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AN ELEMENTARY APPROACH TO THE GAUSS
HYPERGEOMETRIC FUNCTION

TOSHIO OSHIMA

ABSTRACT. We give an introduction to the Gauss hypergeometric function, the
hypergeometric equation and their properties in an elementary way. Moreover
we explicitly and uniformly describe the connection coefficients, the reducibil-
ity of the equation and the monodromy group of the solutions.

1. INTRODUCTION

The Gauss hypergeometric function is the most fundamental and important spe-
cial function and it has long been studied from various points of view. Many for-
mulae for the function have been established and they are contained in the books
on special functions such as [WW], [EMO], [WG], [SW] etc. In this paper we show
and prove the fundamental formulae in an elementary way.

We first give local solutions of the Gauss hypergeometric equation for every
parameter, recurrent relations among three consecutive functions and contiguous
relations. Then we show the Gauss summation formula, the connection formula
and the monodromy group which is expressed by an explicit base of the space of
the solutions depending holomorphically on the parameters of the hypergeometric
equation. Our results are valid without an exception of the value of the parameter.

The author recently shows in [O1] and [O2] that it is possible to analyze solu-
tions of general Fuchsian linear ordinary differential equations and get the explicit
formulae as in the case of the Gauss hypergeometric equations, in particular, in the
case when the equation has a rigid spectral type.

Theorem 8 with Remark 9 may contain a new result but most results in this
paper are known. The author hopes that this paper will be useful for the reader
to understand the Gauss hypergeometric functions and moreover the analysis on
general Fuchsian differential equations in [02].

In this paper we will not use the theory of integrals nor gamma functions even for
the connection formula and for the expression of the monodromy groups in contrast
to [MS].

For example, the Liouville theorem is known to be proved by the Cauchy integral
formula, whose generalization is the Fuchs relation on Fuchsian linear ordinary
differential equations, is proved without the theory of integrals as follows.

Let u(x) = Y .7 ja,2z" be a function on C defined by a power series whose
radius of convergence is co. Suppose there exists a non-negative integer N such
that (1+4|z|) = |u(z)| is bounded. Suppose moreover that u(z) is not a polynomial.
Replacing u(z) by —r (u(z) — Zf:o anz™), we may assume lim, o [u(z)| = 0.
Then there exists ¢ € C satisfying |u(x)| < |u(c)| # 0 for all € C. Replacing u(x)
by Cu(ax + ¢) with a certain complex numbers a and C, we may assume that there
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w@)=14+2"+3 7 byx™™ and |u(x)| <u(0) =1 (Vz € C).
But if 0 < e < 1, we have Y07, [b,|e” < 3 and |u(e)| > 1+ 3™
2. GAUSS HYPERGEOMETRIC SERIES AND HYPERGEOMETRIC EQUATION

For complex numbers «, # and ~, Euler studied that the Gauss hypergeometric
series

e~ (@n(B)nzt . aBa ala+1)B(B+1)2?
with
n—1
(2.2) (@)n = [Jla+v)=ala+1)---(a+n-1) (a€C)

gives a solution of the Gauss hypergeometric equation

(2.3) z(1—z)u”" + (v — (a+ B+ 1z)u' — afu=0.
Here we note that
(2.4) F(a, B,vi2) = F(B,a,v;2).

We will review this and obtain all the solutions of the equation around the origin.
We introduce the notation
0:= %, 9 :=x0
and then the Gauss hypergeometric equation is
(2.5) Pypgru=0
with the linear ordinary differential operator
(2.6) Pogyi=a(l—2)0* + (v — (a+ B+ 1)x)0 — ap.
Since 92 = 2202 + 20 = 220% + ¥, we have
TPy gy = (220 + y20) — 2(2%0° + (e + B+ 1)20 + af)
(2.7) = (0 =9 +79) —z(9* + (a + B)Y + ap)
=90 +y—-1)—z(W+a)(I+P),
the equation (2.3) is equivalent to
(2.8) I +v—1Du =z + )+ B)u.

Putting u = 7, ¢,2™ and comparing the coefficients of 2™ in the equation (2.8),
we have

(29) nn+y—Dey=Mn—-14+a)n—14+pB)cp-1 (c.1=0, n=0,1,...)

and therefore
C(a+n-D(B+n-1)

S CEE T
(atn-Da+tn-9@+n-1)@E+n=2 (@b,
(v tn—D(y+n—2n(n—1) " (Vunl

which shows that
(2'10) u[a,,@,’y](x) = F(Oé,ﬁ,’y;l')
is a solution of (2.3) if

(2.11) v¢{0,—-1,-2,...}.
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3. LOCAL SOLUTIONS

For a function h(x) and a linear differential operator P we put
Ad(h(z))(P) := h(z) o Po h(z)™"
and then

Ad(zM) () =9 -1 (A eQ).

Thus we have
1) AET)EPasy) = @ —y+ DI —a+a—g+ DI +E-y+1)
' = 2Pa—y41,8-v+1,2—7-

Since P, g u = 0 is equivalent to Ad(z7 1) (2P p,~)2" 'u = 0, we have another
solution

(3.2) Via,p)(2) =2 TV F(a =y +1,8 -7 +1,2 - 7;2)
if 2—~¢{0,-1,-2,...}, namely,
(3.3) v ¢{2,3,4,...}.

We have linearly independent solutions u, g 4] and vj,, g When v ¢ Z.
Since u[q,8,1] = V[a,s,1], the function

0 -
(3.4) wig o = (v = D)7 (e = Vas)

is holomorphic with respect to v when |y — 1| < 1. Then we have

(3.5) w[(ao?ﬁ’l] (z) =logz- F(a, B, 1;2) + Zakxk
k=1

with some a; € C and

36) w0, (@)= C‘;t(x (a4 LB+ 614 12) — Fla, 8,1~ 1)

t=0

Note that vy, g+ (z) and w[a s, ,y]( x) give independent solutions when |y — 1] < 1.
Now we examine the case when v = —m with a non-negative integer m. In this
case the function ((7v+m)ua,g,4]) ly=—m is a solution of Py g _mu = 0 and therefore

((tmF(apoyia)| = e it a1, g1, 2i0)

and (—m),, = (—=1)™m!. Hence the solution

37 (m+1) _ (@ ma1(B)mtr 0,1,2,...
(3.7) Wia,B,y] = Y8 (,y)m+1(m+1)!v[a,5,“/} (me{0,1,2,...})

is holomorphic with respect to + if \’y +m| <1 and

m

w —|— bpz®
B, _
. 7] TETM k2 m)k k' k=m-+1
+%'x’"+llogx-F(a+m+1,6+m+1,m+2;x)-

)
Then vy 6,4 and w[( ; )] are independent solutions when |y 4+ m| < 1.
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By the analytic continuation along the path [0,27] > t — eV=1t2 the solutions
change as follows

Ufa,5.2) (€27 712) = tfa,5.9)(2),
”[a76771(62ﬂﬁz) = e%ﬁ(liv)”[a,ﬂ,ﬂ (2),
w[(;ngl)m] (z) + QW\/jlv[a7,37_m](z) (m = -1),
Wi (€T = T )
+omy/ Tt Bty g 1(2) (m=0,1,..).
When |y — m — 2| (<m+11)w1th m € {0,1,2,...}, we have independent solu-

tions w4, g,4) and 2w which is obtained by the correspondence

[a—v+1,8—7+1,2—9]’
u(z) — 27 tu(x). Thus we have the following pairs of independent solutions.

