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We now recall the elliptic dihedral solution which is one of algebraic solutions of Painlevé sixth
equation given in [1], p.11:

tH =
(s2 + u)2(s(s + 2) − u)(s(s − 2) − u)
(s2 − u)2(s(s + 2) + u)(s(s − 2) + u)

, y =
(3s − 1)(s2 − 4s − 1)(s2 + u)(s(s + 2) − u)
(3s3 + 7s2 + s + 1)(s2 − u)(s(s − 2) + u)

, (8)

where (s, u) lives on the elliptic curve u2 = s(s2 + s − 1). Note that this solution is obtained by Hitchin
[2]. For our purpose, we rewrite tH and y by using the relation between s and u. Then

tH =
1 + 2s − 5s2 − 5s4 − 2s5 + s6 − 8s2u

1 + 2s − 5s2 − 5s4 − 2s5 + s6 + 8s2u
, y =

(−1 + 3s)(−1 − 4s + s2)(1 − s + s2 + s3 + 2u)
(1 + s + 7s2 + 3s3)(1 − s − 3s2 + s3 + 2u)

. (9)

Clearly tH coincides with the function t defined in (1) but y seems not to equal to the function λ defined
in (7). To explain the difference, we first point out the existence of an automorphism χ on the elliptic
curve u2 = s(s2 + s − 1) defined by (s, u) → (− 1

s , u
s2 ). By the action of χ, tH is fixed but y turns out to

be

yH =
(s + 3)(−1 − 4s + s2)(−1 + s + s2 + s3 + 2su)

(s3 − s2 + 7s − 3)(s3 + s2 − 3s − 1 + 2su)
.

By direct computation, we find that yH coincides with the function λ of (7). As a consequence, (t, λ) is
equivalent to the solution obtained by Hitchin. At last we note that θ = ( 1

2 , 1
2 , 1

2 , 1
2 ) in this case (cf.[1]).
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Abstract

In this article we consider the additive Delinge-Simpson problem
which is originally defined for systems of first order Fuchsian differential
equations on the Riemann sphere. We will generalize this problem
to systems of differential equations with at most unramified irregular
singular points. A correspondence between the systems of differential
equations and representations of quivers is given and applied to the
additive Delinge-Simpson problem. This is a survey of the forthcoming
paper [4] which contains the detailed proofs of the statements in this
article.

1 Additive Deligne-Simpson problem

Let us recall the additive Deligne-Simpson problem (cf. [7]) for systems of
linear Fuchsian differential equations. A system of first order linear differ-
ential equations is called Fuchsian if it is of the form

d

dx
Y =

p∑
i=1

Ai

x− ai
Y, Ai ∈ M(n,C).

Namely, Fuchsian equations are systems of first order linear differential equa-
tions with coefficients in C(x) whose poles are at most simple poles. Here
we call each Ai the residue matrix at the singular point ai for i = 1, . . . , p.
Moreover A0 := −

∑p
i=1Ai is called the residue matrix at ∞.

Let us fix C0, . . . , Cp, conjugacy classes of M(n,C). Then the additive
Delinge-Simpson problem for Fuchsian equations asks the following. Does
there exsit an irreducible Fuchsian equation

d

dx
Y =

p∑
i=1

Ai

x− ai
Y, (A0 := −

p∑
i=1

Ai)
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such that Ai ∈ Ci for all i = 0, . . . , p? Here we say that d
dxY =

∑p
i=1

Ai
x−ai

Y
is irreducible if A0, . . . , Ap have no nontrivial simultaneous invariant sub-
space of Cn, i.e., if there exists W � Cn such that AiW ⊂ W for all
i = 0, . . . , p, then W = {0}. Namely the problem asks the existence of
an irreducible Fuchsian equation with the prescribed local data, i.e., the
conjugacy classes of residue matrices at singular points.

We can also reformulate this problem as a problem of matrices.

Definition 1.1 (the additive Deligne-Simpson problem for the conjugacy
classes). Let C0, . . . , Cp be conjugacy classes of M(n,C). Then let us con-
sider the problem. Does there exist a tuple of matrices (A0, . . . , Ap) ∈
C0 × · · · × Cp such that

1.
∑p

i=0Ai = 0,

2. (A0, . . . , Ap) is irreducible, i.e., if there exists W � Cn such that
AiW ⊂ W for all i = 0, . . . , p, then W = {0}?

We say the additive Deligne-Simpson problem for C0, . . . , Cp is solvable
if the above problem has a solution.

The study of this problem is developed by V. Kostov who gives an neces-
sary and sufficient condition on the choices of C0, . . . , Cp, conjugacy classes
of M(n,C), for which the additive Deligne-Simpson problem are solvable
under a generic condition. After his study, the complete necessary and suf-
ficient condition is given by W. Crawley-Boevey.

As a generalization of this problem, it seems to be natural to consider
the similar problem for non-Fuchsian equations (see for example [1], [8]). In
particular we shall consider non-Fuchsian equations whose singular points
are at most unramified irregular singular points. Our setting explained below
can be seen as a natural generalization of the above Fuchsian case and its
non-Fuchsian extensions studied in [1] and [8].

Before formulating the generalized problem precisely, let us recall some
facts of local and formal theory of differential equations with irregular sin-
gular points. Let M(n,C((x))) be the ring of n × n matrices with the
components in C((x)) := {

∑∞
i=r cix

i | ci ∈ C, r ∈ Z} which is the quotient
field of the ring of formal power series C[[x]] := {

∑∞
i=0 cix

i | ci ∈ C}. The
group of invertible elements of multiplication in M(n,C((x))) is denoted
by GL(n,C((x))). Let us define the valuation v(C) of C =

∑∞
i=r cix

i ∈
M(n,C((x)) by v(C) := min{i | ci �= 0}. For A ∈ M(n,C((x))) and
X ∈ GL(n,C((x))) the gauge transformation of A by X is

X[A] := XAX−1 +

(
d

dx
X

)
X−1.

This definition reflects the fact that if the differential equation d
dxy = Ay is

satisfied by y, a Cn-valued function, then z = X−1y satisfies the transformed
equation d

dxz = X[A]z.

2
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such that Ai ∈ Ci for all i = 0, . . . , p? Here we say that d
dxY =

∑p
i=1

Ai
x−ai

Y
is irreducible if A0, . . . , Ap have no nontrivial simultaneous invariant sub-
space of Cn, i.e., if there exists W � Cn such that AiW ⊂ W for all
i = 0, . . . , p, then W = {0}. Namely the problem asks the existence of
an irreducible Fuchsian equation with the prescribed local data, i.e., the
conjugacy classes of residue matrices at singular points.

We can also reformulate this problem as a problem of matrices.

Definition 1.1 (the additive Deligne-Simpson problem for the conjugacy
classes). Let C0, . . . , Cp be conjugacy classes of M(n,C). Then let us con-
sider the problem. Does there exist a tuple of matrices (A0, . . . , Ap) ∈
C0 × · · · × Cp such that

1.
∑p

i=0Ai = 0,

2. (A0, . . . , Ap) is irreducible, i.e., if there exists W � Cn such that
AiW ⊂ W for all i = 0, . . . , p, then W = {0}?

We say the additive Deligne-Simpson problem for C0, . . . , Cp is solvable
if the above problem has a solution.

The study of this problem is developed by V. Kostov who gives an neces-
sary and sufficient condition on the choices of C0, . . . , Cp, conjugacy classes
of M(n,C), for which the additive Deligne-Simpson problem are solvable
under a generic condition. After his study, the complete necessary and suf-
ficient condition is given by W. Crawley-Boevey.

As a generalization of this problem, it seems to be natural to consider
the similar problem for non-Fuchsian equations (see for example [1], [8]). In
particular we shall consider non-Fuchsian equations whose singular points
are at most unramified irregular singular points. Our setting explained below
can be seen as a natural generalization of the above Fuchsian case and its
non-Fuchsian extensions studied in [1] and [8].

