2.3 (Cauchy-Binet). Let A be an m by n matrix and B an n by m matrix. We denote
by ai (1 ≤ i ≤ n) (resp. bi (1 ≤ i ≤ n)) the i-th column (resp. row) of A (resp. B). Then we have
the following assertions.
(1) If m > n, then det(AB) = 0.
(2) If m = n, then det(AB) = det A detB.
(3) If m < n, then det(AB) =

∑
1≤i1<···<im≤n det(ai1 | · · · |aim) det t(tbi1 | · · · |tbim).

Proposition 2.4. For g2 ∈ SL(2), g3 ∈ GL(3) and g4 ∈ GL(4), we have

(1) Φ((X,Y )g−1
2 ) = Φ(X,Y )(3Λ1(g−1

2 )),
(2) Φ(g4Xg−1

3 , g4Y g−1
3 ) = (det g3)−1(det g4)(tg−1

4 )Φ(X,Y ).

Proof. (1) follows directly from Lemma 2.2. We will prove (2). For X ∈ M(4, 3), we put
S(X) := t(s(1) s(2) s(3) s(4)), where s(i) := (−1)i−1 det X(i) (1 ≤ i ≤ 4). By Lemma 2.3,
we have S(g4X) = (det g4)tg−1

4 S(X) for g4 ∈ GL(4). Then we see that 1
3A(g4X, g4X, g4X) =

(det g4)tg−1
4

1
3A(X,X,X) and 1

3A(g4Y, g4Y, g4Y ) = (det g4)tg−1
4

1
3A(Y, Y, Y ) for g4 ∈ GL(4). Note

that αi(X,Y,X) = (−1)i−1{det((2X + Y )(i)) − 2 det((X + Y )(i)) − det((2X)(i)) + 2 det(X(i)) +
det(Y (i))} (1 ≤ i ≤ 4). Then we see that A(g4X, g4Y, g4X) = (det g4)tg−1

4 A(X,Y,X) and
A(g4Y, g4X, g4Y ) = (det g4)tg−1

4 A(Y,X, Y ) for g4 ∈ GL(4). Thus we obtain (2).

Since detΦ(X0, Y0) = 16, we see that detΦ(X,Y ) is not identically zero. Thus we see that

(2.5)
detΦ((X,Y )g−1

2 ) = detΦ(X,Y )
detΦ(g4Xg−1

3 , g4Y g−1
3 ) = (det g3)−4(det g4)3 detΦ(X,Y )

and hence we have the following Theorem

8

Theorem 2.5. f1(X,Y ) = detΦ(X,Y ) is a basic relative invariant of the prehomogeneous vector
space (GL(4)×GL(3)×SL(2),Λ∗

1⊗1⊗1+Λ1⊗Λ∗
1⊗Λ∗

1,M(1, 4)⊕M(4, 3)⊕M(4, 3)) corresponding
to the rational character χ1(g4, g3, g2) = (det g3)−4(det g4)3.

Next we consider the construction of the second basic relative invariant of the prehomogeneous
vector space (GL(4) × GL(3) × SL(2),Λ∗

1 ⊗ 1 ⊗ 1 + Λ1 ⊗ Λ∗
1 ⊗ Λ∗

1,M(1, 4) ⊕ M(4, 3) ⊕ M(4, 3)).
For Φ(X,Y ) in (2.4) , we put Φ(X,Y ) = (αij)1≤i,j≤4. Then we have the following proposition:

Proposition 2.6. We define polynomials ψij (1 ≤ i < j ≤ 4) in 16 variables α�k (1 ≤ �, k ≤ 4)
as follows:

(2.7) ψij := 3αi1αj4 − 3αj1αi4 − αi2αj3 + αj2αi3.

Then we have the following assertions.
(1) ψij are SL(2)-invariant and GL(3)-relative invariant polynomials.
(2) Define

(2.8) Ψ(X,Y ) :=




0 ψ12 ψ13 ψ14

−ψ12 0 ψ23 ψ24

−ψ13 −ψ23 0 ψ34

−ψ14 −ψ24 −ψ34 0


 ∈ Alt(4).

Then we have
Ψ(g4Xg−1

3 , g4Y g−1
3 ) = (det g3)−2(det g4)2(tg−1

4 )Ψ(X,Y )g−1
4 .

We need the following Lemma 2.7 to prove Proposition 2.6

Lemma 2.7. For two binary cubic forms

(2.9)
Fs(u, v) = s1u

3 + s2u
2v + s3uv2 + s4v

3,

Ft(u, v) = t1u
3 + t2u

2v + t3uv2 + t4v
3,

we put G(s, t) := 3(s1t4 − s4t1) − (s2t3 − s3t2). Then G(s, t) is an SL(2)-invariant polynomial,
that is, G(3Λ1(g−1

2 )s, 3Λ1(g−1
2 )t) = G(s, t) for g2 ∈ SL(2).

