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Abstract

In this article we consider the additive Delinge-Simpson problem
which is originally defined for systems of first order Fuchsian differential
equations on the Riemann sphere. We will generalize this problem
to systems of differential equations with at most unramified irregular
singular points. A correspondence between the systems of differential
equations and representations of quivers is given and applied to the
additive Delinge-Simpson problem. This is a survey of the forthcoming
paper [4] which contains the detailed proofs of the statements in this
article.

1 Additive Deligne-Simpson problem

Let us recall the additive Deligne-Simpson problem (cf. [7]) for systems of
linear Fuchsian differential equations. A system of first order linear differ-
ential equations is called Fuchsian if it is of the form

iy—zp: Ay A; € M(n,C)
de. ‘L~z —a; ! e
=1

Namely, Fuchsian equations are systems of first order linear differential equa-
tions with coefficients in C(x) whose poles are at most simple poles. Here
we call each A; the residue matrixz at the singular point a; for i = 1,...,p.
Moreover Ag := — Zle A; is called the residue matriz at oo.

Let us fix Cy,...,C)y, conjugacy classes of M(n,C). Then the additive
Delinge-Simpson problem for Fuchsian equations asks the following. Does
there exsit an irreducible Fuchsian equation
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such that A; € C; for alli =0,...,p? Here we say that %Y =3, x’:‘j“Y
is drreducible if Ap,..., A, have no nontrivial simultaneous invariant sub-
space of C", i.e., if there exists W & C" such that A; W C W for all
i =0,...,p, then W = {0}. Namely the problem asks the existence of
an irreducible Fuchsian equation with the prescribed local data, i.e., the
conjugacy classes of residue matrices at singular points.

We can also reformulate this problem as a problem of matrices.

Definition 1.1 (the additive Deligne-Simpson problem for the conjugacy
classes). Let Cy, ..., C, be conjugacy classes of M (n,C). Then let us con-

sider the problem. Does there exist a tuple of matrices (Ao,...,Ap) €
Co x --- x C) such that
1. 3P A =0,

2. (Ao, ..., Ap) is irreducible, i.e., if there exists W & C" such that
AW C W foralli=0,...,p, then W ={0}?

We say the additive Deligne-Simpson problem for Cy, ..., C), is solvable
if the above problem has a solution.

The study of this problem is developed by V. Kostov who gives an neces-
sary and sufficient condition on the choices of Cy, ..., (), conjugacy classes
of M(n,C), for which the additive Deligne-Simpson problem are solvable
under a generic condition. After his study, the complete necessary and suf-
ficient condition is given by W. Crawley-Boevey.

As a generalization of this problem, it seems to be natural to consider
the similar problem for non-Fuchsian equations (see for example [1], [8]). In
particular we shall consider non-Fuchsian equations whose singular points
are at most unramified irregular singular points. Our setting explained below
can be seen as a natural generalization of the above Fuchsian case and its
non-Fuchsian extensions studied in [1] and [8].

Before formulating the generalized problem precisely, let us recall some
facts of local and formal theory of differential equations with irregular sin-
gular points. Let M(n,C((x))) be the ring of n x n matrices with the
components in C((z)) := {>52 ¢z’ | ¢; € C, r € Z} which is the quotient
field of the ring of formal power series C[[z]] := {>_ i iz’ | ¢; € C}. The
group of invertible elements of multiplication in M (n,C((z))) is denoted
by GL(n,C((z))). Let us define the valuation v(C) of C = Y2 ¢z’ €
M(n,C((x)) by v(C) := min{i | ¢; # 0}. For A € M(n,C((z))) and
X € GL(n,C((x))) the gauge transformation of A by X is

X[A] = XAX 1+ (jX) XL
X

This definition reflects the fact that if the differential equation %y = Ay is
satisfied by y, a C"-valued function, then z = X ~!y satisfies the transformed
equation £z = X[A]z.
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Definition 1.2 (Hukuhara-Turrittin-Levelt normal forms). If an element
B € M(n,C((x))) is of the form

B = diag(‘]l (:E_I)Im + le_17 cees Qm(x_l)lnm + Bmm_l)

with ¢;(s) € s*C[s] satisfying ¢; # ¢; if i # j and B; € M(n;,C), then B is
called the Hukuhara-Turrittin-Levelt normal form or the HTL normal form
shortly. Here I, is the identity matrix of M (m,C).

The theorem below is one of the most fundamental fact in the formal
and local theory of the systems of linear differential equations.

