ON THE SIGNATURE OF AREA FORM ON THE POLYGON SPACE

HARUKO NISHI

1. INTRODUCTION

The space of Euclidean polygons with prescribed exterior angles in the Euclidean plane up to similarities is a subspace of the moduli space \mathcal{C} of Euclidean cone structures on the 2-sphere with prescribed cone angles. The latter space is known to be homeomorphic to the configuration space of points on $\mathbb{C}P^1$ ([10]), where the subspace consisting of configurations of all points on $\mathbb{R}P^1$ corresponds to the space of Euclidean polygons.

In [9], Thusrton exhibits a complex hyperbolic structure on \mathcal{C} by using the area form. It gives an alternative way to get complex hyperbolic orbifolds obtained by Deligne and Mostow in [2] where monodoromy of hypergeometric functions induces their lattice. The metric completion of the complex hyperbolic structure on \mathcal{C} is identical with a partial compactification of the configuration space by adding α -stable points modulo PGL(2) in [2]. Here $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n)$ is a sequence of n real numbers with

(1)
$$0 < \alpha_i < 1 \text{ and } \sum_{i=1}^n \alpha_i = 2,$$

and a point $y=(y_1,\ldots,y_n)$ in $(\mathbb{C}P^1)^n$ is α -stable if for all $x\in\mathbb{C}P^1$, $\sum_{y_i=x}\alpha_i<1$. We note that the data (1) of α_i 's exactly corresponds to the apex curvatures of cone points of Euclidean cone structures on the 2-sphere \mathbb{S}^2 by multiplying 2π , and also the exterior angles of Euclidean polygons by π .

In this note, we shall address on the signature of Hermitian form given by the area function on the space of Euclidean cone metric on \mathbb{S}^2 with cone points of possibly negative curvatures, that is with some α 's negative. A particular case is given in [4] and in general in [11]. We also restate the signature of the area form on the space of Euclidean polygons givne in [1] in termes of exterior angles.

2. Spaces of Euclidean Polygons

Let $n \geq 3$ and P be a Euclidean polygon with n cyclically ordered verticies p_1, \ldots, p_n in \mathbb{E}^2 . We call the i-th side of P the vector $p_{i+1} - p_i$ and denote by s_i its lentgh. The exterior angle θ_i at the vertex p_i is the oriented angle between the (i-1)-th side and i-th side. We say two polygons P an Q are congruent if there exists a congruent transformation of \mathbb{E}^2 which sends the set of verticies of P to those of Q with preserving their indices.

¹⁹⁹¹ Mathematics Subject Classification. Primary 32G15; Secondary 58D17. Key words and phrases. Euclidean cone-structure, polygon, area.

Let $\theta = (\theta_1, \dots, \theta_n)$ be an *n*-tuple with $n \geq 3$ of real numbers satisfying $\sum_{i=1}^n \theta_i = 2\pi$. We assume $\theta_i \not\equiv 0 \mod \pi$. Let \mathcal{P}_{θ} denote the set of congruence classes of Euclidean *n*-gons with prescribed exterior angles $\theta = (\theta_1, \dots, \theta_n)$. We note that the space \mathcal{P}_{θ} is parametrised by the side lengths s_i satisfying the equation

(2)
$$\sum_{k=1}^{n} s_k \exp\left(\sqrt{-1} \sum_{j=1}^{k} \theta_j\right) = 0.$$

Let \mathcal{V}_{θ} be the codimension two subspace in \mathbb{R}^n whose elements (s_1, \ldots, s_n) satisfy the euqation (2). Then \mathcal{P}_{θ} lies in the space \mathcal{V}_{θ} satisfying $s_i > 0$ for $1 \leq i \leq n$ and its closure $\bar{\mathcal{P}}_{\theta}$ forms a polyhedral cone in \mathcal{V}_{θ} satisfying $s_i \geq 0$. Let Area be the function on \mathcal{P}_{θ} assigning each n-gon P its signed area Area(P). Obviously Area is quadratic on \mathcal{P}_{θ} and extends to a quadratic form \mathcal{A}_{θ} on \mathcal{V}_{θ} .

A trivial example. In the case of n = 3, the element $T = (s_1, s_2, s_3)$ in \mathcal{P}_{θ} is a triangle with prescribed exterior angles $\theta = (\theta_1, \theta_2, \theta_3)$. By the sine rule,

(3)
$$\operatorname{Area}(T) = \frac{\kappa^2}{2} \sin \theta_1 \sin \theta_2 \sin \theta_3,$$

where $\kappa = \frac{s_1}{\sin \theta_3} = \frac{s_2}{\sin \theta_1} = \frac{s_3}{\sin \theta_2}$. Equivalently,

(4)
$$\operatorname{Area}(T) = \frac{-\sin \theta_i \sin \theta_{i+1}}{2\sin(\theta_i + \theta_{i+1})} s_i^2,$$

where the indicies i is understood modulo 3.