Before formulating the generalized problem precisely, let us recall some
facts of local and formal theory of differential equations with irregular sin-
gular points. Let M(n,C((x))) be the ring of n × n matrices with the
components in C((x)) := {

∑∞
i=r cix

i | ci ∈ C, r ∈ Z} which is the quotient
field of the ring of formal power series C[[x]] := {

∑∞
i=0 cix

i | ci ∈ C}. The
group of invertible elements of multiplication in M(n,C((x))) is denoted
by GL(n,C((x))). Let us define the valuation v(C) of C =

∑∞
i=r cix

i ∈
M(n,C((x)) by v(C) := min{i | ci �= 0}. For A ∈ M(n,C((x))) and
X ∈ GL(n,C((x))) the gauge transformation of A by X is

X[A] := XAX−1 +

(
d

dx
X

)
X−1.

This definition reflects the fact that if the differential equation d
dxy = Ay is

satisfied by y, a Cn-valued function, then z = X−1y satisfies the transformed
equation d

dxz = X[A]z.

2

Definition 1.2 (Hukuhara-Turrittin-Levelt normal forms). If an element
B ∈ M(n,C((x))) is of the form

B = diag(q1(x
−1)In1 +B1x

−1, . . . , qm(x−1)Inm +Bmx−1)

with qi(s) ∈ s2C[s] satisfying qi �= qj if i �= j and Bi ∈ M(ni,C), then B is
called the Hukuhara-Turrittin-Levelt normal form or the HTL normal form
shortly. Here Im is the identity matrix of M(m,C).

The theorem below is one of the most fundamental fact in the formal
and local theory of the systems of linear differential equations.

Theorem 1.3 (Hukuhara, Turrittin, Levelt, see [10] for example). Let A ∈
M(n,C((x))). Then there exists a field extension C((t)) of C((x)) with tq =
x, q ∈ Z>0 and X ∈ GL(n,C((t))) such that A is reduced to the HTL normal
form

X[A] = diag(q1(t
−1)In1 +B1t

−1, . . . , qm(t−1)Inm +Bmt−1).

Here qi(s) ∈ s2C[s] satisfying qi �= qj if i �= j and Bi ∈ M(ni,C) with∑m
i=1 ni = n. Moreover if we fix the field extension C((t)), then the HTL

normal form is uniquely determined by A up to the action of
∏m

i=1GL(ni,C)
and the permutations of the indices {1, . . . ,m}.

As a counterpart of conjugacy classes Ci of residue matrices in the Fuch-
sian Deligne-Simpson problem, we shall introduce truncated orbits. Let us
define Gk := GL(n,C[[x]]/xkC[[x]]), k ≥ 1, which can be identified with

{
A0 +A1x+ · · ·+Ak−1x

k−1
��

A0 ∈ GL(n,C), Ai ∈ M(n,C), i = 1, . . . , k − 1
}
.

Also define

gk := M(n,C[[x]]/xkC[[x]])

=
{
A0 +A1x+ · · ·+Ak−1x

k−1
��Ai ∈ M(n,C), i = 0, . . . , k − 1

}
.

The dual vector space g∗k := HomC(gk,C) is identified with

M(n, x−kC[[x]]/C[[x]]) =
{
Ak

xk
+ · · ·+ A1

x

���Ai ∈ M(n,C)
}

by the nondegenerate bilinear form gk × g∗k � (A,B) �→ resx=0tr(AB) ∈ C.
Here resx=0(

∑∞
i=r Aixi) := A−1.

Then an HTL normal form B ∈ M(n,C((x))) with v(B) ≥ −k can be
seen as an element in g∗k. Thus we can consider the Gk-orbit of B in g∗k,
OB :=

{
gBg−1 ∈ g∗k | g ∈ Gk

}
called the truncated orbit of B. The integer

k is called the degree of OB.
Now we can define a generalization of the Deligne-Simpson problem for

the differential equation with unramified irregular singular points.
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Definition 1.4 (generalized additive Deligne-Simpson problem). Fix HTL
normal forms B(i) ∈ g∗ki ⊂ M(n,C((x))) for i = 0, . . . , p. Then the general-
ized additive Deligne-Simpson problem asks the following.

Does there exist an irreducible system of linear differential equation

d

dx
Y =




p∑
i=1

ki∑
j=1

Ai,j

(x− ai)j
+

k0∑
j=2

A0,jx
j−2


Y

satisfying that A(i)(x) ∈ OB(i) for i = 0, . . . , p?

Here A(i)(x) :=
∑ki

j=1Ai,jx
−j for i = 0, . . . , p and A0,1 := −

∑p
i=1Ai,1.

We say

d

dx
Y =




p∑
i=1

ki∑
j=1

Ai,j

(x− ai)j
+

k0∑
j=2

A0,jx
j−2


Y

is irreducible if the tuple (Ai,j) 0≤i≤p
1≤j≤ki

of coefficient matrices is irreducible.

This can be seen as a natural generalization of the additive Deligne-
Simpson problem for Fuchsian equations because the original problem for
Fuchsian equations corresponds to the case k0 = · · · = kp = 1 in the above
setting.

As the Fuchsian case we can reformulate the generalized additive Deligne-
Simpson problem as follows.

Definition 1.5. Let OB(0) , . . . ,OB(p) be truncated orbits of HTL normal
forms B(i) ∈ g∗ki , i = 0, . . . , p. Then the generalized additive Deligne-
Simpson problem for the truncated orbits OB(0) , . . . ,OB(p) asks the following.
Does there exist an irreducible element in






k0∑
j=1

A
(0)
j x−j , . . . ,

kp∑
j=1

A
(p)
j x−j


 ∈ OB(0) × · · · × OB(p)

����
p∑

i=0

A
(i)
1 = 0


 ?

Here
(∑k0

j=1A
(0)
j x−j , . . . ,

∑kp
j=1A

(p)
j x−j

)
is called irreducible if the tuple

of matrices (A
(i)
j ) 0≤i≤p

1≤j≤mi

is irreducible. We say that the generalized addi-

tive Deligne-Simpson problem for OB(0) , . . . ,OB(p) is solvable if the above
problem has a solution.

In the case k1 = · · · = kp = 1 and k0 ≤ 3, P. Boalch obtains the necessary
and sufficient condition for the existence of a solution of the generalized
additive Deligne- Simpson problem [1].

4

KAZUKI HIROE



33

Definition 1.4 (generalized additive Deligne-Simpson problem). Fix HTL
normal forms B(i) ∈ g∗ki ⊂ M(n,C((x))) for i = 0, . . . , p. Then the general-
ized additive Deligne-Simpson problem asks the following.

Does there exist an irreducible system of linear differential equation

d

dx
Y =




p∑
i=1

ki∑
j=1

Ai,j

(x− ai)j
+

k0∑
j=2

A0,jx
j−2


Y

satisfying that A(i)(x) ∈ OB(i) for i = 0, . . . , p?

Here A(i)(x) :=
∑ki

j=1Ai,jx
−j for i = 0, . . . , p and A0,1 := −

∑p
i=1Ai,1.

We say

d

dx
Y =




p∑
i=1

ki∑
j=1

Ai,j

(x− ai)j
+

k0∑
j=2

A0,jx
j−2


Y

is irreducible if the tuple (Ai,j) 0≤i≤p
1≤j≤ki

of coefficient matrices is irreducible.

This can be seen as a natural generalization of the additive Deligne-
Simpson problem for Fuchsian equations because the original problem for
Fuchsian equations corresponds to the case k0 = · · · = kp = 1 in the above
setting.

As the Fuchsian case we can reformulate the generalized additive Deligne-
Simpson problem as follows.

Definition 1.5. Let OB(0) , . . . ,OB(p) be truncated orbits of HTL normal
forms B(i) ∈ g∗ki , i = 0, . . . , p. Then the generalized additive Deligne-
Simpson problem for the truncated orbits OB(0) , . . . ,OB(p) asks the following.
Does there exist an irreducible element in






k0∑
j=1

A
(0)
j x−j , . . . ,

kp∑
j=1

A
(p)
j x−j


 ∈ OB(0) × · · · × OB(p)

����
p∑

i=0

A
(i)
1 = 0


 ?