Theorem 1.3 (Hukuhara, Turrittin, Levelt, see [10] for example). Let A €
M(n,C((x))). Then there exists a field extension C((t)) of C((z)) with t? =
x,q € Zso and X € GL(n,C((t))) such that A is reduced to the HTL normal
form

X[A] = diag(qi(t Iy + Bit b gt DI, + Bt ™).

Here q;(s) € s*C[s| satisfying ¢ # q; if i # j and B; € M(n;,C) with
Yot n; = n. Moreover if we fix the field extension C((t)), then the HTL
normal form is uniquely determined by A up to the action of [[;-; GL(n;,C)
and the permutations of the indices {1,...,m}.

As a counterpart of conjugacy classes C; of residue matrices in the Fuch-
sian Deligne-Simpson problem, we shall introduce truncated orbits. Let us
define Gy, := GL(n, C|[z]]/z*C[[x]]), k > 1, which can be identified with

{AO + All‘ —+ -+ Ak_ll?k_l ‘
Ao € GL(n,C), A; € M(n,C), i =1,... k— 1}.
Also define

g = M(n,C[[z]] /z*C[[z]))
_ {A0+A1x+...+Ak_1xk_1 | A; € M(n,C), izO,...Jc—l}.

The dual vector space g, := Homc(gg, C) is identified with

M (n,z~*C[[z]]/C[[z]]) = {;1: +t % ’ A; € M(n,C)}

by the nondegenerate bilinear form g x gf 2 (4, B) — res,—gtr(AB) € C.
Here res;—o (D> oo, Aixi) == A_1.

Then an HTL normal form B € M(n,C((x))) with v(B) > —k can be
seen as an element in g;. Thus we can consider the Gj-orbit of B in gj,
Op = {ng_l €gilge Gk} called the truncated orbit of B. The integer
k is called the degree of Op.

Now we can define a generalization of the Deligne-Simpson problem for
the differential equation with unramified irregular singular points.
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Definition 1.4 (generalized additive Deligne-Simpson problem). Fix HTL
normal forms B ¢ gr. C M(n,C((x))) for i = 0,...,p. Then the general-
ized additive Deligne-Simpson problem asks the following.

Does there exist an irreducible system of linear differential equation

ki ko

p
ZZ xfa Y Aty

j:1 Jj=2

satisfying that AW (z) € Oge fori =0,...,p?

Here AW (z) := Z] 1 Aijz 7 fori=0,....,pand Ag1 := —> b | Ai1.
We say
ki

d A;
Y= ZZ x_az +ZA015”]2 Y

=1 j=1

=

is irreducible if the tuple (A; ;) o<i<p of coefficient matrices is irreducible.
1<5<k;

This can be seen as a natural generalization of the additive Deligne-
Simpson problem for Fuchsian equations because the original problem for
Fuchsian equations corresponds to the case kg = --- = k, = 1 in the above
setting.

As the Fuchsian case we can reformulate the generalized additive Deligne-
Simpson problem as follows.

Definition 1.5. Let Op),...,Opw be truncated orbits of HTL normal
forms B ¢ gzi , t = 0,...,p. Then the generalized additive Deligne-
Simpson problem for the truncated orbits O ), . .., Opw) asks the following.

Does there exist an irreducible element in

zp:Agi):o ?

ko kp
S AWz N AP ) € Opy X x O
/ =0

Jj=1

Here (Zf": A(-O){E_j,... Zkﬁ A<p)x_j) is called drreducible if the tuple

of matrices (A( )) o<i<p is irreducible. We say that the generalized addi-
1<5<m;
tive Deligne-Simpson problem for Ogy,...,Opw) is solvable if the above

problem has a solution.

In the case k1 = --- = k, = 1 and ko < 3, P. Boalch obtains the necessary
and sufficient condition for the existence of a solution of the generalized
additive Deligne- Simpson problem [1].
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2 A review of Crawley-Boevey’s theorem of rep-
resentations of quivers

The study of additive Deligne-Simpson problem for Fuchsian equations is
developed by V. Kostov. After Kostov’s study, W. Crawley-Boevey gave
the complete answer of the additive Deligne-Simpson problem for Fuchsian
equations by using his theory of representations of deformed preprojective
algebras. Let us give a quick review of the statement of one of Crawley-
Boevey’s theorems for the representation theory of deformed preprojective
algebras (see [2] for the detail).

Definition 2.1 (quivers). A quiver @ = (Qo, Q1, s, t) is the quadruple con-
sisting of Q, the set of vertices, @1, the set of arrows connecting vertices
in Qo, and two maps s,t : Q1 — (o which associate to each arrow a € Q1
its source s(a) € Qo and its target t(a) € Qo respectively.