Ufor,.]> V[ 5,1]) (v ¢ 2),

(
) (V8.0 [a;;)]) (ly—m| <1, me{1,0,—-1,-2,...}),

_ (m—1)
(u[aﬁﬁ], “’w[al ey /377“’27,”) (v —m|] <1, me{2,3,4,...}).

Remark 1. Tt is easy to see from (2.9) that there exists a polynomial solution u(x)
with «(0) = 1 if and only if

{a, B} N{0,-1,-2,-3,...} #0

(3.9) and v¢{0,-1,....,1—m} or m=0

with m := —max{{a, B} N{0,-1,-2,-3,...}}.
Then the polynomial solution is called a Jacobi polynomial' and equals

— ()i (B)g 2"

(3.10) ];) o H
Here (3.9) is equivalent to the existence of m € {0,1,2,...} such that
(3.11) (a+m)(B+m) =0 and (a+k)(B+Ek)(y+k)#0 (k=0,...,m—1).

4. SYMMETRY OF HYPERGEOMETRIC EQUATION

By the coordinate transformation To.,1: © — 1 — &, we have Tpe,1(0) = —0 and
Ty (Passin) = (1 = 2)0% + (3 — o+ B+ 1)+ (a+ + 1)) (~0) — af
= Po.p.atp—+1-
Then we have local solutions for |1 — z| < 1:
Ula,B,a48-+1](1 —2) = F(o, B,a+ B —v+ 1,1 —x),
Vja,B,a+8—+1](1 —2) = (1 — x)w_o‘_ﬁF('y —a,y—B,y—a—-B+1;1—x).
By the coordinate transformation Ty o @ T — %, we have Ty 00 (9) = —9 and

2 Ad(27%) 0 Tosoo (2 Pag,y) = Ad (2™ %) (—zd(—=0 + v — 1) — (=0 + a) (=9 + B))

=z(W+a)V+a—v+1) -0 +a—P)=—2Pya—vt1,a—p+1-
Then we have local solutions for |z| > 1:
(1)U amritacsry(2) = (1) Flava =y +La - 841 1),
(D) amritacsr (1) = QP F(B. A~y + 18— a+1:1).

(4.1)

(4.2)

1F(—m7 B,7;x) is called a Jacobi polynomial and the Legendre polynomial, spherical polyno-
mial and Chebyshev polynomial are special cases of this Jacobi polynomial (cf. [WG] etc.).
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We have local solutions at the singular points z = 1 and * = oo by using
(U[ar,8 415 Viar,8,4)) if 7' & Z. When o' € Z, we have independent solutions by the
pairs of functions given in (3.8).

We have the Riemann scheme

=0 1 00
(4.3) P 0 0 a ;T
-y y=a-8 p

which indicates the characteristic exponents at the singular points 0, 1 and oo of
the equation P, g ~,u = 0 and represents the space of solutions of P, g u = 0.

In general a differential equation has a characteristic exponent A at x = ¢ if it
has a solution u whose singularity at x = c is as follows. Under the coordinate
y=x—cory= % according to ¢ # 0o or ¢ = oo, there exists a positive integer k
such that

Ry u(y)

lim y = log
y—0
is a non-zero constant. The maximal integer k is the multiplicity of the charac-
teristic exponent A. In most cases the multiplicity is free and then k = 1. The
characteristic exponent of P, g u = 0 at the origin is multiplicity free if and only
if v # 1.
Then Thy1 and Thsoo give

z=0 1 00 z=0 1 00
P 0 0 a ;xp=P 0 0 a ;1—=x
l—v y—a-p p y—a—=B 1-v
T = 1 00
=P « 0 0 ;%
Boy—a—-f 1—n
z=0 1 00
=($)*Pg 0 0 @ ;L

B—a y—a—0F a—vy+1

which corresponds to the above solutions. Compositions of transformations that
we have considered give

=0 1 00
(1—x)*tF—p 0 0 a ;T
-y y—a—-p p
=0 1 o0
=P¢ 0 a+pB-v 7-8 ;=
11— 0 e
and
z=0 1 00 r=0 1 00
P 0 0 o g =P 0 o 0 Y
1_7/ ,Y/_a/_ﬁ/ 6/ 17,}/ 6/ ,ylialiﬁl
) =0 1 00
=(1-z)*P 0 0 o ;X

1—+ B —a -4
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Put v = v, & = @ and 8’ = v — 5. The local holomorphic function at the origin
in the above which takes the value 1 at the origin gives Kummer’s formula

(44) F(a,ﬁ,'y;x) = (l—x)”’_“_BF(y—aﬁ—Bﬁ;x)
(4.5) =1 —2)"“F(a,y - 8,7 757)
(4.6) =1 -2) PF(B,7 - a, v 5%5).

5. RECCURENT RELATIONS

For integers ¢, m and n the function F(a + ¢,8 + m,v + n;z) is called the
consecutive function of F(«, 8,~;z) and it has been shown by Gauss that among
three consecutive functions Fi, F» and Fj3, there exists a recurrence relation of the
form

(51) AlFl + A2F2 + A3F3 = 0,

where Ay, Ay and As are rational functions of . In short we put F = F(a, 8,7; 2)

and F(a+0,v+n)=F(a+{,8,v+n;z), Fla—1) = F(a — 1, 3,7; ) etc. Then

there is a recurrence relation among F and any two functions of 6 closed neighbors

F(a+1), F(3+1), F(y £ 1), which we give in this section. There are (J) = 15

recurrence relations of this type and they generate the recurrence relations (5.1).
Since

(a+1)n _ (@)n _ (@+Dpi(a+n—a) (a+1)n

n! n! n!  (n—-1) 7

we have

(o + 1)n(5)nxn _ (O‘)n(ﬂ)nxn _ ﬁ (a+1)n-1(B+ l)n—lxn
(V)nn! (V)nn! 7 (v + Dn-1(n—1)!

and therefore

(5.2) 'y(F(a—i—l)—F):ﬁxF(a+1,ﬂ+1,’y+l).
Moreover since
=05 et - e
— 8 (4=~ (atm) — (r-a=1) =0
we have
(5.3) (v-1DF(y-1)—aF(a+1)—(y—a—-1)F =0.

We obtain other recurrence relations from these two as follows.
By the symmetry between o and 8 we have

(5.4) (v=DF(y-1)-BFB+1)—(y-B-1F=0

and by the difference of the above two relations we have

(5.5) aF(a+1)-pBF(B+1)— (a—p)F =0.

Moreover (5.2)]yy—1 + (5.3) is
(y—DF(a+1,y—1)—aF(a+1)—(y—a—-1)F =pzF(a+1,8+1)

and therefore

(Y= D)F(y—1) = (a = )F — (y— a)F(a—1) — fzF (8 +1) = 0.
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Substituting (5.3) + x x (5.5) from the above, we have

(5.6) a(l—2)F(a+1)+ (y—2a+ (a—pB)z)F —(y—a)F(a—1) =0.
The equation (5.2)|asa—1 — 2 X (5.4)|y>~+1 shows

(5.7) (1= 2)F = F(a — 1)+ (- B)aP(y +1) = 0

and (y— ) x (5.7) —v x (5.6) shows

(5.8) (o= (y=B)a)F —ay(l —z)F(a+ 1)+ (y —a)(y = f)zF(y +1) =0
and (5.8) —v(1 —z) x (5.3) shows

Yy =1-2v—a—-B—1)z)F +(y—a)(y = BlaF(y +1)

— (7~ 1A - 2)F(y - 1) =0.