Here
(∑k0

j=1A
(0)
j x−j , . . . ,

∑kp
j=1A

(p)
j x−j

)
is called irreducible if the tuple

of matrices (A
(i)
j ) 0≤i≤p

1≤j≤mi

is irreducible. We say that the generalized addi-

tive Deligne-Simpson problem for OB(0) , . . . ,OB(p) is solvable if the above
problem has a solution.

In the case k1 = · · · = kp = 1 and k0 ≤ 3, P. Boalch obtains the necessary
and sufficient condition for the existence of a solution of the generalized
additive Deligne- Simpson problem [1].

4

2 A review of Crawley-Boevey’s theorem of rep-
resentations of quivers

The study of additive Deligne-Simpson problem for Fuchsian equations is
developed by V. Kostov. After Kostov’s study, W. Crawley-Boevey gave
the complete answer of the additive Deligne-Simpson problem for Fuchsian
equations by using his theory of representations of deformed preprojective
algebras. Let us give a quick review of the statement of one of Crawley-
Boevey’s theorems for the representation theory of deformed preprojective
algebras (see [2] for the detail).

Definition 2.1 (quivers). A quiver Q = (Q0, Q1, s, t) is the quadruple con-
sisting of Q0, the set of vertices, Q1, the set of arrows connecting vertices
in Q0, and two maps s, t : Q1 → Q0 which associate to each arrow α ∈ Q1

its source s(α) ∈ Q0 and its target t(α) ∈ Q0 respectively.

For example let us consider the quiver Q.

1
��������

2
��������α1 ��

α2

�� α3��

Then Q0 = {1, 2}, Q1 = {α1, α2, α3} and s(α1) = 1, t(α1) = 2, s(α2) = 2,
t(α2) = 1, s(α3) = t(α3) = 2.

Although the notion of quivers appears in many topics of mathematics,
here we are interested in the representations of quivers.

Definition 2.2 (representations of quivers). LetQ be a finite quiver, i.e., Q0

and Q1 are finite sets. A representation M of Q is defined by the following
data:

1. To each vertex a in Q0, a finite dimensional C- vector space Ma = Cma

is associated.

2. To each arrow ρ : a → b in Q1, a C-linear map ψρ : Ma → Mb, equiva-
lently ψρ ∈ M(mb ×ma,C), is associated.

Let us call dimM := (ma)a∈Q0 the dimension vector of M . We denote the
representation by M = (Ma, ψα)a∈Q0,α∈Q1 .

For each dimension vector α ∈ (Z≥0)
Q0 , we associate integers

q(α) :=
∑
a∈Q0

α2
a −

∑
ρ∈Q1

αs(ρ)αt(ρ),

p(α) := 1− q(α),

which will play important roles in the latter argument.

5
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We denote the set of all representations of Q with the dimension vector
α ∈ (Z≥0)

Q0 by Rep (Q,α). For example let us consider the quiver Q(1),

1
��������

2
��������ρ ��

and the dimension vector α = (α1, α2). Then

Rep(Q(1), α) = M(α2 × α1,C).

Consider another quiver Q(2),

1
�������� ρ′��

and the dimension vector β = (β1). Then

Rep (Q(2), β) = M(β1,C).

Let us note that Rep (Q,α) with the dimension vector α = (αa)a∈Q0 ∈
(Z≥0)

Q0 has an action of
∏

a∈Q0
GL(αa,C) as below. For M ∈ Rep (Q,α)

and g = (ga) ∈
∏

a∈Q0
GL(αa,C), the representation g · M ∈ Rep (Q,α)

consists of the vector spaces M �
a, (a ∈ Q0) and ψ�

ρ ∈ M(αt(ρ)×αs(ρ),C), (ρ ∈
Q1) as follows:

1. For each a ∈ Q0, M
�
a := Cαa .

2. For each ρ : a → b ∈ Q1, ψ
�
ρ := gbψρg

−1
a .

Let us consider the equivalent classes of the above examples. The equiva-
lent classes Rep (Q(1), α)/

∏
a∈Q(1)

0

GL(αa,C) can be identified with the finite

set {1, 2, . . . ,min{α1, α2}}, i.e., the set of ranks of elements inM(α2×α1,C).
On the other hand, the equivalent classes Rep (Q(2), β)/

∏
a∈Q(1)

0

GL(βa,C)
is classified by Jordan normal forms of M(β1,C).

Let M = (Ma, ψ
M
ρ )a∈Q0,ρ∈Q1 and N = (Na, ψ

N
ρ )a∈Q0,ρ∈Q1 be representa-

tions of a quiver Q. Then N is called the subrepresentation of M if we have
the following:

1. There exists the direct sum decomposition Ma = Na ⊕ N �
a for each

a ∈ Q0.

2. For each ρ : a → b ∈ Q1, the equality ψM
ρ |Na = ψN

ρ holds.

In this case we denote N ⊂ M . Moreover if we have

3. for each ρ : a → b ∈ Q1, we have ψM
ρ |N ′

a
⊂ N

′
b,

6
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We denote the set of all representations of Q with the dimension vector
α ∈ (Z≥0)

Q0 by Rep (Q,α). For example let us consider the quiver Q(1),

1
��������

2
��������ρ ��

and the dimension vector α = (α1, α2). Then

Rep(Q(1), α) = M(α2 × α1,C).

Consider another quiver Q(2),

1
�������� ρ′��

and the dimension vector β = (β1). Then

Rep (Q(2), β) = M(β1,C).

Let us note that Rep (Q,α) with the dimension vector α = (αa)a∈Q0 ∈
(Z≥0)

Q0 has an action of
∏

a∈Q0
GL(αa,C) as below. For M ∈ Rep (Q,α)

and g = (ga) ∈
∏

a∈Q0
GL(αa,C), the representation g · M ∈ Rep (Q,α)

consists of the vector spaces M �
a, (a ∈ Q0) and ψ�

ρ ∈ M(αt(ρ)×αs(ρ),C), (ρ ∈
Q1) as follows:

1. For each a ∈ Q0, M
�
a := Cαa .

2. For each ρ : a → b ∈ Q1, ψ
�
ρ := gbψρg

−1
a .

Let us consider the equivalent classes of the above examples. The equiva-
lent classes Rep (Q(1), α)/

∏
a∈Q(1)

0

GL(αa,C) can be identified with the finite

set {1, 2, . . . ,min{α1, α2}}, i.e., the set of ranks of elements inM(α2×α1,C).
On the other hand, the equivalent classes Rep (Q(2), β)/

∏
a∈Q(1)

0

GL(βa,C)
is classified by Jordan normal forms of M(β1,C).

Let M = (Ma, ψ
M
ρ )a∈Q0,ρ∈Q1 and N = (Na, ψ

N
ρ )a∈Q0,ρ∈Q1 be representa-

tions of a quiver Q. Then N is called the subrepresentation of M if we have
the following:

1. There exists the direct sum decomposition Ma = Na ⊕ N �
a for each

a ∈ Q0.

2. For each ρ : a → b ∈ Q1, the equality ψM
ρ |Na = ψN

ρ holds.

In this case we denote N ⊂ M . Moreover if we have

3. for each ρ : a → b ∈ Q1, we have ψM
ρ |N ′

a
⊂ N

′
b,

6

we say M has the direct sum decomposition M = N ⊕ N � where N � =
(N �

a, ψ
M
ρ |N ′

a
)a∈Q0,ρ∈Q1 .

The representation M is called irreducible if M has only subrepresenta-
tions M and {0}. Here {0} is the representation of Q which consists of zero
vector spaces and zero linear maps. On the other hand if any direct sum
decomposition M = N ⊕N � satisfies either N = {0} or N � = {0}, then M
is called indecomposable.

In [2] Crawley-Boevey considers the representations of the doubles of
quivers. Let us recall the double of a quiver Q.