For example let us consider the quiver Q.
o
>
O J s

Then Qo = {1,2}, @1 = {a1, a2, a3} and s(an) =1, t(an) = 2, s(az) = 2,
t(ag) =1, s(az) = t(az) = 2.

Although the notion of quivers appears in many topics of mathematics,
here we are interested in the representations of quivers.

Definition 2.2 (representations of quivers). Let @ be a finite quiver, i.e., Qg
and @1 are finite sets. A representation M of @) is defined by the following
data:

1. To each vertex a in Q)q, a finite dimensional C- vector space M, = C™«
is associated.

2. To each arrow p: a — b in @)1, a C-linear map v,: M, — My, equiva-
lently v, € M(my x mg, C), is associated.

Let us call dim M := (mg)qcq, the dimension vector of M. We denote the
representation by M = (Mg, ¥a)acQo,ac; -
For each dimension vector a € (Z>()??, we associate integers

q(a) = Z o — Z s(p) Xt(p)>

which will play important roles in the latter argument.
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We denote the set of all representations of @) with the dimension vector
a € (Z>0)? by Rep (Q, a). For example let us consider the quiver QW,

p

O—0
1 2

and the dimension vector o = (a1, 2). Then
Rep(Q(l), a) = M(az x a1, C).

Consider another quiver Q(?),
e
1

and the dimension vector 8 = (31). Then

Rep (Q?), 8) = M(B4,C).

Let us note that Rep (@, o) with the dimension vector & = (a4)acq, €
(Z>0)?° has an action of [lucg, GL(aq, C) as below. For M € Rep(Q, )
and g = (9a) € [lueq, GL(aa,C), the representation g - M € Rep (Q,«)
consists of the vector spaces My, (a € Qo) and ¢j, € M (ay () X (), C), (p €
Q1) as follows:

1. For each a € Qq, M := C%.
2. For each p: a — b€ Q1, ¥y, 1= IVpda -

Let us consider the equivalent classes of the above examples. The equiva-
lent classes Rep (QW), )/ HaeQ(l) GL(ag,C) can be identified with the finite
0

set {1,2,...,min{a1, as}}, i.e., the set of ranks of elements in M (a2 xaq, C).
On the other hand, the equivalent classes Rep (Q®), 8)/T] QW GL(5,,C)
acko

is classified by Jordan normal forms of M (31, C).

Let M = (Ma,lbg/[)aer,pte and N = (Na,z/)f)v)aeQO,pte be representa-
tions of a quiver Q. Then N is called the subrepresentation of M if we have
the following:

1. There exists the direct sum decomposition M, = N, & N/ for each
a € Q.

2. For each p: a = b € )1, the equality 1/1£)\/[|Na = w;}v holds.
In this case we denote N C M. Moreover if we have

3. for each p: a — b € @1, we have wﬁ/f\N& c N,
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we say M has the direct sum decomposition M = N & N’ where N/ =
(NéW%Né)aer,pte-

The representation M is called irreducible if M has only subrepresenta-
tions M and {0}. Here {0} is the representation of () which consists of zero
vector spaces and zero linear maps. On the other hand if any direct sum
decomposition M = N @& N’ satisfies either N = {0} or N’ = {0}, then M
is called indecomposable.

In [2] Crawley-Boevey considers the representations of the doubles of
quivers. Let us recall the double of a quiver Q.

Definition 2.3 (double of a quiver). Let Q@ = (Qo, Q1) be a finite quiver.
Then the double Q of Q is the quiver obtained by adjoining the reverse arrow
p*: b — a for each arrow p: a — b. Namely Q = (Qy := Qo, @, := Q1 UQ})
where Q7 := {p": t(p) = s(p) | p € Q1}.

Then the moment map jq: Rep(Q, o) — [Taeg, M(ca, C) is defined by

po(T)a = D PSm — Y Yt a€ Qo
PEQ1 PEQ1
t(p)=a s(p)=a
where z = (2, wz)aer,pGQluQT € Rep (Q, @).

Definition 2.4. Let Q be a finite quiver and @ the double of Q. Let
us fix a dimension vector a € (Z>()?° and a tuple of complex numbers
A= (A\y) € C¥. Then define the subspace of Rep (@, a) by

Rep (Q, @)y 1= {M € Rep (Q, @) | pta(M)a = Aala, for all a € Qo}.

In [2] Crawley-Boevey studies irreducible representations in Rep (Q, o)
and obtains the necessary and sufficient condition for the existence of the
irreducible representations in terms of Kac-Moody root systems. Thus be-
fore seeing the existence theorem of irreducible representations, let us recall
the definition of the root system of a quiver @ (cf. [6]).

