
Josai Mathematical Monographs
vol. 7 (2014), pp. 67-74

A Set Theoretical Semantics for a Subsystem of Linear Logic

Fumihiko Yamaguchi

Abstract. In [2], Yamaguchi et al. proposed a näıve semantics of a

sub set of linear logic. However, the meanings of additive disjunction and con-
junction are opposite to intuition. This note modifies the semantics proposed
in the previous work. And it is pointed out that the cause of constructing
misleadable semantics is on the interpretation of an exponential connective.

1. Introduction

At the end of 20th century, Girard introduced a sub-structural logic named

linear logic[6] which has great power of expression.

Girard claimed that linear logic is a resource conscious logic which means that

linear logic emphasizes the role of formulas as resources, instead of emphasizing

truth in classical or intuitionistic logic[7]. As the idea of resource is emphasized,

the number of the same propositions is important. In classical or intuitionistic logic,

conjunction of two same propositions such as A∧A equals to one of the propositions

A logically. In contrast to this, multiplicative conjunction ⊗ is introduced in linear

logic, such that multiplicative conjunction of two same proposition such as A⊗ A

holds two of them. A ⊗ A and A are logically different. In the sense of sequent

calculus, it is necessary that number of propositions of both sides of the sequent

delimiter ⊢ must be balanced to prove the sequent. Thus, neither A ⊗ A ⊢ A nor

A ⊢ A⊗A holds. This resource consciousness is supported by omitting free usage of

some structural rules in proof. Particularly, weakening rule, which adds any formula

to the consequent, and contraction rule, which eliminates one of duplicated formulas

in the antecedent are only allowed to those formulas with certain modal connectives.

These connectives are of-course (!) and why-not (?), and are called exponential

connectives. In addition to multiplicative conjunction, additive conjunction, whose

symbols is &, is also introduced in linear logic. Additive conjunction is similar to

the conjunction of classical logic in the sense that A&A logically equals to A. And

in full linear logic, there are some more connectives: multiplicative disjunction

&

which is dual of ⊗, additive disjunction ⊕ which is dual of &, linear negation (·⊥),
and linear implication −◦ which is called entailment.

Since it focuses on resources, linear logic has found many applications in com-

puter science. For example, some computational models such as Petri nets, counter

67

【140417-0-5】JMM_7_本文.indd 73 2014/04/28 10:16:16

68 F. Yamaguchi

machines and Turing machines are naturally encoded to linear logic[5]. Moreover

there are some programming languages with linear logical features: ACL[4] which

is based upon process algebra, captures simple notions of asynchronous communi-

cation by identifying the send and read primitives with two complementary linear

logical connectives. Linear logic is familiar to process algebra in some way such

as associating communication to cut elimination associating it to inference rule of

entailment. Yamaguchi et al. introduced inductive synthesis of process expression

based on inductive inference on linear logic[1]. Some process algebra interpreta-

tions of linear logic employ the idea that each proposition is associated to atomic

message. Thus, number of each proposition represents multiplicity of associating

message.

Girard gave some semantics of linear logic. One of these semantics associates

formula to value with phase space[3, 6]. Phase space is a pair (M,⊥) of commu-

tative monoid M and its subset ⊥. In this semantics, multiplicity of proposition

is not clearly interpreted. Though some other semantics are also proposed, most

of them focuses proof or cut elimination instead of value of formula, such as proof

net by Lafont and game semantics by Blass[3].

Yamaguchi et al. proposed an inductive inference algorithm on a subset of linear

logic[2]. They also proposed a näıve semantics and persisted that the proposed

algorithm holds soundness and completeness on that semantics. The semantics

consists of set of multiset which represents each formula and the inclusion relation

of set associates with entailment relation i.e. sequent delimiter ⊢. However, this

semantics sometimes maps a formula with ⊕ to the trivial empty set. This causes

not only that the semantics is trivial but also that the semantics is misleadable

while it is intended to be simple. This note proposes a simple semantics and points

out the reason why the previous work is confusing.

This note is organized as follows. In the next section, logical system is defined.