The relations (5.6), its transposition of o and 3, (5.3), (5.7) and (5.5) generate
other 14 relations among the nearest neighbors except for (5.9).
In fact (5.6) — (1 —x) x (5.5) gives

(5.10) BAl—2)FB+1)+(y—a—B)F—(y—a)Fla—1)=0

and (5.10)|qop — (5.6) gives

(5.11) (=Bl -2)F+(y-a)Fla=1) = (y=B)F(B-1)=0

and (1 —z) x (5.3) + (5.6) gives

(512) (v =1(A-z)F(y-1) = (a=1—=(y=B-1z)F — (y —a)F(a—1) =0.

Then (5.3)%, (5.5), (5.6)", (5.7)%, (5.8)", (5.9), (5.10)%, (5.11) and (5.12)" are
the 15 recurrence relations. Here the sign * represents two relations under the
transposition of o and f.

(5.9)

6. CONTIGUOUS RELATIONS

Since
d (@)n(B)n " _ af ) (@+1D)p-1(B+1)p-1 2"}
de (Yo n! v (v + D1 (n—1)!
we have
(6.1) %F(a,ﬂ,'y;a:) = ‘fy—'BF(a+1,6+1,'y+1;a:).

Combining this with (5.2), we have
aF(a+1)=aF + “Z2F(a+ 1,8+ 1,7+ 1) = (z45 + ) F
and then (5.3) shows
(r +a)F=(y=DF(y =1+ (a+1-9)F

Thus we have

(6.2) (z +a)F=a-Fla+1),

(6.3) (z£+B)F=4-F(B+1),

(6.4) (gt +y=1)F=(y=1) - Fly-1).
Since

Pupy—(1=2)0(z0+0a)=(y—(a+B+1)z—(1-2)—a(l—12))—afp
=(y—a—-1-p2)0—ap
=i(y—a—-1-pz)(z0+a) - 2(y—a-1),

x
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we have
(6.5) tPypy=(z1—2)0+v—a—1-Bz)(z0+a) —a(y—a—1)
and

(z1—2)0+~v—a—-1-pz)aF(a+1)=a(y—a—-1)F.
Hence
(6.6) (z1—2)0+~v—a—pBz)F =(y—a) Fla—1),
(6.7) (z(1—2)0+y—B—ax)F =(y—p)-F(B-1).

In the same way, since
Popy— (1 —z)0(x0+~—1)
= (’y—(a—l—ﬁ—l—l)x—(l—x)—(’y—l)(l—x))@—aﬁ
=(y-a-B-1z20-ap
=(vy—a-B-1(@d+y-1)~(y—a-1(y-5-1),
we have
(6.8) Papr=(1-2)0+7y—a—-B-1)(z0+7-1)—(y—a—-1)(y—B-1)
and
(=D =2)0+7—a=B-1)F(y=1)=(y—a-1)(y =B -1F.
Hence

(6.9) ((1—w)$+v—a—ﬁ)F:W~F(v+1).

Note that
P:P1P2—C = PQP:(P2P1—C)P2 and PP1:P1(P2P1—C)

for linear differential operators P, P and P, and ¢ € C. We apply this to the
equations (6.5) and (6.8). Then PP, — ¢ equals

(20+a)(z(1—2)0+y—a—-1-Bz) —a(y—a—1)
=2?(1-2)0+2(1 -2z +a(l—2)+v—a—1— )0 — Bxr — afr
=z(z(1—2)0* + (y — (@ + B+ 2)2)d — B — af)
= 2Pot1,8~

and

@0 +y-D(1-2)0+y—a-F~-1)~(y—a-1)(y-5-1))
=2(1-2)0° + (e +(y—a—-F-Dz+(y-1)(1 - 2)d —ap
=z(1-2)+(y—1—(a+ B+ 1)z)d — af
= La,By-1;

respectively, and we have

(6.10)
(20 + )x Py gy = TPay1,5~(x0 + ),

TPy .~ (x(l —z)0+y—a—1-— Bx) = ((E(l —z)0+y—a—1-— Bx)xPaH”gﬁ,
(@0 +7v = 1)Pagy = Pa,pry-1(20 +7 - 1),
Popr(1-—2)0+7—a-F-1)=(1-2)0+7y—a—B—-1)Paps~1.
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Remark 2. Suppose u(z) is a solution of P, g ,u = 0. Then (6.10) shows that
v(z) = (20 + a)u(x)

is a solution of P11 g~v = 0. In fact, we have two linear maps

z=0 1 00
(6.11) P 0 0 a ;x
-y y—a-p8 p
zfta z=0 1 00
P 0 0 a+l ;x
z(l-z) £ +y—a—1-Bz 11—y v—a—-p-1 B

If a(y —a—1) #0, (6.5) shows
u(z) = m(x(l —r)0+vy—a—1- Bm)v(x)

and hence these linear maps give the isomorphisms between the space of solutions
of P, g,u =0 and that of P11 5,v = 0.

Suppose a(y —a —1) = 0. Then (z(1—2)d+v—a—1—Bz) (20 + a)u(z) = 0.
Since the kernels of these maps in (6.11) are of dimension 0 or 1, they are non-zero
maps. Hence the dimensions of the kernels should be 1. For example, x~% belongs
to the left Riemann scheme in (6.11).

The same argument as above is valid for the linear maps

=0 1 00
(6.12) P 0 0 a ;T
-y y—a-p8 p
rLty—1 =0 1 00
P 0 0 a ;x
(1—z) £ +y—a—p-1 2—v y—a—-p—-1 p

They are bijective if and only if (y —a —1)(y = —1) #0.

7. GAUSS SUMMATION FORMULA

When Re (y—a—0) > 0and v ¢ {0,—1,—2,...}, we have the Gauss summation
formula

(7.1) F(aaﬂa%l)zwC’(*yoz,’yﬁ;’y,fyaﬁ).

n=0

Here we put

. a1 042 - 041 —|—7’L 042 —|—7’L> o F(ﬁl)F(BQ)
(72) C(alaOQ?BlaﬂQ) ,31 52 . 1;[ ﬂl +TL ﬁ? +TL) - F(al)r(aQ)

with a1+ ag = 61 + 52.
Since the solution of P, g,u = 0 on the open interval (0,1) is spanned by?

Ula,B,a+8—~+1](1 — ) and vjq g a4 p—y41](1 — ) when

(73) ’Y—Oé_ﬂ¢Za

2Let p € C\ {0,1}. Putting = p after applying 8" to (2.3), we see that u("*t2)(p) is
determined by u(0>(p)7 .. .,u(“+1)(p) for n = 0,1,... and therefore u<"+2)(p) is determined by
u(p) and v’ (p), which implies that the dimension of local analytic solutions at p is at most 2. It
is easy to show that any local solution can be analytically continued along any path which does
not go through the singular point of the equation.
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there exist constants C, 5, and C such that

F(a,B,v; %) =Ca,;a,y-F(a,,@,a+6—v+1;1—x)

(7.4) "
+Clhpy (L= PPy —a,y—By—a—B+11—a).

Since the hypergeometric series F'(a, 8,7;x) is holomorphic with respect to the
parameters «, 8 and v under the condition

(75) ’Y¢ {07_13_27}7

Ca,p,y and C’(’L 3, are holomorphic with respect to the parameters under the con-
ditions (7.3) and (7.5).
Hence under these conditions, the equation (7.4) implies

(7.6) Jim F(e, 8,7:2) = Capy
if
(7.7) Re(y —a—p)>0.