Let @ be a finite quiver. The Fuler form is

<Oé,6> = Z Qafa — Z O[s(p)ﬁt(p)
a€Qo pPEQ

for a, f € Z%0 and symmetric bilinear form is

(@, B) = (o, B) + (B, ).

The each element e(a) € Z9, a € Q is called the fundamental root if
€(a)g = 1, €(a)y, = 0, (b € Qo\{a}) and moreover there is no loop at the
vertex a. Denote by 1I the set of fundamental roots. For a fundamental root
€ define the fundamental reflection r. by

re(a) == a — (a, €)e for o € Z.
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The group W C Aut Z90 generated by all fundamental reflections is called
Weyl group of the quiver Q). Note that the bilinear form (, ) is W-invariant.
Define the set of real roots by

A" = U w(II).

weW

For an element o = (aq)acq, € Z90 the support of « is the subquiver
consists of the set of vertices a for which «, # 0 and all arrows joining these
vertices. Define the fundamental set F C Z90 by

=
{a € (Z0)?\{0} | (ar, €) < 0 for all e € I, support of a is connected } .

Then define the set of imaginary roots by

A™ = | J w(FU-F).
weW

Then the root system is defined by
A= AT UAM™,

An element a € A N (Z>()?0 is called positive root and denote by A% the
set of positive roots.
Now let us recall Crawley-Boevey’s theorem.

Theorem 2.5 (Crawley-Boevey [2]). Let Q be a finite quiver and Q the
double of Q. Let us fiz a dimension vector a € (Z>0)?° and A = ()\,) € C.
Then there exists an irreducible representation in Rep (Q, a)y if and only if
the following are satisfied,

I.ae AT and A -a:=) Mg =0,

a€Qo

2. if there exists a decomposition o = B1 + B + -+, with B; € AT and
A-Bi =0, then p(a) > p(B1) +p(B2) + -+ - .

3 The additive Deligne-Simpson problem for Fuch-
sian equations

In [3] Crawley-Boevey gives the complete answer of the additive Deligne-
Simpson problem for Fuchsian equations. He gives a one-to-one correspon-
dence between irreducible Fuchsian equations with prescribed conjugacy
classes of residue matrices and irreducible representations in Rep(Q, a)y
with suitable @), « and A\. Then Theorem 2.5 can be applied to give the
answer of the additive Deligne-Simpson problem.
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3.1 Conjugacy classes and representations of quivers

Let C be a conjugacy class of M (n,C). Then there exist complex numbers

£1,...,&; such that
d

[[a-&r) =0 (1)

i=1
for all A € C. For example consider the minimal polynomial. Moreover note
that m; = rank H§:1(A —¢l,), i =1,...,d are independent of the choice
of A € C. Conversely, if B € M(n,C) satisfies rank H}ZI(B —&l,) = my
for all ¢ = 1,...,d, then B € C. Here we formally put mgy = 0. This
observation leads us to the following correspondence between the elements
in C' and some representations of a quiver.

Proposition 3.1 (Crawley-Boevey [3]). Let us fiz a conjugacy class of
M(n,C), C, and choose &1, . ..,&q € C as above. Put my := rank Hle(A —
&ln), k=1,...,d =1, for A € C and mgy := n. Define the quiver Q) as
below.

o<l o Ly
0 1 d—1

Put m := (m;)icq, € (Z>0)?°. Then
O:{AeC}—

{M = (Ma,¢p)aer,peQ1uQ{ € Rep (@, m) ’

d—1

pm(M)i=(&+1—&)Im, for all i=1,...,d—1, )

Yp: injective, P surjectz?ve for all peQ1,p*€Q] / H GL(ml’ (C)
i=1

defined by ®(A) = (M(A)a, V(A)p)acqo.peiuq: is bijection. Here

k
M(A) :=C", M(A)g :=1Im H(A —&ly,) forallk=1,...,d—1,
i=1
Vp, : M(A)iy1 = M(A); : inclusion, Vpr = (A = &it1) [ ra),-

Moreover the inverse map is given by (Ma, ¥p)acQo.pe@i0Q; = Vp1Ypr +

&1

The proposition gives a one-to-one correspondence between a conjugacy
class and a subspace of the representations of a quiver. However to apply
this correspondence to the additive Deligne-Simpson problem, we need a
number of conjugacy classes simultaneously.
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Theorem 3.2 (Crawley-Boevey [2]). Let Cy,...,C), be conjugacy classes of
M(n,C). Fori=0,...,p, choose §;1y,-..,&[q, € C so that

d;
(AD — =0

Jj=1

for all AW € C;. Put mg :=n and my; 4 = rank Hizl(A(i) — &ligIn) for
j=1,...,d; — 1. Consider the following quiver Q.