The target logic is a sub system of intuitionistic linear logic. And a näıve semantics

of the logic is introduced with a map from logical formula into a set of multiset of

atomic symbols. And then the soundness of logical system is shown. In section 3,

the difference between proposed semantics and previous work is explained.

2. Definition and Notation

In this note, the target logic system is a sub-system of intuitionistic linear

logic. Comparing with the full linear logic system[6], some logical connectives are

omitted. The omitted connectives are two exponential connectives (why-not ? and

of-course !), linear negation ·⊥, linear entailment −◦ and multiplicative disjunction

&

.

Definition 1 (Formula). Let A be the set of symbols. The F is defined as

the least set which satisfies following conditions:

A Set Theoretical Semantics for a Subsystem of Linear Logic 69

• 1 ∈ F , (1 is a logical constant of this system.)

• A ⊂ F

• When A,B ∈ F , then (A&B) ∈ F

• When A,B ∈ F , then (A⊕B) ∈ F

• When A,B ∈ F , then (A⊗B) ∈ F

• When A ∈ F , then (!A) ∈ F

A member of F is called formula. Especially, a member of A is sometimes called

atomic formula. In order to simplify the formula expressions, parentheses will

be abbreviated when it’s not ambiguous under the condition that the strength of

connectivity are ! > ⊗ > &,⊕, and that &, ⊕ and ⊗ are left associative and ! is

right associative.

In the following of this note, each of uppercase Latin letters such as A, B or

C represents a formula. And each of upper case Greek letters such as Γ or ∆

represents multiset of formulas.

The inference rule is defined in the style of sequent calculus. A sequent is an ex-

pression which is separated by a ⊢. The left side of ⊢ is a multiset of formula. Thus,

the left side may be empty, may contain multiple occurrences of the same formula,

but the order of the formulas is not concerned. The right side of ⊢ is restricted to

one formula, this restriction derives that the target system is intuitionistic.

Definition 2 (Inference Rule). A proof tree is a tree structured graph,

each of whose nodes is a sequent, each of whose leaves is initial sequent given

as follows, and each of whose edges are represented by a horizontal line between

sequences matching one of patterns as follows:

A ⊢ A (initial)

⊢ 1 (initial)
Γ ⊢ X

(1 left)
1,Γ ⊢ X

A,Γ ⊢ C
(& left)

A&B,Γ ⊢ C

B,Γ ⊢ C
(& left)

A&B,Γ ⊢ C

Γ ⊢ A Γ ⊢ B
(& right)

Γ ⊢ A&B

A,Γ ⊢ C B,Γ ⊢ C
(⊕ left)

A⊕B,Γ ⊢ C

Γ ⊢ A
(⊕ right)

Γ ⊢ A⊕B

Γ ⊢ B
(⊕ right)

Γ ⊢ A⊕B

A,B,Γ ⊢ C
(⊗ left)

A⊗B,Γ ⊢ C

Γ ⊢ A ∆ ⊢ B
(⊗ right)

Γ,∆ ⊢ A⊗B

【140417-0-5】JMM_7_本文.indd 74 2014/04/28 10:16:16

68 F. Yamaguchi

machines and Turing machines are naturally encoded to linear logic[5]. Moreover

there are some programming languages with linear logical features: ACL[4] which

is based upon process algebra, captures simple notions of asynchronous communi-

cation by identifying the send and read primitives with two complementary linear

logical connectives. Linear logic is familiar to process algebra in some way such

as associating communication to cut elimination associating it to inference rule of

entailment. Yamaguchi et al. introduced inductive synthesis of process expression

based on inductive inference on linear logic[1]. Some process algebra interpreta-

tions of linear logic employ the idea that each proposition is associated to atomic

message. Thus, number of each proposition represents multiplicity of associating

message.

Girard gave some semantics of linear logic. One of these semantics associates

formula to value with phase space[3, 6]. Phase space is a pair (M,⊥) of commu-

tative monoid M and its subset ⊥. In this semantics, multiplicity of proposition

is not clearly interpreted. Though some other semantics are also proposed, most

of them focuses proof or cut elimination instead of value of formula, such as proof

net by Lafont and game semantics by Blass[3].