Definition 2.3 (double of a quiver). Let Q = (Q0, Q1) be a finite quiver.
Then the double Q of Q is the quiver obtained by adjoining the reverse arrow
ρ∗ : b → a for each arrow ρ : a → b. Namely Q = (Q0 := Q0, Q1 := Q1 ∪Q∗

1)
where Q∗

1 := {ρ∗ : t(ρ) → s(ρ) | ρ ∈ Q1}.

Then the moment map µα : Rep(Q,α) →
∏

a∈Q0
M(αa,C) is defined by

µα(x)a :=
∑
ρ∈Q1

t(ρ)=a

ψx
ρψ

x
ρ∗ −

∑
ρ∈Q1

s(ρ)=a

ψx
ρ∗ψ

x
ρ , a ∈ Q0,

where x = (xa, ψ
x
ρ )a∈Q0,ρ∈Q1∪Q∗

1
∈ Rep (Q,α).

Definition 2.4. Let Q be a finite quiver and Q the double of Q. Let
us fix a dimension vector α ∈ (Z≥0)

Q0 and a tuple of complex numbers
λ = (λa) ∈ CQ0 . Then define the subspace of Rep (Q,α) by

Rep (Q,α)λ := {M ∈ Rep (Q,α) | µα(M)a = λaIαa for all a ∈ Q0}.

In [2] Crawley-Boevey studies irreducible representations in Rep (Q,α)λ
and obtains the necessary and sufficient condition for the existence of the
irreducible representations in terms of Kac-Moody root systems. Thus be-
fore seeing the existence theorem of irreducible representations, let us recall
the definition of the root system of a quiver Q (cf. [6]).

Let Q be a finite quiver. The Euler form is

〈α, β〉 :=
∑
a∈Q0

αaβa −
∑
ρ∈Q1

αs(ρ)βt(ρ)

for α, β ∈ ZQ0 and symmetric bilinear form is

(α, β) := 〈α, β〉+ 〈β, α〉.

The each element ε(a) ∈ ZQ0 , a ∈ Q0 is called the fundamental root if
ε(a)a = 1, ε(a)b = 0, (b ∈ Q0\{a}) and moreover there is no loop at the
vertex a. Denote by Π the set of fundamental roots. For a fundamental root
ε define the fundamental reflection rε by

rε(α) := α− (α, ε)ε for α ∈ ZQ0 .
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The group W ⊂ AutZQ0 generated by all fundamental reflections is called
Weyl group of the quiver Q. Note that the bilinear form ( , ) is W -invariant.
Define the set of real roots by

∆re :=
∪

w∈W
w(Π).

For an element α = (αa)a∈Q0 ∈ ZQ0 the support of α is the subquiver
consists of the set of vertices a for which αa �= 0 and all arrows joining these
vertices. Define the fundamental set F ⊂ ZQ0 by

F :={
α ∈ (Z≥0)

Q0\{0} | (α, ε) ≤ 0 for all ε ∈ Π, support of α is connected
}
.

Then define the set of imaginary roots by

∆im :=
∪

w∈W
w(F ∪ −F ).

Then the root system is defined by

∆ := ∆re ∪∆im.

An element α ∈ ∆ ∩ (Z≥0)
Q0 is called positive root and denote by ∆+ the

set of positive roots.
Now let us recall Crawley-Boevey’s theorem.

Theorem 2.5 (Crawley-Boevey [2]). Let Q be a finite quiver and Q the
double of Q. Let us fix a dimension vector α ∈ (Z≥0)

Q0 and λ = (λa) ∈ CQ0 .
Then there exists an irreducible representation in Rep (Q,α)λ if and only if
the following are satisfied,

1. α ∈ ∆+ and λ · α :=
∑

a∈Q0
λaαa = 0,

2. if there exists a decomposition α = β1 + β2 + · · · , with βi ∈ ∆+ and
λ · βi = 0, then p(α) > p(β1) + p(β2) + · · · .

3 The additive Deligne-Simpson problem for Fuch-
sian equations

In [3] Crawley-Boevey gives the complete answer of the additive Deligne-
Simpson problem for Fuchsian equations. He gives a one-to-one correspon-
dence between irreducible Fuchsian equations with prescribed conjugacy
classes of residue matrices and irreducible representations in Rep(Q,α)λ
with suitable Q, α and λ. Then Theorem 2.5 can be applied to give the
answer of the additive Deligne-Simpson problem.

8
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3.1 Conjugacy classes and representations of quivers

Let C be a conjugacy class of M(n,C). Then there exist complex numbers
ξ1, . . . , ξd such that

d∏
i=1

(A− ξiIn) = 0 (1)

for all A ∈ C. For example consider the minimal polynomial. Moreover note
that mi = rank

∏i
j=1(A − ξjIn), i = 1, . . . , d are independent of the choice

of A ∈ C. Conversely, if B ∈ M(n,C) satisfies rank
∏i

j=1(B − ξjIn) = mi

for all i = 1, . . . , d, then B ∈ C. Here we formally put md = 0. This
observation leads us to the following correspondence between the elements
in C and some representations of a quiver.

Proposition 3.1 (Crawley-Boevey [3]). Let us fix a conjugacy class of
M(n,C), C, and choose ξ1, . . . , ξd ∈ C as above. Put mk := rank

∏k
i=1(A−

ξiIn), k = 1, . . . , d − 1, for A ∈ C and m0 := n. Define the quiver Q as
below.

0
��������

1
��������

d− 1
���������� ρ1 �� ρ2 �� ρd−1

Put m := (mi)i∈Q0 ∈ (Z≥0)
Q0. Then

Φ: {A ∈ C} →{
M = (Ma, ψρ)a∈Q0,ρ∈Q1∪Q∗

1
∈ Rep (Q,m)

���

µm(M)i=(ξi+1−ξi)Imi for all i=1,...,d−1,
ψρ: injective, ψρ∗ : surjective for all ρ∈Q1,ρ∗∈Q∗

1

}
/

d−1∏
i=1

GL(mi,C)

defined by Φ(A) = (M(A)a, ψ(A)ρ)a∈Q0,ρ∈Q1∪Q∗
1
is bijection. Here

M(A)0 := Cn, M(A)k := Im
k∏

i=1

(A− ξiIn) for all k = 1, . . . , d− 1,

ψρi : M(A)i+1 ↪→ M(A)i : inclusion, ψρ∗i
:= (A− ξi+1)|M(A)i .

Moreover the inverse map is given by (Ma, ψρ)a∈Q0,ρ∈Q1∪Q∗
1
�→ ψρ1ψρ∗1

+
ξ1.

The proposition gives a one-to-one correspondence between a conjugacy
class and a subspace of the representations of a quiver. However to apply
this correspondence to the additive Deligne-Simpson problem, we need a
number of conjugacy classes simultaneously.
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Theorem 3.2 (Crawley-Boevey [2]). Let C0, . . . , Cp be conjugacy classes of
M(n,C). For i = 0, . . . , p, choose ξ[i,1], . . . , ξ[i,di] ∈ C so that

di∏
j=1

(A(i) − ξ[i,j]In) = 0

for all A(i) ∈ Ci. Put m0 := n and m[i,j] := rank
∏j

k=1(A
(i) − ξ[i,k]In) for

j = 1, . . . , di − 1. Consider the following quiver Q.

0
��������

[0, 1]

��������
[0, 2]

��������
[0, d0 − 1]

��������

[1, 1]

��������
[1, 2]

��������
[1, d1 − 1]

��������

[p, 1]

��������
[p, 2]

��������
[p, dp − 1]

��������

��

�������������
����������

��
��

��
��

��
�

�� �� ��

�� �� ��

�� �� ��

Define α = (αa)a∈Q0 ∈ (Z≥0)
Q0 by α0 := m0 and α[i,j] := m[i,j] for i =

0, . . . , p, j = 1, . . . , di − 1. Also define λ = (λa)a∈Q0 ∈ CQ0 by λ0 :=
−
∑p

i=0 ξ1 and λ[i,j] := ξ[i,j+1] − ξ[i,j] for i = 0, . . . , p, j = 1, . . . , di − 1.
Then there exists a one-to-one correspondence

{
(A0, . . . , Ap) ∈ C0 × · · · × Cp

����
∑p

i=0 Ai=0,
(A0,...,Ap) is irreducible

}
/GL(n,C) →

{
M ∈ Rep (Q,α)λ | M is irreducible

}
/
∏
a∈Q0

GL(αa,C).