[71} [72] [pvdp_l]

Define o = (atg)acg, € (Z0)?° by ag := mg and Qg = myy) for i =
0,...,p, j = 1,...,di — 1. Also define A = (A\g)acq, € € C py \g :=

—>P & and i) = a1 — &) fori=0,...,p, g =1,....d; — 1.
Then there exists a one-to-one correspondence

..... Ap) is irreducible

{(Ao,...,Ap)ECOXH-XCp (Ao 2izo Ai=0, }/GL(H,(C)—)

{M € Rep (Q, ) | M is irreducible} / H GL(ag,C).
a€Qo

This theorem tells us that the existence of a solution of the additive
Deligne-Simpson problem follows from that of irreducible representations
in Rep (Q,a),. Thus we can apply Theorem 2.5 to the additive Deligne-
Simpson problem.

Theorem 3.3 (Crawley-Boevey [3]). Let Cy,...,C, be conjugacy classes of
M (n,C). Let us take a quiver Q and o € (Z>0)?° and A\ € C? as Theorem
3.2. Then the additive Deligne-Simpson problem for Cy,...,Cy is solvable
if and only if the following are satisfied,

1. ae At and \-a = ZaEQo Aatq =0,

2. if there exists a decomposition o = $1 + Ba + -+, with B; € AT and
A~ Bi =0, then p(a) > p(B1) + p(B2) +
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4 Differential equations with poles of order 2 and
representations of quivers

Now let us discuss a generalization of the additive Deligne-Simpson problem
for non-Fuchsian equations. Before discussing in the general setting, we
consider the case kg = --- = k, = 2 in Definition 1.5.

Let B € g5 be a HTL normal form written by

B = diag (alfmx_Z + le_l, .. ,amlnmx_Q + Bmx_l) .

Here B; € M(n;,C) and o; € C, i =0,...,p satisfying o; # o if i # j.
First recall the structure of the truncated orbit Og. Let us put Bj, :=
diag (a11pn;, ..., amly,, ) and denote by V; C C" the eigenspace of Bj,, for
each eigenvalue o, i = 1,...,m. For any X € M(n,C) X;; denote the
Homc (V}, V;)-component of X with respect to the decomposition M (n,C) =
Endc (@2, Vi) = @1gi,j§m Homge(V;, Vj).
The following lemma is well-known.
Lemma 4.1. Let B € g5 be the HTL normal form as above. Then Op
consists of A(x) = Z?Zl Az~ € gb satisfying the following. There erists
G € GL(n,C) such that

1. GAQG_l = B,
2. (GAlGil)m =B;,t=1,....,m.

Next we consider a number of truncated orbits simultaneously and relate
them to representations of a quiver. Let B©) ... B® ¢ g5 be HTL normal
forms written by

(i) _ i @y =2 (1) .—1 D1 g2 (1) p—1
Bl—dlag(a1 Iny)a: + By, g+ Bw )

My m;
(%) : (%) : @ , _
Let le C C" be the eigenspace of Birzr for each eigenvalue 04].Z L1 =
0,....,p,7=1,...,my. ' 4
Let X @) be HomC(Vj(,Z),Vj(l))—component of X € M(n,C) with
respect to M (n,C) = @< j<,n, Di<jrcm, Hom(c(Vj(i/), Vj(i)). We may write
X = (X)) 1gi<m, -
<j'<my
Let us consider the quiver () defined as follows. The set of vertices is

QO :{[Zaj]‘zzoavpaj:L?ml}

The set of arrows is
0, . T . )
Ql = {p{lj;] [07]] - [27]/] ‘] =1,...,mp,0=1,...,p, ],: 1>7ml}

Take the dimension vector & = (a4 )acq, € Z2° so that Qg = dimCVj(i),
1=0,....,p,7=1,...,m;.
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Proposition 4.2 ([4]). We use the same notation as above. Then there
exists a bijection