The signature of the quadratic form \mathcal{A}_{θ} is determined in [1] as follows.

Theorem 1. The signature of the quadratic form \mathcal{A}_{θ} on \mathcal{P}_{θ} is

$$\left(\frac{1}{\pi} \sum_{s=1}^{n} \nu_s - 1, \frac{1}{\pi} \sum_{s=1}^{n} (\pi - \nu_s) - 1\right)$$

where ν_s is a real number in $(0,\pi)$ such that $\nu_s \equiv \theta_s \mod \pi$.

Remark. For convex polygons, the exterior angles $\theta = (\theta_1, \dots, \theta_n)$ satisfy $0 < \theta_i < \pi$ and $\sum_{i=1}^n \theta_i = 2\pi$. Thus the signature in the convex case is (1, n-3), which is studied in [9], [1], [5], [7], [3]. A nonconvex polygons bounding a region has negative exterior angles $-\pi < \theta_s < 0$ where corresponding ν_s is obtained by $\nu_s = \theta_s + \pi$. Thus if p is the number of negative exterior angles, the corresponding signature is (p+1, n-p-3) (see [7]).

Theorem 1 is easily understood in the case of convex polygons. There is at least one triple of the sides of a convex polygon P whose extentions form a "big" triangle T_0 such that P is contained inside T_0 and whose sides touch the sides of T_0 only along those three sides. The complement of P in T_0 can be devided into n-3 "small" triangles T_i by suitably extending the side of P so that each T_i touches a unique side of P. Then the area of P is obtained by

(5)
$$\operatorname{Area}(P) = \operatorname{Area}(T_0) - \sum_{i=1}^{n-3} \operatorname{Area}(T_i)$$

By the sine rule, one can see the lenghs t_i of the sides of T_i 's which touches P for $0 \le i \le n-3$ are linear combinations of s_1, \ldots, s_n which turnes out to deinfe an isomorphism on the (n-2)-dimensional vector space \mathcal{V}_{θ} . By (4), we see that

(6)
$$\operatorname{Area}(P) = C_0 t_0^2 - \sum_{i=1}^{n-3} C_i t_i^2$$

where the constants C_i ($0 \le i \le n-3$) are expressed by the sines of exterior angles θ_i 's. This leads the signature of the form \mathcal{A}_{θ} to be (1, n-3). The signature of \mathcal{A}_{θ} in the nonconvex case is understood similarly. That is, by extending the sides of a polygon P, there appear triangles where the area of P is obtained by adding or subtracting in many possible ways the areas of some of these triangles, which contributes to count the positive or negatice vectors in \mathcal{P}_{θ} with respect to \mathcal{A}_{θ} (see [7]).

Let P_{θ} be the space of Euclidean n-gons with prescribed angles $\theta = (\theta_1, \ldots, \theta_n)$ up to similarities with positive area. Since each similarity class can be uniquely represented by a polygon with Area = 1, the space P_{θ} is identified with an open subset in the space $\mathcal{A}_{\theta}^{-1}(1)$ in \mathcal{P}_{θ} which endows a pseudo-Riemannian structure of dimension n-3. The closure \bar{P}_{θ} of P_{θ} in \mathcal{V}_{θ} is an (n-3)-dimensional polyhedon with a pseudo-Riemannian structure. Especially in the convex case, \bar{P}_{θ} is a hyperbolic polyhedron whose combinatorial and geometric structures are studied in [1], [5], [7], [3].

A trivial example. In the case of n = 3, for $\theta = (\theta_1, \theta_2, \theta_3)$ with $\theta_i > 0$, P_{θ} is a point in \mathbb{R}^3 with coordinates

$$\left(\sqrt{\frac{2\sin\theta_3}{\sin\theta_1\sin\theta_2}}, \sqrt{\frac{2\sin\theta_1}{\sin\theta_2\sin\theta_3}}, \sqrt{\frac{2\sin\theta_2}{\sin\theta_3\sin\theta_1}})\right)$$

3. Spaces of Euclidean cone structures on the 2-sphere

A Euclidean cone metric on the 2-sphere \mathbb{S}^2 is a singular metric on \mathbb{S}^2 which is Euclidean except at finite points $p_1, \ldots, p_n, n \geq 3$ and the neighbourhood of each point p_k are modelled on the neighbourhood of a Euclidean cones with cone angle $\theta_k > 0$. The apex curvature at the cone points p_k is $2\pi - \theta_k$. We note that if the cone angle θ_k at p_k satisfies $0 < \theta_k < 2\pi$, the curvature at the cone point p_k is positive and if $\theta_k > 2\pi$, the curvature is negative. By Gauss-Bonnet theorem, the curvatures α_k 's of a Euclidean cone metric on \mathbb{S}^2 satisfy the relation