This theorem tells us that the existence of a solution of the additive
Deligne-Simpson problem follows from that of irreducible representations
in Rep (Q,α)λ. Thus we can apply Theorem 2.5 to the additive Deligne-
Simpson problem.

Theorem 3.3 (Crawley-Boevey [3]). Let C0, . . . , Cp be conjugacy classes of
M(n,C). Let us take a quiver Q and α ∈ (Z≥0)

Q0 and λ ∈ CQ0 as Theorem
3.2. Then the additive Deligne-Simpson problem for C0, . . . , Cp is solvable
if and only if the following are satisfied,

1. α ∈ ∆+ and λ · α :=
∑

a∈Q0
λaαa = 0,

2. if there exists a decomposition α = β1 + β2 + · · · , with βi ∈ ∆+ and
λ · βi = 0, then p(α) > p(β1) + p(β2) + · · · .

10
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M(n,C). Let us take a quiver Q and α ∈ (Z≥0)

Q0 and λ ∈ CQ0 as Theorem
3.2. Then the additive Deligne-Simpson problem for C0, . . . , Cp is solvable
if and only if the following are satisfied,

1. α ∈ ∆+ and λ · α :=
∑

a∈Q0
λaαa = 0,

2. if there exists a decomposition α = β1 + β2 + · · · , with βi ∈ ∆+ and
λ · βi = 0, then p(α) > p(β1) + p(β2) + · · · .

10

4 Differential equations with poles of order 2 and
representations of quivers

Now let us discuss a generalization of the additive Deligne-Simpson problem
for non-Fuchsian equations. Before discussing in the general setting, we
consider the case k0 = · · · = kp = 2 in Definition 1.5.

Let B ∈ g∗2 be a HTL normal form written by

B = diag
(
α1In1x

−2 +B1x
−1, . . . , αmInmx

−2 +Bmx−1
)
.

Here Bi ∈ M(ni,C) and αi ∈ C, i = 0, . . . , p satisfying αi �= αj if i �= j.
First recall the structure of the truncated orbit OB. Let us put Birr :=

diag (α1In1 , . . . , αmInm) and denote by Vi ⊂ Cn the eigenspace of Birr for
each eigenvalue αi, i = 1, . . . ,m. For any X ∈ M(n,C) Xi,j denote the
HomC(Vj , Vi)-component of X with respect to the decomposition M(n,C) =
EndC(

⊕m
i=1 Vi) =

⊕
1≤i,j≤mHomC(Vi, Vj).

The following lemma is well-known.

Lemma 4.1. Let B ∈ g∗2 be the HTL normal form as above. Then OB

consists of A(x) =
∑2

i=1Aix
−i ∈ g∗2 satisfying the following. There exists

G ∈ GL(n,C) such that

1. GA2G
−1 = Birr,

2. (GA1G
−1)i,i = Bi, i = 1, . . . ,m.

Next we consider a number of truncated orbits simultaneously and relate
them to representations of a quiver. Let B(0), . . . , B(p) ∈ g∗2 be HTL normal
forms written by

B(i) = diag
(
α
(i)
1 I

n
(i)
1

x−2 +B
(i)
1 x−1, . . . , α(i)

mi
I
n
(i)
mi

x−2 +B(i)
mi

x−1
)
.

Let V
(i)
j ⊂ Cn be the eigenspace of B

(i)
irr for each eigenvalue α

(i)
j , i =

0, . . . , p, j = 1, . . . ,mi.

Let X(i,j),(i′j′) be HomC(V
(i′)
j′ , V

(i)
j )-component of X ∈ M(n,C) with

respect to M(n,C) =
⊕

1≤j≤mi

⊕
1≤j′≤mi′

HomC(V
(i′)
j , V

(i)
j ). We may write

X =
(
X(i,j),(i′j′)

)
1≤j≤mi,
1≤j′≤mi′

.

Let us consider the quiver Q defined as follows. The set of vertices is

Q0 := {[i, j] | i = 0, . . . , p, j = 1, . . . ,mi} .

The set of arrows is

Q1 :=
{
ρ
[0,j]
[i,j′] : [0, j] → [i, j�]

�� j = 1, . . . ,m0, i = 1, . . . , p, j� = 1, . . . ,mi

}
.

Take the dimension vector α = (αa)a∈Q0 ∈ ZQ0 so that α[i,j] := dimCV
(i)
j ,

i = 0, . . . , p, j = 1, . . . ,mi.
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Proposition 4.2 ([4]). We use the same notation as above. Then there
exists a bijection

Φ:

{(
2∑

i=1

A
(0)
i x−i, . . . ,

2∑
i=1

A
(p)
i x−i

)
∈ OB(0) × · · · × OB(p)

����
p∑

i=0

A
(i)
1 = 0

}
/GL(n,C) −→



(Ma, ψρ) ∈ Rep (Q,α)

���� det
(
ψ
ρ
[0,j]

[i,j′]

)
1≤j≤m0

1≤j′≤mj′

�= 0, i = 1, . . . , p,

µα(M)[i,j] ∈ C
(i)
j , [i, j] ∈ Q0

}
/

p∏
i=0

mi∏
j=1

GL(α[i,j],C).

Here C
(i)
j is the conjugacy class of each B

(i)
j , i = 0, . . . , p, j = 1, . . . ,mi.

Let us explain the construction of Φ in the above proposition. Take an

element A =
(∑2

i=1A
(0)
i x−i, . . . ,

∑2
i=1A

(p)
i x−i

)
∈ OB(0) × · · · × OB(p) with

∑p
i=0A

(i)
1 = 0 and choose Gj ∈ GL(n,C) for each

∑2
i=1A

(j)
i x−i, j = 0, . . . , p

as in Lemma 4.1. Under the conjugation by GL(n,C), we may suppose
G0 = In. Then let us define Φ(A) = (Ma, ψρ)a∈Q0,ρ∈Q1∪Q∗

1
as follows,

1. M[i,j] := V
(i)
j , i = 0, . . . , p, j = 1, . . . ,mi,

2. ψ
ρ
[0,j]

[i,j′]
:= (G(i))(i,j′),(0,j) and ψ(

ρ
[0,j]

[i,j′]

)∗ :=
(
A

(i)
1 (G(i))−1

)
(0,j),(i,j′)

, j =

1, . . . ,m0, i = 1, . . . , p, j� = 1, . . . ,mi.

For example let us consider

B(0) = diag(α1Im1x
−2 +B

(0)
1 x−1, α2Im2x

−2 +B
(0)
2 x−2),

B(1) = diag(β1In1x
−2 +B

(1)
1 x−1, β2In2x

−2 +B
(1)
2 x−2),

and take A =
(∑2

i=1A
(0)
i x−i,

∑2
i=1A

(1)
i x−i

)
∈ OB(0) × OB(1) satisfying

A
(0)
1 +A

(1)
1 = 0. Then the conjugation by GL(n,C) allows to assume A

(0)
2 =

B
(0)
irr , (A

(0)
1 )i,i = B

(0)
i for i = 1, 2 and there exists G ∈ GL(n,C) such that

GA(1)G−1 = B
(1)
irr and (GA

(1)
1 G−1)i,i = B

(1)
i for i = 1, 2. Then we can define

the quiver Q,

[0, 1]

��������

[0, 2]

��������

[1, 1]

��������

[1, 2]

��������

ρ1 ��
ρ2

���
��

��
��

��
��

��
��

ρ3

����������������� ρ4 ��

,
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and attach a representation M = (Ma, ψρ)a∈Q0,ρ∈Q1∪Q∗
1
to A as follows:

M[0,i] := Cmi , M[1,i] := Cni for i = 1, 2,

G =

(
ψρ1 ψρ3

ψρ2 ψρ4

)
, A

(1)
1 G−1 =

(
ψρ∗1

ψρ∗2
ψρ∗3

ψρ∗4

)
.