Yamaguchi et al. proposed an inductive inference algorithm on a subset of linear

logic[2]. They also proposed a näıve semantics and persisted that the proposed

algorithm holds soundness and completeness on that semantics. The semantics

consists of set of multiset which represents each formula and the inclusion relation

of set associates with entailment relation i.e. sequent delimiter ⊢. However, this

semantics sometimes maps a formula with ⊕ to the trivial empty set. This causes

not only that the semantics is trivial but also that the semantics is misleadable

while it is intended to be simple. This note proposes a simple semantics and points

out the reason why the previous work is confusing.

This note is organized as follows. In the next section, logical system is defined.

The target logic is a sub system of intuitionistic linear logic. And a näıve semantics

of the logic is introduced with a map from logical formula into a set of multiset of

atomic symbols. And then the soundness of logical system is shown. In section 3,

the difference between proposed semantics and previous work is explained.

2. Definition and Notation

In this note, the target logic system is a sub-system of intuitionistic linear

logic. Comparing with the full linear logic system[6], some logical connectives are

omitted. The omitted connectives are two exponential connectives (why-not ? and

of-course !), linear negation ·⊥, linear entailment −◦ and multiplicative disjunction

&

.

Definition 1 (Formula). Let A be the set of symbols. The F is defined as

the least set which satisfies following conditions:

A Set Theoretical Semantics for a Subsystem of Linear Logic 69

• 1 ∈ F , (1 is a logical constant of this system.)

• A ⊂ F

• When A,B ∈ F , then (A&B) ∈ F

• When A,B ∈ F , then (A⊕B) ∈ F

• When A,B ∈ F , then (A⊗B) ∈ F

• When A ∈ F , then (!A) ∈ F

A member of F is called formula. Especially, a member of A is sometimes called

atomic formula. In order to simplify the formula expressions, parentheses will

be abbreviated when it’s not ambiguous under the condition that the strength of

connectivity are ! > ⊗ > &,⊕, and that &, ⊕ and ⊗ are left associative and ! is

right associative.

In the following of this note, each of uppercase Latin letters such as A, B or

C represents a formula. And each of upper case Greek letters such as Γ or ∆

represents multiset of formulas.

The inference rule is defined in the style of sequent calculus. A sequent is an ex-

pression which is separated by a ⊢. The left side of ⊢ is a multiset of formula. Thus,

the left side may be empty, may contain multiple occurrences of the same formula,

but the order of the formulas is not concerned. The right side of ⊢ is restricted to

one formula, this restriction derives that the target system is intuitionistic.

Definition 2 (Inference Rule). A proof tree is a tree structured graph,

each of whose nodes is a sequent, each of whose leaves is initial sequent given

as follows, and each of whose edges are represented by a horizontal line between

sequences matching one of patterns as follows:

A ⊢ A (initial)

⊢ 1 (initial)
Γ ⊢ X

(1 left)
1,Γ ⊢ X

A,Γ ⊢ C
(& left)

A&B,Γ ⊢ C

B,Γ ⊢ C
(& left)

A&B,Γ ⊢ C

Γ ⊢ A Γ ⊢ B
(& right)

Γ ⊢ A&B

A,Γ ⊢ C B,Γ ⊢ C
(⊕ left)

A⊕B,Γ ⊢ C

Γ ⊢ A
(⊕ right)

Γ ⊢ A⊕B

Γ ⊢ B
(⊕ right)

Γ ⊢ A⊕B

A,B,Γ ⊢ C
(⊗ left)

A⊗B,Γ ⊢ C

Γ ⊢ A ∆ ⊢ B
(⊗ right)

Γ,∆ ⊢ A⊗B

【140417-0-5】JMM_7_本文.indd 75 2014/04/28 10:16:16

70 F. Yamaguchi

In the figure above, the name of inference rule is indicated in the parentheses

right at the horizontal line. The notation !Γ of the ! right rule represents a multiset

which contains only formula in the form of !B as its member.

As a semantics of the logic system above, each formula represents a set of

multisets of atomic symbols. It is intended that each atomic symbol is a member

of A.

In order to represent multiplicity of proposition, a formula only with ⊗ is asso-

ciated with a multiset of proposition. And a formula with ⊗, ⊕ and & represents

a possible set of the multisets. For interpreting ⊗, an operator on two sets of

multisets is needed.