We prepare the following lemma to prove the absolute convergence of (7.1).

Lemma 3. i) For any positive number b we have

f[l(urf;) < o0

ii) Let «, 8 and v € C satisfying v ¢ {0,—1,—2,...}. Fix a non-negative integer
N such that {Rea+ N, Re S+ N, Rey+2N} C (1,00). Then there exits a positive
number C' > 0 satisfying

‘ (2),(5),
™).,

Proof. i) For a positive integers N > m > b? + 1 we have

(Rea+ N) (Ref+N)

(Revy +2N) | * (fne{0,1,2,...}).

i b2\ " b2 Moo

<ngn(l+fﬂ)) >H(1‘)>1‘Z>1‘;n<n_1)
B b? ¥ om—(0*+1)
_l_m—1+ﬁ>4m—1 s

which implies the claim 1i).
ii) We may assume a, 5 ¢ {0,—1,—2,...}. The number

(@),(8),] |(e+D),(B+1),
hh (v+2),

converges to | 7+1 ‘ when n — oo, which implies that if N > 0, then («, 8,7, N)

may be replaced by (¢ 4+ 1,8+ 1,7+ 2, N — 1) for the proof of ii). Hence we may
assume that Re a, Re 8 and Re~y are larger than 1 and N = 0. Putting o = a + bi
with a > 1, we have

(Y () <1+ Dy <l B <

k=1

ey +n)(y+n+1)

a+n)(B+n)y(y+1)

We have the similar estimate for 8 and hence the claim ii). 0
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Proposition 4. If the conditions (7.5) and (7.7) are valid, the hypergeometric
series F(a, B,7;x) converges absolutely and uniformly to a continuous function on
the closed unit disk D := {x € C | |x| < 1}. The function is also continuous for the
parameters o, 3 and v under the same conditions and

lim F(a,B,v+m;z) =1 uniformly on x € D.
m—»0o0

Proof. If we use Starling’s formula® for the Gamma function, we easily prove the
first claim of the proposition but here we don’t use it.

Lemma 3 assures that we may assume that «, 8 and -y are positive real numbers
satisfying v > a4+ 8. Fix ¢ > 0 such that 0 < v — a — 8 — ¢ ¢ Z. Then the
hypergeometric series F(a, 8 + €,7;t) with ¢ € (0,1) is a sum of non-negative
numbers and defines a monotonically increasing function on (0,1) and it satisfies

| (@) (B)n 2™
S| W 2 g, g, a]) < Flay B+ €7 2]) < Capren < 00
"0 (V)n  n!
for 2 € D and therefore the proposition is clear. O

Suppose (7.5) and (7.7). If Re(y — (a +1) — 8) > 0, then F, F(y + 1) and
F(a+1) in (5.8) are continuous functions on D and we have?
(v —a=B)F (e, 5,7 1) + (v =) (y = B)F(e, ;7 + 1;1) = 0

by putting x = 1. This equality is valid by holomorphic continuation for v under
the conditions (7.5) and (7.7). Hence

(y—a)(v = h) (v = @)m(y = B)m
Fa753’771):—F 0475”)’4‘1,1 = Fa7ﬁ7’7+m71
( T—a—p) )= Dl —a= B )
for m = 1,2,.... Putting m — oo in the above, we have the Gauss summation
formula®.

8. A CONNECTION FORMULA

Suppose (7.3) and (7.5). We have proved Cp 3, = C(y —a, 7 — B;7,y —a—f)
in (7.4). Then (4.4) shows
F(a,f,viz) = (1—2) " PF(y —a,y = B,7:2)
=Cyanpr(1=2) " PF(y—a,y=By—a—-F+1;1-x)
+C g pFla,Ba+B—y+1;1—x).
Comparing this equation with (7.4), we have C(;,,B,'y =Cy_an—p~r=C(e, 857,00+

B —~) and the connection formula

F(aﬁ,v;w):C(”_a i )-F(aaﬁ,a+ﬂ—7+1;1—$)

v oy—a—B
+C<3 a+gw) (=) PPy —a,y =By —a—F+1;1—x),
This is valid when v ¢ {0,—-1,-2,...} and y —a— 5 ¢ Z. If F(o/,5,7';x) with
~' € 7Z appears in the above, we use w[((‘]l,p L),]
in (3.8) and we get a connection formula from (8.1) with (3.4) or (3.7).

(8.1)

to give one of the local solutions as

3Note that (a)n = F(FOEZ;I) Stirling’s formula says I'(z) ~ \/%672227% when |z| — oo and
m — |Argz| is larger than a fixed positive number. We can also prove the claim by the estimates
L <log(1+t)<tfor0<t<iandlog(n+1)<Yr_; L <14logn.

4Differentiating the first equalities in §8 by z, we also get this equality because the equality
(6'1) shows %ﬁc’yfa,'yfﬁ,'wrl = (a +8— 'Y)C('Y -,y = 577)'

50ther proofs and generalizations of the formula are given in [O2].
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By applying Ad(xA(1 — a:)“) to Pu,g,y, the corresponding Riemann scheme of
the equation Pii = 0 with P := z(1 — 2) Ad(2*(1 — 2)*) Py 5, equals

r=0 1 00
P{ X1 A1 A1 T
X022 A2 Aso2

9.1
(0-1) z=0 1 00
=P A I a—A— ;X
l—v+X v—a—F+pu B—A—
with
9.2) {/\0,1 = A, A= [y Aoo,l = — X — L,
' Mz=1l—7+A Xo=7—a—F+p, Ao2=8-A—pu,

(93)  a=Xi1+AM1+Ac01, B=roi+ A1+ A2, Y=o — Ao+ 1
and i(z) = 2201 (1 — z)M1u(z) is a solution of Pi = 0 for the solution u(z) of
P, 3~u = 0. The Riemann scheme (9.1) represents the solutions of P = 0 and it
is called the Riemann P-function. Here we have the Fuchs relation

(9.4) Aot FAo2 AL A2 F Ao F A2 =1

and

P:z(l—x)(x(l—x)(a—g+ﬁ)2+(y—(a+5+1)x)(a—g+%)—aﬁ)

z?(1— )(52 (-2 + 240+ % + oo x)2+ - (21)\Ha:)+(1 gc)2)
(v=(a+ B+ 1Dz)(z(1 —2)0 — A1 — z) + pz) — afz(l — z)

+
=2°(1-2)?0> +z(1 —2)(-2A(1 —2) + 2uz +~v — (a + B+ 1)z)d

+ AW+ N1 = 2)* = 22zl - 2) + (1 + p)a?

+(v=(a+B+1)z) (A + )z — \) + ab(z® — z)
=2°(1-2)?0> —z(1—2)((+ B =2\ —2u+ 1)z +2X — )0

+ N+ A+ 200+ 12+ — (a+ B+1)(A+p) + af)z?