Then we have

GA
(1)
1 G−1 =

(
ψρ1ψρ∗1

+ ψρ3ψρ∗3
∗

∗ ψρ2ψρ∗2
+ ψρ4ψρ∗4

)

=

(
µα(M)[1,1] ∗

∗ µα(M)1,2

)
.

Similarly,

A
(0)
1 = −A

(1)
1 = −A

(1)
1 G−1G

= −
(

ψρ∗1
ψρ1 + ψρ∗2

ψρ2 ∗
∗ ψρ∗3

ψρ3 + ψρ∗4
ψρ4

)

=

(
µα(M)[0,1] ∗

∗ µα(M)[0,2]

)
.

Thus we have µα(M)[i,j] = B
(i)
j , i = 0, 1, j = 1, 2.

5 Truncated orbits and representations of quivers

In the previous section we restrict ourselves to the case k0 = · · · = kp = 2.
Let us consider truncated orbits of higher degrees and relate them to some
representations of quivers.

Fix k > 1 and B =
∑k

i=1B
[i]x−i ∈ g∗k of HTL normal form written by

B = diag
(
q1(x

−1)In1 +B1x
−1, . . . , qm(x−1)Inm +Bmx−1

)

where Bi ∈ M(ni,C), qi(s) ∈ s2C[s], i = 1, . . . ,m and qi �= qj if i �= j.

Let V
[i]
j ⊂ Cn, i = 1, . . . , k− 1, j = 1, . . . ,m[i] be simultaneous invariant

spaces of (B[i+1], . . . , B[k−1], B[k]). Note that m[1] = m.

Let Xi,j denote the HomC(V
[1]
j , V

[1]
i )- component of X ∈ M(n,C) =⊕

1≤i,j≤m[1]
HomC(V

[1]
i , V

[1]
j ). For g(x) =

∑∞
i=r gix

i ∈ M(n,C((x))), de-

fine g(x)j,j′ :=
∑∞

i=r(gi)j,j′x
i, 1 ≤ j, j� ≤ m[1]. In addition, with re-

spect to the decomposition M(n,C) =
⊕

1≤i≤m[1]
HomC(V

[1]
i ,Cn), we de-

note HomC(V
[1]
i ,Cn)-component of X ∈ M(n,C) by Xi,∗ for i = 1, . . . ,m[1].

Similarly X∗,i denote the HomC(Cn, V
[1]
i )- component of X ∈ M(n,C) =
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⊕
1≤i≤m[1]

HomC(Cn, V
[1]
i ). We writeX = (Xi,j)1≤i,j≤m[1]

= (X∗,i)1≤i≤m[1]
=

(Xi,∗)1≤i≤m[1]
.

Let πi : Ji := {1, . . . ,m[i]} → Ji+1 := {1, . . . ,m[i+1]} be the natural

surjection such that V
[i]
j ⊂ V

[i+1]
πi(j)

. Put the total ordering {1 < 2 < · · · <
m[1]} on J1 and also put the total ordering on Ji, i = 2, . . . , k − 1 so that

if j1 < j2, then πi(j1) ≤ πi(j2), j1, j2 ∈ Ji.

For the pair j �= j� ∈ m[1] we attach the number

d(j, j�) = max{i | πi(j) �= πi(j
�), i = 0, . . . , k − 1}. (2)

Here we formally put π0 := id|J1 .
Let us define the subgroup of Gk,

G0
k :=

{
k−1∑
i=0

Aix
i ∈ Gk

����A0 = In

}

and its orbit O0
B := {gBg−1 ∈ g∗k | g ∈ G0

k}.
According to the ordering on each Ji, i = 1, . . . , k − 1, define parabolic

subalgebras of M(n,C) as below,

p+i :=
⊕

j1,j2∈Ji,
j1≥j2

HomC(V
[i]
j1
, V

[i]
j2
), p−i :=

⊕
j1,j2∈Ji,
j1≤j2

HomC(V
[i]
j1
, V

[i]
j2
),

and similarly nilpotent subalgebras

u+i :=
⊕

j1,j2∈Ji,
j1>j2

HomC(V
[i]
j1
, V

[i]
j2
), u−i :=

⊕
j1,j2∈Ji,
j1<j2

HomC(V
[i]
j1
, V

[i]
j2
),

for i = 1, . . . , k − 1.
Also define the subsets of G0

k,

P±
k :=

{
k−1∑
i=0

Pix
i ∈ G0

k

����Pi ∈ p±i , i = 1, . . . , k − 1

}
,

U±
k :=

{
k−1∑
i=0

Uix
i ∈ G0

k

����Ui ∈ u±i , i = 1, . . . , k − 1

}
,

and the subspace of g∗k,

(U∓
k )

∗ :=

{
k−1∑
i=1

Uix
−i−1

����Ui ∈ u±i , i = 1, . . . , k − 1

}
.

Then we can show the following decomposition.
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⊕
1≤i≤m[1]

HomC(Cn, V
[1]
i ). We writeX = (Xi,j)1≤i,j≤m[1]

= (X∗,i)1≤i≤m[1]
=

(Xi,∗)1≤i≤m[1]
.

Let πi : Ji := {1, . . . ,m[i]} → Ji+1 := {1, . . . ,m[i+1]} be the natural

surjection such that V
[i]
j ⊂ V

[i+1]
πi(j)

. Put the total ordering {1 < 2 < · · · <
m[1]} on J1 and also put the total ordering on Ji, i = 2, . . . , k − 1 so that

if j1 < j2, then πi(j1) ≤ πi(j2), j1, j2 ∈ Ji.

For the pair j �= j� ∈ m[1] we attach the number

d(j, j�) = max{i | πi(j) �= πi(j
�), i = 0, . . . , k − 1}. (2)

Here we formally put π0 := id|J1 .
Let us define the subgroup of Gk,

G0
k :=

{
k−1∑
i=0

Aix
i ∈ Gk

����A0 = In

}

and its orbit O0
B := {gBg−1 ∈ g∗k | g ∈ G0

k}.
According to the ordering on each Ji, i = 1, . . . , k − 1, define parabolic

subalgebras of M(n,C) as below,

p+i :=
⊕

j1,j2∈Ji,
j1≥j2

HomC(V
[i]
j1
, V

[i]
j2
), p−i :=

⊕
j1,j2∈Ji,
j1≤j2

HomC(V
[i]
j1
, V

[i]
j2
),

and similarly nilpotent subalgebras

u+i :=
⊕

j1,j2∈Ji,
j1>j2

HomC(V
[i]
j1
, V

[i]
j2
), u−i :=

⊕
j1,j2∈Ji,
j1<j2

HomC(V
[i]
j1
, V

[i]
j2
),

for i = 1, . . . , k − 1.
Also define the subsets of G0

k,

P±
k :=

{
k−1∑
i=0

Pix
i ∈ G0

k

����Pi ∈ p±i , i = 1, . . . , k − 1

}
,

U±
k :=

{
k−1∑
i=0

Uix
i ∈ G0

k

����Ui ∈ u±i , i = 1, . . . , k − 1

}
,

and the subspace of g∗k,

(U∓
k )

∗ :=

{
k−1∑
i=1

Uix
−i−1

����Ui ∈ u±i , i = 1, . . . , k − 1

}
.

Then we can show the following decomposition.
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Lemma 5.1. For any g ∈ G0
k, there uniquely exist u− ∈ U−

k and p+ ∈ P+
k

such that g = u− · p+.

The above lemma shows that there exists a lower triangular matrix u ∈
U−
k and a upper triangular matrix p ∈ P+

k such that A ∈ O0
B can be reduced

to the upper triangular matrix uAu−1 = p−1Bp. Furthermore we can show
the following.

Proposition 5.2 ([4], [5]). For any A ∈ O0
B there uniquely exists u ∈ U−

k−1

such that B̄ := u−1Au satisfies

B̄ −B ∈ U−
k (mod x−1C[[x]]).