Definition 3. Let each of X and Y be a set of multiset, ⊗I is an operator

defined as follows:

X ⊗I Y = {Γ ⊎∆ | Γ ∈ X,∆ ∈ Y },

where ⊎ denotes summation of multisets.

To distinguish set and multiset, a set is represented with incorporating braces,

and a multiset is represented with incorporating brackets. Union ∪ and intersection

∩ of sets are used normally. For example, let P,Q,R ∈ A, and E = {[P], [Q]} and

F = {[P,R]} then E ∪ F = {[P], [Q], [P,R]} and E⊗I F = {[P, P,R], [P,Q,R]}.

Lemma 4. Let each of A, B and C is a set of multiset, when A ⊆ B then

A⊗I C ⊆ B⊗I C.

Since A⊗I C = {Γ ⊎ ∆ | Γ ∈ A,∆ ∈ C}, B⊗I C = {Λ ⊎ ∆ | Λ ∈ B,∆ ∈ C}
and each Γ ∈ A is also a member of B, thus, trivial.

On these preparation, the Interpretation function is defined.

Definition 5 (Semantics). Let I be a map from each formula to a set of

multiset of atomic symbols, defined as follows:

• I(1) = {[]} (i.e. 1 represents the set of empty multiset.)

• I(A) = {[A]} where A ∈ A

• I(A&B) = I(A) ∩ I(B)

• I(A⊕B) = I(A) ∪ I(B)

• I(A⊗B) = I(A)⊗I I(B)

In order to interpret the left hand side of a sequent, the interpretation function

I is expanded to receive a multiset of formulas.

• I([]) = {[]}

A Set Theoretical Semantics for a Subsystem of Linear Logic 71

• I([A] ⊎ Γ) = I(A)⊗I I(Γ)

Theorem 6 (Soundness of logic system). If there exists a proof tree of

a sequent Γ ⊢ A, then I(Γ) ⊆ I(A) holds.

The existence of a proof tree of Γ ⊢ A is assumed. I(Γ) ⊆ I(A) is proved by

structural induction on the construction such proof tree as follows.

• For initial sequent A ⊢ A

Since I([A]) = I(A)⊗I I([]) = I(A)⊗I{[]} = I(A), I([A]) ⊆ I(A) holds.

Indeed, they are equal.

• For initial sequent ⊢ 1

Since I([]) = {[]} = I(1), I([]) ⊆ I(1).

• For 1 left rule

I([1] ⊎ Γ) = I(1)⊗I I(Γ) = {[]} ⊗ I(Γ) = I(Γ), and I(Γ) ⊆ I(X) is the

inductive assumption. Therefore, I([1] ⊎ Γ) ⊆ I(X) holds.

• For & left rule

I([A&B] ⊎ Γ) = I(A&B)⊗I I(Γ) = (I(A) ∩ I(B))⊗I I(Γ). And I(A) ∩
I(B) ⊆ I(A). Thus, I([A&B] ⊎ Γ) = (I(A) ∩ I(B))⊗I I(Γ) ⊆ I(C) holds

where I([A] ⊎ Γ) = I(A)⊗I I(Γ) ⊆ I(C) is the inductive assumption. This

holds in the case of B,Γ ⊢ C being the antecedent, similarly.

• For & right rule

Since I(A&B) = I(A) ∩ I(B) and both of I(Γ) ⊆ I(A) and I(Γ) ⊆ I(B)

are the inductive assumptions, I(Γ) ⊆ I(A&B) holds.

• For ⊕ left rule

Since I([A⊕B]⊎Γ) = (I(A)∪I(B))⊗I I(Γ) and both of I(A)⊗I I(Γ) ⊆ I(C)

and I(B)⊗I I(Γ) ⊆ I(C) are the inductive assumptions, I([A ⊕ B] ⊎ Γ) ⊆
I(C).

• For ⊕ right rule

Since I(A) ⊆ I(A) ∪ I(B) = I(A ⊕ B) and I(Γ) ⊆ I(A) is the inductive

assumption, I(Γ) ⊆ I(A ⊕ B) holds. This holds in the case of Γ ⊢ B being

the antecedent, similarly.