+ (=222 —2A =22+ YA+ p) + Aa+ B+1) —aB)z + A+ X — A

5172( ) 82 (1 - x)(()\oo,l + )\00’2 + 1)£C + )\0’1 + )\0’2 — 1)3
+/\oo,1)\oo,2$ + (A1,1A1,2 — A0,100,2 — Aoo,1A00,2)T + Xo,1 00,2
_ $2(1 _x)2(82 Ao, 1+>\02 16+ A, 1+/\1 2— 1a+ Ao, 1)\02 + >E111/;322_~_

A0,120,2+A1,1A1,2— Ao, 1A 00,2
r(l z)

Suppose Ap1 — Ap2 ¢ Z for p =0, 1 and co. Let u;}”‘“ (z) denote the normalized
local solutions of Pu = 0 at x = p such that

(9.5) wrr (@) =y épu(y), y=<{l-a (p=1),



AN ELEMENTARY APPROACH TO THE GAUSS HYPERGEOMETRIC FUNCTION 15

and ¢, ,(t) are holomorphic if |[¢t| < 1 and satisfies ¢, ,,(0) = 1. In fact, (4.1) and
(4.2) imply
(9.6)
do(x) = (1 —2)* F(Xop + Mi + Ao, Aow + A + A2, Mo — Ao + 153),
(bl,u(x) AO? ()\Oz"i')\lu"i')\ool;AOz+/\1y+A0027)\11/ )\17,7+1;1—37),

d)oo,u(x) = (aj I)Al ' (>\0,1 + >\1,z’ + AOO,Va )\O,2 + )\l,z‘ + /\oo,m /\oo,l/ - )\oo,ﬁ + 1; %)

xT

For indices 4, j, v € {1,2}, we put i = 3 —i, j = 3 —j and ¥ = 3 — v. Then for
i =1 and 2, we have the connection formula

2 3 .
Mo s X0 A A L Aoo.1 AoLitALo Ao, Ao 1=3—1,
uy™ (1) = Zc( A R ) L (a) { L
(9.7)
o Z /\0 3 /\Of + 1) : F(Al,ﬂ - /\I,V) . u/\l,u(a:)
T(Moi+ Mo+ Aoo1) T+ Mo +Ao2)

when Ao; — Ag; € {—1,-2,...} and A1, — A\ p & Z.

. A0,1+A1,24+ 00,1 Ao, 1AL 2 Ao 2 ) y—a y—f
Since C Ao,1—Xo,2+1 A1,2—A1,1 - C( v y—a—p

coefficients in the right hand side of (9.7) are invariant under the transformation

) and the connection

uw i @ = 21 — x)u, (8.1) implies that the coefficient of ui\l'l(x) is as given in
(9.7). Hence (9.7) is valid because of the symmetries A1 1 <> A2 and Ag1 <> Ao2.
First note that

z=0 1 00 z=0 1 o)
P )\0’1 )\1’1 )\00’1 s xp =P )\0’2 )\1’1 )\0071 ;T etc.
Ao2 A2 Ax2 Aol A2 A2

and P is invariant under the transpositions Ap1 < Ap2 for p = 0, 1 and oo.
Moreover for A € C we have

z=0 1 00 =0 1 00
(98) $>\P )\071 )\171 )\0071 s L =P )\071 + A A171 )\0071 - A 1T,
Aoz A2 A2 Ao2+ A A2 A2 — A
(9.9)
z=0 1 00 z=0 1 00
(1- 1’)/\P A1 A1 e 3Zp=P¢ X1 A FA A1 —A T,
Aoz A2 Aso2 Aoz A2+ A A2 —A
(9.10)
=0 1 00 z=0 1 00
Pq M1 M1 Ae1 51—z =P4¢ M1 o1 Ae1 5 Tp,
X022 A2 Aso2 A2 A2 A2
z=0 1 00 z=0 1 00
(911) P )\071 )\171 )\0071 N % =P )\00’1 )\171 )\0,1 ;X
Aoz A2 A2 Ao,z A2 Ao2

By the transformation z — 1 — x in (9.7), we have

2
Aty o A1,it X050+ 00,1 ALit+A0, 5t Aeo,2 Ao,
uy " (z) = E C( A1i—Ap i+l Xo,5—Xo,u ) Uy (2)

(9.12)

3 Z A = A +1) - T(how — Aow) a2 ()
(A + 20,5 +Aoo,1) - T(Ai + X5 + Ao 2) 0 -



16 TOSHIO OSHIMA

Some combinations of (9.10) and (9.11) give similar identities of the Riemann
schemes corresponding to the transformations z + 1 — -, 1= and -
In general, for the Riemann scheme

1

T = Co C1 C2
P Xo1 A1 A2a ;@ with {eg,c1,c2} ={0,1,00}
Aoz A2 A2

satisfying the Fuchs relation ) \;, = 1, we fix local functions w;,(z) belonging
to the Riemann scheme corresponding to the characteristic exponents A;, of the
points x = c;, respectively. We normalize ug 1, u1,1 and u; 2 as follows. Putting

I=1(0,1), wo(x) =z, pr(x)=1—a if (co,c1) = (0,1),
=01,  wolz)=1-z, @(z)=2 if (co,¢1) = (1,0),
9.13) =(Loo), wolz)=2—-1, ¢i(z)=; if (co, 1) = (1,00),
=(1,00),  golx) =3, p1(z) =a if (co, 1) = (00, 1),
=(-00,0), @o(z)=-z,  ¢i(2) if (co, c1) = (0,00),
=(-00,0), wo(x)=—7. ¢i(2) if (co, ¢1) = (00,0),
we have
(9.14) Dlgiﬂrgco wo(z) Mty (2) =1, 191;1201 o1 (z) Mg, (z) =1

and ¢ (z) " 1ug 1 () is holomorphic at # = ¢ and ¢y (z) " uy ,, (z) are holomor-
phic at = ¢; for v = 1 and 2. Note that ¢o(z) > 0 and pq(x) > 0 when x € I.
Then we have the connection formula

uoa Z (o e ) L ()
(9.15)
Z TF(Xo1—Ao2+1)-T'( A5 — A1) 1 (@)
=1 )\0 1+ >\1 U + )\oo l) ()\0,1 + )\1,l7 + )\0072) v

for z € I. Here we note that ay + as = 81 + B2 in the definition of C(%i gj )
In particular, we have

F(o, B,7; @)
_ Ty —a—B)
Ly = a)'(y = B)
y—a— F(W)F(a—i_ﬁ_’-ﬁ
S A v

Floa,f,a+p—v+1;1—-x)

(y—ay=Bv—a-F+11-2)

_ —oT(ML(B —a) 1
=(—x) WF(@,&—W—I—LQ—B—FL;)

F()(v @

Here F'(a,b,c; z) is considered to be a holomorphic function on C\ [1, c0).

In general, if the fractional linear transformation z — y = g;”is with ad —
bc # 0 transforms 0, 1, co to ¢g, ¢1 and cg, respectively, then by this coordinate
transformation we have the Riemann scheme

(@B*7+Lﬁfa+h%)

Yy==¢co (&)

2
(9.16) PS¢ X1 M1 A sy (Zz)‘j,v = 1)

>\0,2 >\1,2 /\2,2 j=0v=1
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and the corresponding differential equation and its solutions. For simplicity, (9.16)
is simply expressed by

o €1 C2
PdXoi A1 Ao or P {im il_’l iz’l} .
)‘0,2 )\1,2 )\2’2 0,2 1,2 2,2

If |¢j| < oo for j =0, 1, 2, the equation P = 0 of this Riemann scheme is given by

2 2
(017) P — 4> 3 (Z Aj1+ A2 — 1>i+z Ajadiz2 Il eron2p gy (6 — ) 7
T —c dx ‘ (= c¢j)(x—co)(x—cr1)(x —c2)

dx? — —

which is obtained by a direct calculation or by characteristic exponents at every
singular point and the fact that oo is not a singular point. This equation was first
given by Papperitz.