If we write B̄ =
∑k

i=1 B̄
[i]x−i, we can also show that B̄[k] = B[k] and

B̄[1] −B[1] ∈ u+1 ⊕ u−1 .
Let us take A ∈ O0

B, u ∈ U+
k−1 and B̄ as above proposition. Then

B̃ =
∑k

i=1 B̃
[i]x−i ∈ g∗k is defined as follows:

B̃i,j := 0 if i > j,

B̃i,m[1]
:= B̄i,m[1]

,

B̃i,m[1]−j :≡ B̄i,m[1]−j −
j−1∑
k=0

B̃i,m[1]−kum[1]−k,m[1]−j (mod C[[x]]),

1 ≤ i ≤ m[1], 1 ≤ j ≤ m[1] − i.

Then the difference between the residue of A ∈ O0
B and that of B can

be computed by the above u and B̃ as follows.

Proposition 5.3. Let us take A ∈ O0
B, u ∈ U+

k−1 and B̃ as above. Then we
have

Bk − (resx=0A)k,k = resx=0

(
−

k−1∑
i=1

bk,iB̃i,k +

m[1]∑
i=k+1

B̃k,iui,k

)
.

Under these preparations, let us define the quiver Q as follows. The set
of vertices is

Q0 := {0} ∪ {1, . . . ,m[1]}.

The set of arrows is

Q1 :=
{
ρ
[j]
i,i′ : i → i�

�� 1 ≤ i < i� ≤ m[1], j = 1, . . . , d(i, i�)
}

∪
{
ρi : 0 → i | i = 1, . . . ,m[1]

}
.

Define the dimension vector α = (αa)a∈Q0 by α[0] := n and α[i] := dimCV
[1]
i ,

i = 1, . . . ,m[1].

15
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Proposition 5.4 ([4]). There exists a bijection

Φ: OB →
{
M = (Ma, ψρ) ∈ Rep (Q,α)

���� det (ψρi)1≤i≤m[1]
�= 0,

µα(M)i ∈ Ci for i = 1, . . . ,m[1]

}
/

m[1]∏
i=1

GL(αi,C).

Here Ci are conjugacy classes of Bi for i = 1, . . . ,m[1].

Let us explain the construction of Φ. For Ā ∈ OB there exists g ∈
GL(n,C) such that A := gĀg−1 ∈ O0

B. Then by the above propositions, we
can choose u ∈ U−

k−1 and B̃ from A, and Φ(Ā) = (Ma, ψρ)a∈Q0,ρ∈Q1∪Q∗
1
is

defined as follows:

M0 := Cn, Mi := V
[1]
i , i = 1, . . . ,m[1],

ψ
ρ
[j]

i,i′
:= B̃

[j+1]
i,i′ , ψ

(ρ
[j]

i,i′ )
∗ := u

[j]
i′,i,

ψρi := gi,∗, ψρ∗i
:=

(
resx=0Āg−1

)
∗,i .

Here we set B̃ =
∑k

i=1 B̃
[i]x−i and u =

∑k−1
i=0 u[i]xi. Then Proposition 5.3

tells us that µα(M)i = Bi ∈ Ci for i = 1, . . . ,m[i].
The compatibility between the symplectic structures of the coadjoint

orbit OB and that of the representation space of the quiver in Proposition
5.4 will be discussed in [5].

6 Generalized Delinge-Simpson problem and rep-
resentations of a quiver

In the previous sections representations of quivers are associated with con-
jugacy classes of matrices (Proposition 3.1), tuples of truncated orbits of
degree 2 (Proposition 4.2) and truncated orbits of higher degrees (Propo-
sition 5.4). Glueing them together, now let us construct representations of
quivers in order to apply to the generalized Deligne-Simpson problem.

Let B(0) =
∑k0

i=1B
[0,i]x−i ∈ g∗k0 , . . . , B

(p) =
∑kp

i=1B
[p,i]x−i ∈ g∗kp be

HTL normal forms written by

B(i) = diag
(
q
(i)
1 (x−1)I

n
(i)
1

+B
(i)
1 x−1, . . . , q(i)mi

(x−1)I
n
(i)
mi

+B(i)
mi

x−1
)

for i = 0, . . . , p where q
(i)
j (s) ∈ s2C[s] satisfying q

(i)
j �= q

(i)
j′ if j �= j� and

B
(i)
j ∈ M(n

(i)
j ,C).

For i = 0, . . . , p, j = 1, . . . , ki − 1, let V
[i,j]
k , k = 1, . . . ,m[i,j], be

the simultaneous eigenspaces of (B[i,j+1], . . . , B[i,ki]). For each pair j, j� ∈
{1, . . . ,m[i,1]}, attach the integer di(j, j

�) defined by the same way as in (2).

16
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Proposition 5.4 ([4]). There exists a bijection

Φ: OB →
{
M = (Ma, ψρ) ∈ Rep (Q,α)

���� det (ψρi)1≤i≤m[1]
�= 0,

µα(M)i ∈ Ci for i = 1, . . . ,m[1]

}
/

m[1]∏
i=1

GL(αi,C).

Here Ci are conjugacy classes of Bi for i = 1, . . . ,m[1].

Let us explain the construction of Φ. For Ā ∈ OB there exists g ∈
GL(n,C) such that A := gĀg−1 ∈ O0

B. Then by the above propositions, we
can choose u ∈ U−

k−1 and B̃ from A, and Φ(Ā) = (Ma, ψρ)a∈Q0,ρ∈Q1∪Q∗
1
is

defined as follows:

M0 := Cn, Mi := V
[1]
i , i = 1, . . . ,m[1],

ψ
ρ
[j]

i,i′
:= B̃

[j+1]
i,i′ , ψ

(ρ
[j]

i,i′ )
∗ := u

[j]
i′,i,

ψρi := gi,∗, ψρ∗i
:=

(
resx=0Āg

−1
)
∗,i .

Here we set B̃ =
∑k

i=1 B̃
[i]x−i and u =

∑k−1
i=0 u[i]xi. Then Proposition 5.3

tells us that µα(M)i = Bi ∈ Ci for i = 1, . . . ,m[i].
The compatibility between the symplectic structures of the coadjoint

orbit OB and that of the representation space of the quiver in Proposition
5.4 will be discussed in [5].

6 Generalized Delinge-Simpson problem and rep-
resentations of a quiver

In the previous sections representations of quivers are associated with con-
jugacy classes of matrices (Proposition 3.1), tuples of truncated orbits of
degree 2 (Proposition 4.2) and truncated orbits of higher degrees (Propo-
sition 5.4). Glueing them together, now let us construct representations of
quivers in order to apply to the generalized Deligne-Simpson problem.

Let B(0) =
∑k0

i=1B
[0,i]x−i ∈ g∗k0 , . . . , B

(p) =
∑kp

i=1B
[p,i]x−i ∈ g∗kp be

HTL normal forms written by

B(i) = diag
(
q
(i)
1 (x−1)I

n
(i)
1

+B
(i)
1 x−1, . . . , q(i)mi

(x−1)I
n
(i)
mi

+B(i)
mi

x−1
)

for i = 0, . . . , p where q
(i)
j (s) ∈ s2C[s] satisfying q

(i)
j �= q

(i)
j′ if j �= j� and

B
(i)
j ∈ M(n

(i)
j ,C).

For i = 0, . . . , p, j = 1, . . . , ki − 1, let V
[i,j]
k , k = 1, . . . ,m[i,j], be

the simultaneous eigenspaces of (B[i,j+1], . . . , B[i,ki]). For each pair j, j� ∈
{1, . . . ,m[i,1]}, attach the integer di(j, j

�) defined by the same way as in (2).

16

For each B
(i)
j , i = 0, . . . , p and j = 1, . . . ,mi, let us choose complex

numbers ξ
[i,j]
1 , . . . , ξ

[i,j]
e[i,j] so that

e[i,j]∏
k=1

(B
(i)
j − ξ

[i,j]
k ) = 0.