(7)
$$\sum_{k=1}^{n} \alpha_k = 4\pi.$$

Let $(\alpha_1, \ldots, \alpha_n)$ be an *n*-tuple with $n \geq 3$ of real numbers satisfying (7). We denote by $C(\alpha_1, \ldots, \alpha_n)$ the space of Euclidean cone metrics on \mathbb{S}^2 with n labelled cone points of curvatures α_k , $1 \leq k \leq n$, up to orientation and label-preserving similarities. By Troyanov's theorem ([10]), $C(\alpha_1, \ldots, \alpha_n)$ is homeomorphic to the configuration space of n points on $\mathbb{C}P^1$ which is an (n-3)-dimensional manifold.

Let C be a Euclidean cone metric on \mathbb{S}^2 which represents an element in $C(\alpha_1, \ldots, \alpha_n)$. There is a function assigning each C its area Area(C). When

C has only positive curvatures on its cone points, that is $0 < \alpha_i < 2\pi$ for $1 \le i \le n$, it is shown in [9] that there is a complex (n-2)-dimensional local parametrisation of Euclidean cone metrics near C up to orientation and label preserving Euclidean isometries, with respect to which the area function is a Hermitian form \mathcal{A} of type (1, n-3) inducing a complex hyperbolic structure on $C(\alpha_1, \ldots, \alpha_n)$. When C has negative curvatures on some cone points, we see that there is also a complex (n-2)-dimensional local parametrisation, with respect to which the area function gives rise to a Hermitian form \mathcal{A} of different type as follows.

Theorem 2. The signature of the Hermitian form A is

$$\left(\frac{1}{2\pi}\sum_{s=1}^{n}\mu_{s}-1, \frac{1}{2\pi}\sum_{s=1}^{n}(2\pi-\mu_{s})-1\right)$$

where $\mu_s = \lg(\exp(\sqrt{-1}\alpha_s))$ is a real number in $(0, 2\pi)$.

Example. In [8], we studied the pseudo-Hermitian form on the space $C((n-2)\pi, \underbrace{\pi, \dots, \pi})$ of Euclidean cone structures on the 2-sphere where

n = 2m + 1 is an odd interger. The signature of the area form \mathcal{A} on the parameter space is (m, m). The same result appears in [6].

References

- C. Bavard and É. Ghys, Polygones du plan et polyèdres hyperboliques, Geom. Dedicata 43 (1992), no. 2, 207–224.
- [2] P. Deligne and G.D. Mostow, Monodromy of hypergeometric functions and nonlattice integral monodromy., Inst. Hautes ?tudes Sci. Publ. Math. 63 (1986), 5–89.
- [3] F. Fillastre, From spaces of polygons to spaces of polyhedra following Bavard, Ghys and Thurston, Enseign. Math. (2) 57 (2011), no. 1-2, 23-56.
- [4] A. González and J. L. López-López: Shapes of tetrahedra with prescribed cone angles, Conform. Geom. Dyn. 15 (2011), 50–63.
- [5] S. Kojima, H. Nishi and Y. Yamashita: Configuration spaces of points on the circle and hyperbolic Dehn fillings, Topology 38 (1999), no. 3, 497–516.
- [6] J. L. López-López: The area as a natural pseudo-Hermitian structure on the spaces of plane polygons and curves, Differential Geom. Appl. 28 (2010), no. 5, 582–592.
- [7] B. Morin and H. Nishi: Hyperbolic structures on the configuration space of six points in the projective line, Adv. Math. 150 (2000), no. 2, 202–232.
- [8] H. Nishi and K. Ohshika: A pseudo-metric on moduli space of hyperelliptic curves, Josai Math.Monogr. 5 (2012), 51–59.
- [9] W. Thurston: Shapes of polyhedra and triangulations of the sphere, Geom. Topol. Monogr. 1 (1998), 511–549.
- [10] M. Troyanov: Les surfaces euclidennes à singlarités coniques, Enseign. Math. 32 (1986) no. 2, 79–94.
- [11] W. Veech: Flat surfaces, Amer. J. Math. 115 (1993), no. 3, 589–689.

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, JOSAI UNIVERSITY, 1-1, KEYAKIDAI, SAKADO, SAITAMA 350-0295, JAPAN

 $E ext{-}mail\ address: nishi@math.josai.ac.jp}$