2

2
o {(ZAg())x—i,...,ZAgp)x—i) € Opo) X -+ x Opep)
=1 =1

p .
AW = o} /GL(n,C) —
=0

1

det (1/140,;‘]) 1< j<mo #£0,i=1,...,p,

v
i,3'] 1<5'<m,

(Ma, %) € Rep (Q, @)

p omy
Ha (Mg € O, i) € QO}/H []GL(ag;, ).
i=0 j=1
Here C](i) is the conjugacy class of each B](-i), 1=0,...,p,j=1,...,m,.
Let us explain the construction of ® in the above proposition. Take an
element A = (Z?Zl Ago)w_i, cee 2?21 Az(p)x_i> € Ogo) X -+ x Op) with

P o Agi) = 0 and choose G; € GL(n,C) for each 222:1 Agj)a;_i, j=0,...,p
as in Lemma 4.1. Under the conjugation by GL(n,C), we may suppose
Go = I. Then let us define ®(A) = (Ma, ¥p)acqo.pe@iug; as follows,

L M=V i=0,...,p,j=1,...,m

2. o = (GD)es ) oy and B, o\e = (A@‘) Q) 71) i =
P (&0 (o) 1 (G) (0.),(0-3")
1,....,mgp,2=1,...,p, 7 =1,...,m,.
For example let us consider
BO — diag(ozllmlx_2 + Bio)x_l, a2[m2$_2 + Béo)x_Q),

BW = diag(Bi1ln, 272 + BNz, Bolpyz~? + BM27?2),

and take A = (2?21 Ago)x_i,zzil Agl):r:_") € Opo x Opa) satisfying
Ago) + Agl) = 0. Then the conjugation by GL(n,C) allows to assume Ago) =
BlY (Ago))m- = BZ-(O) for i = 1,2 and there exists G € GL(n,C) such that

GALG1 = Bi(rlr) and (GAgl)G_l)i,i = BZ.(l) for i = 1,2. Then we can define

the quiver @,
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and attach a representation M = (Mg, ¥))acqo.pe@iu@; to A as follows:
M[O,i} = Cmi, M[l,i] = (an fOI‘ 1= 1, 2,
Q;Z)pz ¢p4 Q;Z)pLi, %;

Then we have

GA(l)Gfl _ ( ¢p1¢pf + wpgzpp; ‘ * )
! * ‘ ¢p2¢p§ + ¢p4¢pz

( Ma(]\f)[l’u ua(;f)m ) '

Similarly,

A9 — A = _aVala

_ < Q/Jp{wm + %3%2 ‘ * )
* | D3 + Vp3¥ps
_ < Ma(M)[o,l] ‘ * )
* ‘ pa(M)o2 )

Thus we have o (M)}; ;) = Bj(-i), 1=0,1,7=1,2.

5 Truncated orbits and representations of quivers

In the previous section we restrict ourselves to the case kg = --- = k;, = 2.
Let us consider truncated orbits of higher degrees and relate them to some
representations of quivers.

Fix k> 1and B = Zle Blilg—i ¢ g7, of HTL normal form written by

B = diag (q1(x "), + Bz, .. gm(z7 ) Iy, + Bz ™)

where B; € M(n;,C), gi(s) € s*C[s], i =1,...,m and ¢; # q; if i # j.

Let Vj[i] cChi=1,...,k—1,j=1,...,my be simultaneous invariant
spaces of (BU+1, . BF=1 B Note that mp) = m.

Let X;; denote the Hom@(ij,Vim)— component of X € M(n,C) =
@1gi,jgmm HomC(Vi[l]J/}[l])- For g(z) = 272, gie’ € M(n,C((2))), de-
fine g(x);;0 == Y52, (90" 1 < j,j° < mp. In addition, with re-
spect to the decomposition M (n,C) = 69199”[1] Hom@(Vi[l],(C”), we de-
note HomC(V;m,(C”)—component of X € M(n,C) by Xjx fori=1,...,my;.
Similarly X, ; denote the Hom(c(C”,Vim)— component of X € M(n,C) =
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Drcicm Homg(C", V). We write X = (Xij)1<ijempy = (Xei)1<icmy, =
(Xi,*)lgigm[l] .
m[i}} = Jit1 = {1,..-7771[”1}} be the natural

Let m; : J; = {1,...,
surjection such that Vj[z] C Vizz;;] Put the total ordering {1 < 2 < --- <
1]} on Ji and also put the total ordering on J;, i = 2,...,k — 1 so that

if j1 < ja, then m(j1) < mi(j2), J1,J2 € Ji.