Put Iirr := {i ∈ {0, . . . , p} | ki > 1} ∪ {0} and Ireg := {0, . . . , p}\Iirr.
Now let us consider the following quiver Q. The set of vertices is

Q0 := {[i, j] | i ∈ Iirr, j = 1, . . . ,mi}
∪
{
[i, j, k] | i = 0, . . . , p, j = 1, . . . ,mi, k = 1, . . . , e[i,j] − 1

}
.

The set of arrows is

Q1 :=
{
ρ
[0,j]
[i,j′] : [0, j] → [i, j�]

��� j = 1, . . . ,m0, i ∈ Iirr\{0}, j = 1, . . . ,mi

}

∪
{
ρ
[k]
[i,j],[i,j′] : [i, j] → [i, j�]

��� i ∈ Iirr, 1 ≤ j < j� ≤ mi, 1 ≤ k ≤ d(j, j�)
}

∪
{
ρ
[i,j]
1 : [i, j, 1] → [i, j]

��� i ∈ Iirr, j = 1, . . . ,mi

}

∪
{
ρ
[i,1,1]
[0,j] : [i, 1, 1] → [0, j]

��� i ∈ Ireg, j = 1, . . . ,m0

}

∪
{
ρ
[i,j]
k : [i, j, k] → [i, j, k − 1]

��� i = 1, . . . , p, j = 1, . . . ,mi,

k = 2, . . . , e[i,j] − 1
}
.

Let us define the dimension vector α = (αa)a∈Q0 by α[i,j] := n
(i)
j ,

α[i,j,k] := dimC

(
rank

∏k
l=1(B

(i)
j − ξ

[i,j]
l )

)
. Also define λ = (λa)a∈Q0 by

λ[i,j] := −ξ
[i,j]
1 for i ∈ Iirr\{0}, j = 1, . . . ,mi, λ[0,j] := −ξ

[0,j]
1 −

∑
i∈Ireg ξ

[i,1]
1

for j = 1, . . . ,m0, and λ[i,j,k] := ξ
[i,j]
k+1 − ξ

[i,j]
k for i = 0, . . . , p, j = 1, . . . ,mi,

k = 1, . . . , e[i,j] − 1.
Then combining Proposition 3.1, 4.2 and 5.4, we have the following bi-

jection.

Theorem 6.1 ([4]). Let B(0), . . . , B(p) be HTL normal forms chosen as
above. Then there exists a bijection

Φ:







k0∑
j=1

A
(0)
j x−j , . . . ,

kp∑
j=1

A
(p)
j x−j


 ∈ OB(0) × · · · × OB(p)

����
p∑

i=0

A
(i)
1 = 0

}
/GL(n,C)
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→
{
M = (Ma, ψρ∈Q1∪Q1∗) ∈ Rep(Q,α)λ

��

det

(
ψ
ρ
[0,j]

[i,j′]

)
1≤j≤m0

1≤j′≤mi

�= 0, i ∈ Iirr\{0},

(
ψ
ρ
[i,1,1]
[0,j]

)

1≤j≤m0

: M[i,1,1] →
m0⊕
j=1

M[0,j], injective, i ∈ Ireg,

(
ψ(

ρ
[i,1,1]
[0,j]

)∗

)

1≤j≤m0

:

m0⊕
j=1

M[0,j] → M[i,1,1], surjective, i ∈ Ireg,

ψ
ρ
[i,j]
k

, injective, ψ
(ρ

[i,j]
k )∗, surjective

}
/
∏
a∈Q0

GL(αa,C).

Unfortunately the above bijection Φ does not preserve irreducibility.
Thus we introduce the following notion.

Definition 6.2 (quasi-irreducible). If X ∈ Rep(Q,α)λ has no nontrivial
proper subrepresentation Y � X in Rep(Q,α)λ with dimY = (βa)a∈Q0

satisfying
m0∑
j=1

β[0,j] =

m1∑
j=1

β[1,j] = · · · =
mp∑
j=1

β[p,j],

then X is called quasi-irreducible.

Then we have following correspondence between irreducible elements and
quasi-irreducible representations.

Proposition 6.3. There is the bijection

Φ:







k0∑
j=1

A
(0)
j x−j , . . . ,

kp∑
j=1

A
(p)
j x−j


 ∈ OB(0) × · · · × OB(p)

����
p∑

i=0

A
(i)
1 = 0, irreducible

}
/GL(n,C)

→

{
M = (Ma, ψρ∈Q1∪Q1∗) ∈ Rep(Q,α)λ

���� quasi-irreducible,

det

(
ψ
ρ
[0,j]

[i,j′]

)
1≤j≤m0

1≤j′≤mi

�= 0, i ∈ Iirr\{0}

}
/
∏
a∈Q0

GL(αa,C).

Then as an application of the above correspondence, we obtain under a
generic condition the necessary and sufficient condition of the existence of a
solution of the generalized additive Deligne-Simpson problem.
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→
{
M = (Ma, ψρ∈Q1∪Q1∗) ∈ Rep(Q,α)λ

��

det

(
ψ
ρ
[0,j]

[i,j′]

)
1≤j≤m0

1≤j′≤mi

�= 0, i ∈ Iirr\{0},

(
ψ
ρ
[i,1,1]
[0,j]

)

1≤j≤m0

: M[i,1,1] →
m0⊕
j=1

M[0,j], injective, i ∈ Ireg,

(
ψ(

ρ
[i,1,1]
[0,j]

)∗

)

1≤j≤m0

:

m0⊕
j=1

M[0,j] → M[i,1,1], surjective, i ∈ Ireg,

ψ
ρ
[i,j]
k

, injective, ψ
(ρ

[i,j]
k )∗, surjective

}
/
∏
a∈Q0

GL(αa,C).

Unfortunately the above bijection Φ does not preserve irreducibility.
Thus we introduce the following notion.

Definition 6.2 (quasi-irreducible). If X ∈ Rep(Q,α)λ has no nontrivial
proper subrepresentation Y � X in Rep(Q,α)λ with dimY = (βa)a∈Q0

satisfying
m0∑
j=1

β[0,j] =

m1∑
j=1

β[1,j] = · · · =
mp∑
j=1

β[p,j],

then X is called quasi-irreducible.

Then we have following correspondence between irreducible elements and
quasi-irreducible representations.

Proposition 6.3. There is the bijection

Φ:







k0∑
j=1

A
(0)
j x−j , . . . ,

kp∑
j=1

A
(p)
j x−j


 ∈ OB(0) × · · · × OB(p)

����
p∑

i=0

A
(i)
1 = 0, irreducible

}
/GL(n,C)

→

{
M = (Ma, ψρ∈Q1∪Q1∗) ∈ Rep(Q,α)λ

���� quasi-irreducible,

det

(
ψ
ρ
[0,j]

[i,j′]

)
1≤j≤m0

1≤j′≤mi

�= 0, i ∈ Iirr\{0}

}
/
∏
a∈Q0

GL(αa,C).

Then as an application of the above correspondence, we obtain under a
generic condition the necessary and sufficient condition of the existence of a
solution of the generalized additive Deligne-Simpson problem.
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Theorem 6.4 ([4]). Let B(0), . . . , B(p) be HTL normal forms. Let us take
the quiver Q and the dimension vector α ∈ (Z≥0)

Q0 and λ ∈ CQ0 as in
Theorem 6.1. Moreover assume that λ is generic. Then the generalized
additive Delinge-Simpson problem for OB(0) , . . . ,OB(p) is solvable if and only
if the following are satisfied,

1. α ∈ ∆+ and λ · α = 0,

2. q(α) < 0 or α is indivisible.

Here we say α is indivisible if all components of α have no common divisors.

Remark 6.5. If we assume the degree ki of each OB(i) satisfies that k1 =
· · · = kp = 1 and k0 ≤ 3. P. Boalch obtains the complete answer of the
generalized additive Deligne-Simpson problem [1] without generic condition
of λ. Theorem 6.4 can be seen as a generalization of Oshima and Takemura
(see Theorem 10.2 in [9]).
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