Proof. Since SL(2) is generated by t(a) :=

(
a

a−1

)
, h :=

(
0 1
−1 0

)
, u(ε) :=

(
1 ε

0 1

)
,

it is enough to show the case g2 = t(a), h, u(ε). It is obvious to show the case g2 = t(a) (resp.
g2 = h). For g−1

2 = u(ε),

G(3Λ1(g−1
2 )s, 3Λ1(g−1

2 )t)
= 3{(s1 + εs2 + ε2s3 + ε3s4)t4 − s4(t1 + εt2 + ε2t3 + ε3t4)}
−{(s2 + 2εs3 + 3ε2s4)(t3 + 3εt4) − (s3 + 3εs4)(t2 + 2εt3 + 3ε2t4)}
= G(s, t)

Thus we obtain our assertion.
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[proof of Proposition 2.6]
By Lemma 2.7, we have (1). We shall show Ψ(g4X, g4Y ) = (det g4)2(tg−1

4 )Ψ(X,Y )g−1
4 for

g4 ∈ GL(4). For σ ∈ S4, we put g(σ) := (δiσ(j))1≤i,j≤4, where δst =

{
1 (s = t)
0 (s �= t)

. Since

GL(4) is generated by diag(a, b, c, d), g(σ), u(ε) :=




1 ε 0 0
0 1 0 0
0 0 1 0
0 0 0 1


, it is enough to show the case

g4 = diag(a, b, c, d), g(σ), u(ε). It is obvious to show the case g4 = diag(a, b, c, d) (resp. g4 = g(σ)).
For g−1

4 = u(ε),

Ψ(g4X, g4Y ) =




0 ψ12 ψ13 ψ14

−ψ12 0 εψ13 + ψ23 εψ14 + ψ24

−ψ13 −εψ13 − ψ23 0 ψ34

−ψ14 −εψ14 − ψ24 −ψ34 0




=




1 0 0 0
ε 1 0 0
0 0 1 0
0 0 0 1







0 ψ12 ψ13 ψ14

−ψ12 0 ψ23 ψ24

−ψ13 −ψ23 0 ψ34

−ψ14 −ψ24 −ψ34 0







1 ε 0 0
0 1 0 0
0 0 1 0
0 0 0 1




= tg−1
4 Ψ(X,Y )g−1

4 .

Thus we have (2). �

Here we remark Pf(Ψ(X,Y )) = −3 det(Φ(X,Y )) = −3f1(X,Y ). We have the following lemma
from Proposition 2.6.

Lemma 2.8. Put R(X,Y ) :=t XΨ(X,Y )Y , we have

(2.10) R(g4Xg−1
3 , g4Y g−1

3 ) = (det g3)−2(det g4)2(tg−1
3 )R(X,Y )g−1

3 .

Here if we consider a 2×3 matrix H(p,X, Y ) :=

(
pX

pY

)
, then H(pg−1

4 , (g4Xg−1
3 , g4Y g−1

3 )g−1
2 ) =

tg−1
2

(
pXg−1

3

pY g−1
3

)
. We put H(p, X, Y ) = (�1 | �2 | �3), with �1, �2, �3 ∈ C2 and we make the

following 3 × 3 alternating matrix : for zij := det(�i | �j), Z(p,X, Y ) :=




0 z12 z13

−z12 0 z23

−z13 −z23 0


.

Then

(2.11) Z(pg−1
4 , (g4Xg−1

3 , g4Y g−1
3 )g−1

2 ) = tg−1
3 Z(p,X, Y )g−1

3 .
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[proof of Proposition 2.6]
By Lemma 2.7, we have (1). We shall show Ψ(g4X, g4Y ) = (det g4)2(tg−1

4 )Ψ(X,Y )g−1
4 for

g4 ∈ GL(4). For σ ∈ S4, we put g(σ) := (δiσ(j))1≤i,j≤4, where δst =

{
1 (s = t)
0 (s �= t)

. Since

GL(4) is generated by diag(a, b, c, d), g(σ), u(ε) :=




1 ε 0 0
0 1 0 0
0 0 1 0
0 0 0 1


, it is enough to show the case

g4 = diag(a, b, c, d), g(σ), u(ε). It is obvious to show the case g4 = diag(a, b, c, d) (resp. g4 = g(σ)).
For g−1

4 = u(ε),

Ψ(g4X, g4Y ) =




0 ψ12 ψ13 ψ14

−ψ12 0 εψ13 + ψ23 εψ14 + ψ24

−ψ13 −εψ13 − ψ23 0 ψ34

−ψ14 −εψ14 − ψ24 −ψ34 0




=




1 0 0 0
ε 1 0 0
0 0 1 0
0 0 0 1







0 ψ12 ψ13 ψ14

−ψ12 0 ψ23 ψ24

−ψ13 −ψ23 0 ψ34

−ψ14 −ψ24 −ψ34 0







1 ε 0 0
0 1 0 0
0 0 1 0
0 0 0 1




= tg−1
4 Ψ(X,Y )g−1

4 .