• For ⊗ left rule

Since I([A⊗B]⊎ Γ) = I(A)⊗I I(B)⊗I I(Γ), I([A]⊎ [B]⊎ Γ) ⊆ I(C) is the

inductive assumption. and ⊗I is associative, I([A⊗B] ⊎ Γ) ⊆ I(C) holds.

【140417-0-5】JMM_7_本文.indd 76 2014/04/28 10:16:17

70 F. Yamaguchi

In the figure above, the name of inference rule is indicated in the parentheses

right at the horizontal line. The notation !Γ of the ! right rule represents a multiset

which contains only formula in the form of !B as its member.

As a semantics of the logic system above, each formula represents a set of

multisets of atomic symbols. It is intended that each atomic symbol is a member

of A.

In order to represent multiplicity of proposition, a formula only with ⊗ is asso-

ciated with a multiset of proposition. And a formula with ⊗, ⊕ and & represents

a possible set of the multisets. For interpreting ⊗, an operator on two sets of

multisets is needed.

Definition 3. Let each of X and Y be a set of multiset, ⊗I is an operator

defined as follows:

X ⊗I Y = {Γ ⊎∆ | Γ ∈ X,∆ ∈ Y },

where ⊎ denotes summation of multisets.

To distinguish set and multiset, a set is represented with incorporating braces,

and a multiset is represented with incorporating brackets. Union ∪ and intersection

∩ of sets are used normally. For example, let P,Q,R ∈ A, and E = {[P], [Q]} and

F = {[P,R]} then E ∪ F = {[P], [Q], [P,R]} and E⊗I F = {[P, P,R], [P,Q,R]}.

Lemma 4. Let each of A, B and C is a set of multiset, when A ⊆ B then

A⊗I C ⊆ B⊗I C.

Since A⊗I C = {Γ ⊎ ∆ | Γ ∈ A,∆ ∈ C}, B⊗I C = {Λ ⊎ ∆ | Λ ∈ B,∆ ∈ C}
and each Γ ∈ A is also a member of B, thus, trivial.

On these preparation, the Interpretation function is defined.

Definition 5 (Semantics). Let I be a map from each formula to a set of

multiset of atomic symbols, defined as follows:

• I(1) = {[]} (i.e. 1 represents the set of empty multiset.)

• I(A) = {[A]} where A ∈ A

• I(A&B) = I(A) ∩ I(B)

• I(A⊕B) = I(A) ∪ I(B)

• I(A⊗B) = I(A)⊗I I(B)

In order to interpret the left hand side of a sequent, the interpretation function

I is expanded to receive a multiset of formulas.

• I([]) = {[]}

A Set Theoretical Semantics for a Subsystem of Linear Logic 71

• I([A] ⊎ Γ) = I(A)⊗I I(Γ)

Theorem 6 (Soundness of logic system). If there exists a proof tree of

a sequent Γ ⊢ A, then I(Γ) ⊆ I(A) holds.

The existence of a proof tree of Γ ⊢ A is assumed. I(Γ) ⊆ I(A) is proved by

structural induction on the construction such proof tree as follows.

• For initial sequent A ⊢ A

Since I([A]) = I(A)⊗I I([]) = I(A)⊗I{[]} = I(A), I([A]) ⊆ I(A) holds.

Indeed, they are equal.

• For initial sequent ⊢ 1

Since I([]) = {[]} = I(1), I([]) ⊆ I(1).

• For 1 left rule

I([1] ⊎ Γ) = I(1)⊗I I(Γ) = {[]} ⊗ I(Γ) = I(Γ), and I(Γ) ⊆ I(X) is the

inductive assumption. Therefore, I([1] ⊎ Γ) ⊆ I(X) holds.

• For & left rule

I([A&B] ⊎ Γ) = I(A&B)⊗I I(Γ) = (I(A) ∩ I(B))⊗I I(Γ). And I(A) ∩
I(B) ⊆ I(A). Thus, I([A&B] ⊎ Γ) = (I(A) ∩ I(B))⊗I I(Γ) ⊆ I(C) holds

where I([A] ⊎ Γ) = I(A)⊗I I(Γ) ⊆ I(C) is the inductive assumption. This

holds in the case of B,Γ ⊢ C being the antecedent, similarly.