For the pair j # j' € my;) we attach the number

d(j,5") = max{i | mi(j) # m(j’), i =0,....k —1}. (2)
Here we formally put mo := id| s,
Let us define the subgroup of Gy,
k—1 '
GY = {ZA,# € Gy | Ao = In}
i=0
and its orbit 0% := {gBg~' € g} | g € G}.
] k — 1, define parabolic

According to the ordering on each J;, i = 1,...,
subalgebras of M (n,C) as below,

= @ Home(V VD), = @ Home(v), V),

and similarly nilpotent subalgebras
= @ Homc(LV)  wi= @ Home(VL VD).
]13]26'»717 B
J1>J2 J1<J2

fori=1,...,k—1.
Also define the subsets of GY,

=0

k—1

U = { Uiz’ € GY\U; € u, 1...,k—1},
=0

and the subspace of gj,

k—1
(U5 {ZUW L

Ueu 1,...,I<:—1}.

=1

Then we can show the following decomposition.
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Lemma 5.1. For any g € Gg, there uniquely exist u_ € U, and py € P,j
such that g =u_ -p*.

The above lemma shows that there exists a lower triangular matrix u €
U, and a upper triangular matrix p € P,j such that A € O% can be reduced
to the upper triangular matrix wAu~! = p~!Bp. Furthermore we can show
the following.

Proposition 5.2 ([4],[5]). For any A € O there uniquely exists u € U,_,
such that B := v~ Au satisfies

B-Bed (modaz 'C[x])).

If we write B = Zle Bllg=% we can also show that B* = BI¥ and
BN — B e uf @uy. )

Let us take A € O%, u € Ul;tl and B as above proposition. Then
B = Zle Blilg—i ¢ gj, is defined as follows:

Bi,m[l]—j = Bi,mm—j — B; m[l]_kum[l]_kam[l]_j (mod (C[[a;]]),
I1<i<mp,1<j<mpy—i

Then the difference between tl}e residue of A € OOB and that of B can
be computed by the above u and B as follows.

Proposition 5.3. Let us take A € O%, u € U]j_l and B as above. Then we
have

k—1 mi)
B — (resx:oA)hk =Tres;—q <— Z bk,z'Bz‘,k + Z Bk,iui,k) .
=1 i=k+1

Under these preparations, let us define the quiver ) as follows. The set
of vertices is

Qo= {0} U {L......mpy}.
The set of arrows is
1= pm.,.z—m‘ <i<i <mypy),j=1,...,d(i,1)

U{pi:0—=ili=1,...,mpu}.

Define the dimension vector a = (aa)acq, by @[g) := n and oy := dim(cV;m,
1= 1,...,m[1].
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Proposition 5.4 ([4]). There exists a bijection

o OB —>{M = (Ma,’ll)p) € Rep (@, Oé) det (¢p¢)1§i§m[1] 7é 0,

m[l

]
pa(M); € C; fori=1,... ,mm}/ H GL(w;, C).
=1

Here C; are conjugacy classes of B; fori=1,...,m;.

Let us explain the construction of ®. For A € Op there exists g €
GL(n,C) such that A := gAg~! € O%. Then by the above propositions, we
can choose u € U,_, and B from A, and ®(A) = (Ma, Y¥p)acqo,pe@ius 18
defined as follows:

Mo :=C, M=Vl =1, my,
S ]
d)p[.j]., = BZ[?;— ]’ w(p[j]/)* = UE{L,

@Z}Pi = gi7*’ wp:( = (reSxZOAg_l)*vi ’

Here we set B = Zle Bllg=% and v = Zf:_ol ullz?. Then Proposition 5.3
tells us that po(M); = B; € C; for i =1,.. M)
The compatibility between the symplectic structures of the coadjoint

orbit Op and that of the representation space of the quiver in Proposition
5.4 will be discussed in [5].

6 Generalized Delinge-Simpson problem and rep-
resentations of a quiver

In the previous sections representations of quivers are associated with con-
jugacy classes of matrices (Proposition 3.1), tuples of truncated orbits of
degree 2 (Proposition 4.2) and truncated orbits of higher degrees (Propo-
sition 5.4). Glueing them together, now let us construct representations of
quivers in order to apply to the generalized Deligne-Simpson problem.

Let BO = Yk, BOila—i e gr ... B® = Y BPila—i € g be
HTL normal forms written by

m;

BY = diag (qgi) (@I o + B2, q) (@™o + B%)ixil)
1 mi

for i = 0,...,p where q](i)(s) € s2C[s] satisfying qj(.i) # qj(.f) if j # 7 and
(i) (1)
B;" € M(n;”,C). N
For i = 0,...,p, j = Lyooki — 1, let VI k= 1,00 my , be
the simultaneous eigenspaces of (B+1 . Blkl)  For each pair 7,5 €
{1,...,my; 11}, attach the integer d;(j,j') defined by the same way as in (2).
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For each B(i), i =20,...,pand j = 1,...,my, let us choose complex

numbers E[W yees ,562 ;. So that

1[_[ Z {[Z ]

Put Iiyy ;= {0 € {0,...,p} | ki > 1} U {0} and Ireg := {0,...,p}\Lirr
Now let us consider the following quiver ). The set of vertices is

QO ::{[i7j]|i€Iirraj:17-'-ami}
U{li, 4.k |i=0,....p,5=1,...oms, k=1,... e, —1}.