Thus we have (2). �

Here we remark Pf(Ψ(X,Y )) = −3 det(Φ(X,Y )) = −3f1(X,Y ). We have the following lemma
from Proposition 2.6.

Lemma 2.8. Put R(X,Y ) :=t XΨ(X,Y )Y , we have

(2.10) R(g4Xg−1
3 , g4Y g−1

3 ) = (det g3)−2(det g4)2(tg−1
3 )R(X,Y )g−1

3 .

Here if we consider a 2×3 matrix H(p,X, Y ) :=

(
pX

pY

)
, then H(pg−1

4 , (g4Xg−1
3 , g4Y g−1

3 )g−1
2 ) =

tg−1
2

(
pXg−1

3

pY g−1
3

)
. We put H(p, X, Y ) = (�1 | �2 | �3), with �1, �2, �3 ∈ C2 and we make the

following 3 × 3 alternating matrix : for zij := det(�i | �j), Z(p,X, Y ) :=




0 z12 z13

−z12 0 z23

−z13 −z23 0


.

Then

(2.11) Z(pg−1
4 , (g4Xg−1

3 , g4Y g−1
3 )g−1

2 ) = tg−1
3 Z(p,X, Y )g−1

3 .

10

Thus if we put ∆(Z(p,X, Y )) :=




(z23)2 −z13z23 z12z23

−z13z23 (z13)2 −z12z23

z12z23 −z12z23 (z12)2


, we have

(2.12) ∆(Z(pg−1
4 , (g4Xg−1

3 , g4Y g−1
3 )g−1

2 )) = (det g3)−2g3∆(Z(p,X, Y ))tg3.

Thus we have

(2.13)
∆(Z(pg−1

4 , (g4Xg−1
3 , g4Y g−1

3 )g−1
2 ))R((g4Xg−1

3 , g4Y g−1
3 )g−1

2 )
= (det g3)−4(det g4)2g3∆(Z(p,X, Y ))R(X,Y )g−1

3 .

Hence we have

(2.14)
tr(∆(Z(pg−1

4 , (g4Xg−1
3 , g4Y g−1

3 )g−1
2 ))R((g4Xg−1

3 , g4Y g−1
3 )g−1

2 ))
= (det g3)−4(det g4)2tr(∆(Z(p,X, Y ))R(X,Y )).

We put f2(p,X, Y ) := tr(∆(Z(p, X, Y ))R(X,Y )). For the generic point (p0, X0, Y0), we have
f2(p0, X0, Y0) = −4 �= 0, that is, f2 is not identically zero. Here we remark SL(2)-invariance of f2

as follows: for g−1
2 =

(
1 ε

0 1

)
,

f2(p, (X,Y )g−1
2 ) = tr(∆(Z(p,X, Y ))tXΨ(X,Y )(εX + Y ))

= tr(∆(Z(p, X, Y ))tXΨ(X,Y )Y ) + εtr(∆(Z(p,X, Y ))tXΨ(X,Y )X)
= tr(∆(Z(p, X, Y ))tXΨ(X,Y )Y ).

For another generators

(
0 1
−1 0

)
,

(
a−1 0
0 a

)
of SL(2), we can easily check SL(2)-invariance

of f2(p,X, Y ).
We summarize the argument above as follows:

Theorem 2.9. Two basic relative invariants of the prehomogeneous vector space (GL(4)×GL(3)×
SL(2),Λ∗

1 ⊗ 1 ⊗ 1 + Λ1 ⊗ Λ∗
1 ⊗ Λ∗

1,M(1, 4) ⊕ M(4, 3) ⊕ M(4, 3)) are the followings:
(2.15)

f1(X,Y ) = detΦ(X,Y ) = −1
3
Pf(Ψ(X,Y )) ↔ (det g3)−4(det g4)3, deg(X,Y ) f1(X,Y ) = 12,

(2.16)
f2(p, X, Y ) = tr(∆(Z(p, X, Y ))tXΨ(X,Y )Y ) ↔ (det g3)−4(det g4)2 deg(p,(X,Y )) f2 = (4, 12).

where f ↔ χ means that the rational character χ of the algebraic group corresponds to the polyno-
mial f on the representation space.

Remark 2.10. It is the open problem to give an explicit construction of basic relative invariants
of another cuspidal prehomogeneous vector spaces of the type in §1 (See Theorem1.1).
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