Applying Ad(x)“’vl(l — x)Alvl) to (6.12), we have linear maps

=0 1 00
(918) P<¢ X1 A1 Aeon ;@
A2 A2 Aso2

w%-l‘%’;—)\o,l—/\oa—)\l,l z=0 1 o0
P Ao,1 A1 Aoo,l 5T 9,
(55—1)%-"-)\?5’1 —X0,1—A1,1—A1,2+1 >\0,2 +1 )\1,2 -1 /\00,2
which are bijective if and only if
(9.19) (Ao2+ A1+ Ao1)(No2 + A1 + Aeo,2) # 0.
Hence in general, there are non-zero linear maps
T = Co C1 Co P r = C C1 Co
(920) P )\071 )\171 A271 ;X = )\071 A171 )\271 ;X
Aoz A2 Ao P Aoz2+1 Aa—1 Agpo
given by differential operators P; and P, and they are bijective if and only if
(921) ()\072 —+ )\171 —+ )\271)()\0,2 + )\171 —+ )\272) 7& 0.

10. MONODROMY AND IRREDUCIBILITY

The equation P = 0 has singularities at 0, 1 and oo but any local solution u(x)
in a small neighborhood of a point zg € X := (CU {co}) \ {0,1} is analytically
continued along any path in X starting from zq. It defines a (single-valued) holo-
morphic function on the simply connected domain X’ := C\ ((—oo, 0)UTL, oo)) In
particular, F'(a, 8,7; x) defines a holomorphic function on C\ [1, c0).

Let (u1,us) be a base of local solutions of Pii = 0 at xo. Let vp be closed paths
starting from xp and circling around the point £ = p once in a counterclockwise
direction for p = 0, 1 and oo, respectively, as follows.

Yo it Yoo

Let y,u; be the local solutions in a neighborhood of zy obtained by the analytic
continuation of u; along v,, respectively. Then there exist M, € GL(2, C) satisfying
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(Ypu1, Ypu2) = (u1,uz)M,. Here GL(2,C) is the group of invertible matrices of size
2 with entries in C. The matrices M, are called the local generator matrices of
monodromy of the solution space of Pt and the subgroup of GL(n,C) generated
by My, M7 and M, is called the monodromy group. Here we note

(10.1) Moo My My = I3 (the identity matrix)

and if we differently choose zp and (u1,us2), the set of local generator matrices of
monodromy (Mg, My, M,) changes into (gMog™', gM19~", gMsog™ ') with a certain
g € GL(2,C). If there exists a subspace V of C* such that {0} & V & C? and
M,V C V for p =0, 1, oo, then we say that the monodromy of Pa = 0 is reducible.
If it is not reducible, it is called irreducible.

Remark 5. Suppose P = 0 is reducible. Then there exists a non-zero local solution
v(z) in a neighborhood of zy which satisfies y,v = Cpv with C, € C\ {0}. Then
the function b(z) = 7:((;)) satisfies 7,b = b and therefore b(z) € C(z) and v(z) is a
solution of the differential equation dv = b(z)v. Here C(z) is the ring of rational
functions with the variable z. Since P — a1(2)0(0 — b(z)) = ao(z)0 + c(x) with
ai(z) = 2%(1 — 2)?, ao(z), c¢(z) € C(x), we have a division

P = (a1(2)d + ag(z)) (0 — b(z)) + r(z)
with r(x) € C(z). The condition Pv(z) = 0 implies r(z) = 0 and therefore we have
P = (a1(2)0 + ao(x)) (0 — b(x)).

In general, let W (z) denote the ring of ordinary differential operators with coeffi-
cients in rational functions. Then P € W (x) and the equation Pu = 0 are called
reducible if there exist @, R € W(z) such that P = QR and the order of @ and
that of R are both positive. If they are not reducible, they are called irreducible.

We note that P = 0 is irreducible if and only if its monodromy is irreducible.
/\8’1 Ail) and Ay = Aél’l )\(1)’2> in GL(2,C). Then
there exists a non-trivial proper simultaneous invariant subspace under the linear
transformations of C? defined by Ay and Ay if and only if

(10.2) aga1 (aoar + (Mo,1 = Ao2) (A1, = Ai2)) = 0.

Proof. The lemma is clear when aga; = 0 and therefore we may assume aga; # 0.
In this case if there exists a 1-dimensional invariant subspace, it is of the form
(C(i) with ¢ #£ 0 and Ag (i) = A2 (i) and A; (i) =AM (i), which is equivalent to

0,2=Ao,1 __ ay
aog A1,1=A1,2”

Lemma 6. Let Ay = (

)\071 “+ apc = )\072 and aj + )\1726 = /\1,1(2. This means ¢ =

Theorem 7. i) When Revy < 1, the local monodromy of the Riemann Scheme

=0 1 00
P 0 0 a ; xp at the origin is not semisimple if and only if
-y y=—a—-p8 p
1-v€{0,1,2,...} and —a, = ¢ {0,1,...,—v}. When 1—~€{0,1,2,...}, the
condition —a, —f ¢ {0,1,...,—~} is equal to the non-existence of a polynomial
solution of degree < —v with a non-zero value at the origin.

rz=0 1 0
ii) The Riemann Scheme P< Xo1 M1 Acoq ; T p with the Fuchs relation
Aoz A2 Ao

ZIW Apv = 1 has a non-semisimple local monodromy at the origin if and only if

)\0’1 — )\0’2 €7Z and

10.3
( ) *)\O,k' 7)\171 7)\007,, ¢ {0,1,...,|>\071 7)\072| 71} fOT’ V= ]., 2.
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Here k=1 if Xg2— Xo,1 2> 0 and k =2 otherwise.

Proof. 1) Recall the description of local functions belonging to the Riemann scheme
in §3. Then the local monodromy around the origin is not semisimple if v = 1 and

it is semisimple if v ¢ Z. Putting m = —v, we may assume m € {0,1,2,...} to
prove the claim. Then the semisimplicity of the monodromy is equivalent to the
(m+1)

condition that w in §3 has no logarithmic term, which equals the condition

(@) m+1(B)m+1 :[ Oé Th]en Remark 1 implies that it also equals the existence of a
polynomial u(z) with «(0) # 0 in the Riemann scheme.

The claim in ii) follows from i) by the transformation of functions u(z) —
x7r01(1 — z)"May(x) or a7r02(1 — x)"My(z) according to Re(Ag2 — A1) is
non-negative or negative, respectively. O

Theorem 8. For the Riemann scheme

z=0 1 00
(10.4) Pq X1 M1 Ao ;2 with the Fuchs relation Z App =1
)\0,2 >\1,2 )\oo,2 b, v

let My, My and My be the monodromy matrices around the points 0, 1, co, respec-
tively, under a suitable base.
i) (Mo, M1, M) is irreducible if and only if

(10.5) M1+ Ayt Ao €2 (Y, v € {1,2}).
it) Suppose
(10.6) X2+ A2+ Ao, €{0,-1,-2,...} (v=1,2).
We may assume
(10.7) Ap1— A2 €{1,2,3,...} (p=0,1)

by one or both of the permutations \g 1 <> Ag2 and A1 1 <> A1 2 if necessary.

Under these conditions the functions u3°‘2(x) and u}"*(z) given by (9.5) are
well-defined and linearly independent functions on (0,1).

When
(10.8) A2+ A1+ Ao €2 (v =1,2),
there exists g € GL(2,C) such that the monodromy matrices satisfy
(10.9) (gMog™",gMyg™") = <<62W:;\0’2 62738)\0,1> ; (627;:1,1 627r(i),\1,2>>
with
ag = 2e” 2 gin T(Ao,2 + A1,1 + Aoo,2),
(10.10)

a; = 267‘”)\‘”’1 sin 71'()\072 + )\171 + )\0071).