The set of arrows is

Ql = {P{?’ﬂ] [07]] - [Z7]/] }] = ]-a -+ oy Mo, (&S Iirr\{O}a .] = 1) cee 7mi}

i€, 1<j<j <my, 1Sk§d(j7j’)}

{PHJ] [i,j }3 [Z J] - [iajl]
Pl 1] Tl € B g =1 i
1

U{ 2 i
{ [07.] : Z’ 71 [07]] ’Z e Ireg; j - 1,’m0}
(i

C

U [i,5] .

.77 [,L.]vk 1]‘7’:1)ap7]:177m17
k:2?7€[l,j]_1}

(@)

Let us define the dimension vector @ = (Qa)acq, PY apij = 0,
aj k) = dimg (rank Hl 1( 5[1’] )) Also define A = (Ag)aeq, by
; 0,7] i1

i) = —§1 W) for i € L \{0}, j = 1,...,m4, Ao j) = §[ ! Zz‘elmg £ ]
for j =1,...,mo, and Aj; ;4] := f,[;_’g]l — f,[gm] fori=0,...,p, 5 =1,...,m;,

]{7: 1,...76[1'7]‘] — 1.
Then combining Proposition 3.1, 4.2 and 5.4, we have the following bi-
jection.

Theorem 6.1 ([4]). Let B ... B®) be HTL normal forms chosen as
above. Then there exists a bijection

P ZA(-O);L'_j,...,ZAgp)%_j GOB(O) X e XOB(p)
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— {M = (Ma, Ype@.u.+) € Rep(Q, @) ‘

det (w o ) £0, i € I\ {0},

p[i 'dl 1<j<mo
Ty <mg
mo
(@Z) [i,l,l]) : M[i,l,l] — @M[O,j}7 injective, © € Ipeg,
031/ 1<j<mo j=1

mo
<¢( [i,l,l])*) : @M[OJ] — M[i,l,l]v surjective, 1 € Ipeg,
[0.7] 1<j<mo  j=1

U g1, injective, ¥, i)\, surjective}/ H GL(ag,C).
Py, (Pk )* <0
a€Qo

Unfortunately the above bijection ® does not preserve irreducibility.
Thus we introduce the following notion.

Definition 6.2 (quasi-irreducible). If X € Rep(Q, ), has no nontrivial
proper subrepresentation Y & X in Rep(Q,a)y with dimY = (8,)acq,

satisfying
mo mi mp
Y Boa = Bug=-=_ By
j=1 j=1

Jj=1

then X is called quasi-irreducible.

Then we have following correspondence between irreducible elements and
quasi-irreducible representations.

Proposition 6.3. There is the bijection

ko kp
D ZA§0)m_j,...,ZA§p)x_j € Opo) X -+ x Opw
p i=1
p

Agi) =0, iw’educible} /GL(n,C)
=0

— {M = (Mg, Yperu0:+) € Rep(Q, @)y | quasi-irreducible,

et (V09 ) o, 20T IW\{O}}/ [T ¢LawC)

o
[i,47] 157 <m a€Qo

Then as an application of the above correspondence, we obtain under a
generic condition the necessary and sufficient condition of the existence of a
solution of the generalized additive Deligne-Simpson problem.
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Theorem 6.4 ([4]). Let B ... B®W) be HTL normal forms. Let us take
the quiver ) and the dimension vector a € (ZZO)QO and A\ € C?0 as in
Theorem 6.1. Moreover assume that A\ is generic. Then the generalized
additive Delinge-Simpson problem for Og), ..., Opw) s solvable if and only
if the following are satisfied,

I.ac At and A-a =0,
2. q(a) <0 or « is indivisible.
Here we say « is indivisible if all components of a have no common divisors.

Remark 6.5. If we assume the degree k; of each Op(;) satisfies that k; =

- =k, =1and kg < 3. P. Boalch obtains the complete answer of the
generalized additive Deligne-Simpson problem [1] without generic condition
of A\. Theorem 6.4 can be seen as a generalization of Oshima and Takemura
(see Theorem 10.2 in [9]).
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