When (10.8) is not valid, we have (10.9) with a certain g € GL(2,C) and

1 f )\0’1 +)\1,2+)\oo,u ¢ {07—1,—27...} (V: 1, 2),

ap = .
0 otherwise,

(10.11)

a1 =

1 ’Lf )\0724')\171 +>\0011, ¢ {0,—1,—2,...} (l/: ]., 2),
0 otherwise.

Note that aga; = 0 in this case.

iii) Under a change of indices A\p, — Ao (p),op(v) With suitable permutations
(0,00,01,00) € &3 x &3 we have (10.6) and (10.7). Here &3 and &4 are identified
with the permutation groups of {0,1,00} and {1,2}, respectively.
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Proof. 1), ii) Assume (10.7) in the proof. Then the functions uéo’z and u}"? are

. A ; A A ; A
well-defined and they satisfy youy”* = e2™ 0.247%* and yyuy"? = e2m 2y "2,

0,2 2

Suppose that ug‘ and ui\l’ are linearly dependent. Then

z=0 1 00
vg i= a0z (1 — ab“)iAl’Qu())\o’2 €P{Ao1—Ao2 Ai—Ar2 Aoz + A2t Ao
0 0 Ao2 + A2+ Ao 2
is an entire function, therefore a polynomial (cf. the last part of §1) and
(1012) )\0,2 + )\1,2 + Aoo,k S {O7 —1,-2,.. } for k=1 or 2.
Suppose (10.12). Since A\g;1 — Ao2 ¢ {1,2,...} and
vo(z) = F(Xo2 + A2 + Aoo,1, A0,2 + A2 + Aso2, 1 — Aoyt + Aoj2; @),
Remark 1 shows that vy is a polynomial and hence (10.4) is reducible.

Suppose ué‘)‘? and ui\” are linearly independent. Under the base (uéo’z, ui\”)

6271'2-)\02 aO 627Ti>\1,1
My = omires | » M1 = 2mirg o |+ MocMi Mg = Iy
(& ’ ai e ,
and therefore

trace My My = 6277i()‘0,2+)\1,1) + agay + 627”()\0,1-"-)\1,2) _ e—2ﬂi>\oo,1 + 6—27\'1')\00,2’

apay = 6727”-)\00’1 + 67271'7,')\00’2 _ 627Ti()\0’2+)\1’1) _ 627r7l(A0,1+A1,2)

_ e—2m‘)\oo,2(627@()\0,2-&-)\1,1-&-)\@,2) . 1)(627ri(/\o,1+/\1,2+/\oo.2) _ 1)

_ eﬂi()\o’l+>\0’2+>\l,l+>\l,2) (QZ sin 7T(A072 =+ A171 + AOO,Q))
(2isinT(Xo1 + A2 + Aooy2))
= 4e T Roentre2) gin 1 (Ao g 4 A1 + Aoo2) SINT (A2 + Al1 + Aoo,1).

Hence the condition (10.8) implies apa; # 0 and then we have (10.9) with (10.10)
C Xo.2 .
by multiplying ug"* by a suitable non-zero number.
Since
(627”-)\0’2

27T’L‘)\0,1)(627T7;)\171 271'1;)\112)

aga + —e —e

— 67271'1‘)\0071 + 6727”)\00’2 _ e27ri()\0,1+)\1,1) _ 6271'1;(/\0,24’*)\1,2)

— e~ 2miAoo 2 (ezm(,\o,l-s-,\l,l-s-,\oo,Q) _ 1)(e2wi(>\o‘2+>\1,2+>\m,2) _ 1)7
we have 1) in view of Lemma 6.
Note that a; = 0 if and only if ’yluéo’Q € (Cugm. Since uSO’Z ¢ (Cui‘l’2 and

M2 — A1 ¢ {—1,-2,...}, the condition ’yluéo’Q € (Cugo‘2 is valid if and only if

z=0 1 o0
170 = .’L‘_AO’Q(l — l‘)_Al’lu())\O’Q (S P )\071 — A072 )\172 — )\171 )\0_’2 + )\1_’1 —+ )\0071
0 0 20,2 A1+ Aso2

is a polynomial. Remark 1 shows that this is also equivalent to
A072 + A171 + /\oo,k € {0, *]., 72, . } for k=1or?2
because A\g1 — o2 € {1,2,...}. The condition ap = 0 is similarly examined.
ii1) Suppose the claim iii) is not valid. If Ag 2 +A1,2+Aoo1 € {0,—1,—-2,...} and
)\00,2 — )\0071 ¢ Z, /\071 + )\1,1 + )\oo,u ¢ {0, —1,-2,.. } for v =1, 2. Hence we may
assume A\po — Ap1 € {0,1,2,...} for p =0, 1, co and that the Riemann scheme is

p Aot Arr Ason| _ p Co c1 —Cg—CL—nNg—nNg—m
A2 A2 A2 co+ng c1+m —cp—c1+m+1
with ng, n1, m € {0,1,2,...}. Then Ao+ 2+ 02 & {0,—1,...} forv=1,2. O
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Remark 9. We calculate the monodromy matrices. We may assume (10.6) and
(10.7). Then the monodromy matrices with respect to the base (ué‘o’ Al ) de-
pend holomorphically on the parameters A, ,. The function correspondlng to the
r=0 1 00
Riemann scheme P{ Xo1  A1,1 Aso,1 p has the connection formula
Aoz A2 Ax2

A A Aoo,1 A A Ao
CLZC< 0,2FtA1,2+ 1 Ao,2t+A12+ ,2)

Aoz A1l A1,2 . Ao,2—Ao,1+1 Al,2—A11
Uy =a-u;’ + b Uy with b=C A0,2FA1,1F Ac0,1 Ao, 2HA 1,1+ A0 2
- Ao,2—Ao,1+1 A1, 1—A1,2

as is given in (9.7) and therefore®

A A A a 0
(mug™?, nui™?) = (’Ylul Loyul?) <b 1>

)\1 1 )\1 2 271'1)\1 1 a 0
271'1)\1 2 b 1
_ )\0 2 )\1 2 a 0 27"1)\1’1 a 0
b 1 e2miA,2 b 1
)\0 2 )\1 2 aeQﬂ—i)\l’l O
—lb 1 beQTri)\Lg 62‘“/\1’2
2 i\
Ao,z | A1,2 AL 0
= (up""ui™) b(e QmAu —e2mitiay e2midia |

2™ _ @2miA 2 — 9jemi(A1tA2) gip T(A1,1 — A12)

— s mi(A1,1+A12) - /\1 1= A1 2)
= 2mie™ )\11—/\12 H(l 7)
n=1

2

1
F(Ma—A2) - T(1=A1+A12)

b=C Ao,2+A1,1+A00,1 Ao,2+ A1 1+ Ao 2
- Ao,2—Ao,1+1 A1,1—A12

B F(ho2—Xo1+1) - T'(A11—Ai2)
P(Xo2 + A1+ Aoo,1) - T(Ao2 + A1 + Asc2)
27r7l)\1,2)

mi(A1,14+A1,2)

= 2mie

Hence putting a; = b(e?™* 11 —¢ , we have”

271'7,A1 1
A2y Xo2 | A12 €
(71“0 y Y1Uq ) - (UO y Uq ) ( aq eZTrikl‘z )

mi(A1,14+A1,2) | ]‘—‘(AO,Q - >\O,1 + ]-)
F(A2— A1 +1)

a1 = 2mie

(10.13) )

F()\o,z + A1+ )\oo,l) . F()\O,Q + A1+ )\00,2).
Note that under the conditions (10.6) and (10.7), the right hand side of the first
line of (10.13) is holomorphic and never vanishes and the equality (10.13) is valid.
In the same way we have

271'7,)\01
Ao,2 A1,2\ _ /o Aoz | Al2 € ’ ago
(o o) = (") ).

. A A _ —
6The Wronskian of (uoo’z,u11’2) equals (A1,2 — )\171)ax>‘0v1+’\0=2 = :1:)>‘1v1+’\1=2 1
Ap,2
7 ~X0,2 ~A1,2 . s ~Ap2 up?”
Under the base (4, '~,4; '°) with the functions @,"* = Ty 2 ox, 15 1)
27Tie7ri(>\P’1+>\Pf2)
T(Ap,1+A1—p,2F+X00,1) T(Ap,1+A1—p 2+Ac0,2)

Note that the functions 4 up 2 holomorphically depend on the parameters Aj,v € C without a pole.

the monodromy

matrices Mo and M; are given by ap = for p =10, 1.
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7i(Ao,14X0,2) | F(Ai2— A1 +1)
T(Xo2 — Ao+ 1)

ag = 2mie

(10.14) )
Lot 4+ A2 + Aoo,1) - T( Ao + A1z + Ao 2)

Here we use Gamma functions for the convenience to the reader but we may use
functions of infinite products of linear functions in place of Gamma functions.

Remark 10. The differential operators Py and Pz in (9.20) induce the identity maps
of the monodromy groups of the Riemann schemes under the condition (9.21).

In particular, let P{«, 3,7} denote the Riemann scheme (4.3) which contains
F(a, B,7;x). Then we have the isomorphisms:

P{O{,ﬂ,’)/}(:)P{OL+]_,6,"Y} if 0‘(’)’*01*1)#0,
(1015)  P{a,B7} & Plaf+1,9) if Aly—B—1) £0,

Pla,f,v} & Pla, By =1} if (y—a—-1)(y-B8-1)#0.
The isomorphisms are given by the differential operators appeared in (6.11) and
(6.12). The above conditions are equivalent to say that under the shift of the

parameters, any integer contained in {c, 8, 7—«,v— 8} does not change its property
that it is positive or not.

Put {ai,...,an} ={a, 8,7y —a,y—B}NZ. Then N=0or 1 or 2 or 4. When
N =1or 2, we have aj =0 or 1 for 1 < j < N by suitable successive applications
of the above isomorphisms.

Let «, B, v € Z. Then it is easy to see that suitable successive applications of
the above isomorphisms and the maps Ad(z*!), Ad((1 — z)*!), Toe1 and Toooo
transform the equation P(a, 3,7)u = 0 into 8%u = 0 with («, 8,7) = (0,—1,0) or
(9 +1)0u = 0 with (o, 8,7) = (0,0,1) if #{a, > 0| v =1,...,4} is odd or even,
respectively. Note that their solution spaces are C+ Cx or C+ Clog x, respectively.

11. INTEGRAL REPRESENTATION

Lastly we give an integral representation of Gauss hypergeometric function:
e+ 1)T(O+1)

(11) [ =0t v = SR

(2= 2)™ P a —a) ot L—cat bz )
zZ3 — 21

((L > _17 b> _]-a |22 _Zl| < |Z3 _Zl|)

Putting (21, 22, 23) = (0, 1, %) and (a,b,¢) = (a — 1,7 —a —1,—0), we have an
integral representation® of Gauss hypergeometric series, namely,
L(@)l'(y —a)
—— Fle, 8,73 2).
I'(7)
By the complex integral through the Pochhammer contour (1+,0+,0—,1-)
along a double loop circuit, we have

(14,04,1-,0-)
/ 2271 = )7 (1 — 22) Pdz 6\1 }D
(11.3) :

_Ar2emiY 0 ‘starting point 1
= F(a,B,v;x). 14+,04,0—,1—
() Yy AT ( )
Here we have no restriction on the values of the parameters «, f and . Put
v =~ —a. If a or 7/ is a positive integer, the both sides in the above vanish.

(11.2) /1 N1 — ) 1 — at) TPt =
0

8Putting z = 1 in (11.2), we get the Gauss summation formula.
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But replacing the integrand ®(a, 8,73z, 2) := 2" 1(1 — 2)"~1(1 — 2z)? by the

function

O(a, 8,72, 2) — ®(a, B, m; 2, 2)
v —m

we get the integral representation of F(«, 3,v;x) even if v — o = m is a positive

integer because the function ®(™ («, 3,’, x, z) holomorphically depends on 4. For

example, when m = 1, we have

(14+,0+,1—,0—) 1 8 747’(‘267”-0‘
o Log(1 — 2) - (1 — z2) Pdz =
/ 2 og(1 = 2) - (1 22) Pz = s

A similar replacement of the integrand is valid when « is a positive integer. Namely,
the function I'(1 — a)I'(1 + o — ) f(1+70+’1_’0_) 2271 =zl (1 —22) Pdz
holomorphically depends on the parameters.

Putting t = 21 + (22 — z1)s and w = 2=2

zZ3—Z21 ?

q)('m) (CY, Bu ’Y/§ Z, Z) =

)

F(a, B,a+1;).

the integral (11.1) equals

1
(22 — 21)2T0H (23 — 21)0/ 5%(1 — 5)°(1 — ws)ds
0

[ee) n 1
w
= (2 — 21)%0H (25 — 2)° E o /0 59 (1 — 5)°(—c)nds
n=0 "

_ wtoin ex~Llat+14mPO+ ) (=0
= (22— 21)" """ (23 — 21) Z Fla+b+n+2) v

)

n=0
which implies (11.1). This function belongs to

zZ3 = 21 V) o
P 0 0 —c ;23
at+c+1 b+c+1 —a—-b—c—1

as a function of zs.

Remark 11. An analysis of the monodromy group associated with the Gauss hy-
pergeometric function using integrals is given in [MS].

REFERENCES

[EMO] A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental
Functions, 3 volumes, McGraw-Hill Book Co., New York, 1953.

[MS] K. Mimachi and T. Sasaki, Monodromy representations associated with the Gauss hyper-
geometric function using integrals of a multivalued function, Kyushu J. Math. 66 (2012),
35-60.

[01] T. Oshima, Special functions and algebraic linear ordinary differential equations, Lec-
ture Notes in Mathematical Sciences 11, the University of Tokyo, 2011, in Japanese,
http://www.ms.u-tokyo.ac.jp/publication/documents/spfct3.pdf.

[02] T. Oshima, Fractional calculus of Weyl algebra and Fuchsian differential equations, MSJ
Memoirs 28, Mathematical Society of Japan, Tokyo, 2012.

[SW] S. Yu. Slavyanov and W. Lay, Spherical Functions, A Unified Theory Based on Singular-
ities, Oxford Univ. Press, New York, 2000.

[WG] Z. X. Wang and D. R. Guo, Special Functions, World Scientific, Singapore, 1989.

[WW] E.T. Whittaker and G. N. Watson, A Course of Modern Analysis, 4th edition, Cambridge
University Press, London, 1955.

GRADUATE SCHOOL OF MATHEMATICAL SCIENCES, UNIVERSITY OF TOKYO, 7-3-1, KOMABA,
MEGURO-KU, TOKYO 153-8914, JAPAN
E-mail address: oshima@ms.u-tokyo.ac. jp