• For & right rule

Since I(A&B) = I(A) ∩ I(B) and both of I(Γ) ⊆ I(A) and I(Γ) ⊆ I(B)

are the inductive assumptions, I(Γ) ⊆ I(A&B) holds.

• For ⊕ left rule

Since I([A⊕B]⊎Γ) = (I(A)∪I(B))⊗I I(Γ) and both of I(A)⊗I I(Γ) ⊆ I(C)

and I(B)⊗I I(Γ) ⊆ I(C) are the inductive assumptions, I([A ⊕ B] ⊎ Γ) ⊆
I(C).

• For ⊕ right rule

Since I(A) ⊆ I(A) ∪ I(B) = I(A ⊕ B) and I(Γ) ⊆ I(A) is the inductive

assumption, I(Γ) ⊆ I(A ⊕ B) holds. This holds in the case of Γ ⊢ B being

the antecedent, similarly.

• For ⊗ left rule

Since I([A⊗B]⊎ Γ) = I(A)⊗I I(B)⊗I I(Γ), I([A]⊎ [B]⊎ Γ) ⊆ I(C) is the

inductive assumption. and ⊗I is associative, I([A⊗B] ⊎ Γ) ⊆ I(C) holds.

【140417-0-5】JMM_7_本文.indd 77 2014/04/28 10:16:17

72 F. Yamaguchi

• For ⊗ right rule

I(Γ ⊎ ∆) = I(Γ)⊗I I(∆) and both of I(Γ) ⊆ I(A) and I(∆) ⊆ I(B)

are the inductive assumptions. Since I(Γ)⊗I I(∆) ⊆ I(Γ)⊗I I(B) ⊆
I(A)⊗I I(B) = I(A⊗B), Thus, I(Γ ⊎∆) ⊆ I(A⊗B)

Therefore, I(Γ) ⊆ I(A) holds where a proof tree of a sequent Γ ⊢ A exists.

3. Discussion

At first, the notion in the previous work of Yamaguchi et al.[2] should be cor-

rected. The main idea in constructing the semantics is similar to the previous work:

each formula is associated with a set of multiset of atomic formula. In contrast to

the previous work, the direction of the inclusion relation is reversed and of-course

connective is omitted. The inference rules related to the of-course connective is as

follows.

Γ ⊢ B
(! increase)

!A,Γ ⊢ B

!A, !A,Γ ⊢ B
(! decrease)

!A,Γ ⊢ B

A,Γ ⊢ B
(! left)

!A,Γ ⊢ B

!Γ ⊢ A
(! right)

!Γ ⊢!A

A näıve meaning of !A is arbitrary number of A connected with ⊗. In fact, !A ⊢ 1

holds and !A ⊢ A⊗X holds if !A ⊢ X is assumed as follows:

⊢ 1

!A ⊢ 1

A ⊢ A

!A ⊢ A !A ⊢ X

!A, !A ⊢ A⊗X

!A ⊢ A⊗X

Here, 1 is the identity element of ⊗ such that both A⊗ 1 ⊢ A and A ⊢ A⊗1 hold.

And thus, in the previous work, I(!A) is mapped into a set of all multisets which

contains zero or more A i.e. {[], [A], [A,A], [A,A,A], . . .}. But in this case, the

direction of inclusion relation interpreting ⊢ have to be ⊇, because !A ⊢ A holds

where I(A) = {[A]}. This was the original mistake of the previous work. In order

to reverse the direction of inclusion relation, & and ⊕ are interpreted by ∪ and

∩ respectively (they are also reversed). By duality, some properties discussed in

[2] looks hold. However, as & is (additive) conjunction, it is misleadable when &
interpreted as union instead of intersection.

In this note, the soundness of logic system is shown. For completeness, the

opposite side of righteousness, there exists counter examples such that I(Γ) ⊆ I(A)

holds but Γ ⊢ A has no proof tree. For instance, (A⊗B)&(A⊗C) ⊢ A⊗ (B&C)

has no proof tree. The intuitive explanation of no-existence of the proof tree is as

A Set Theoretical Semantics for a Subsystem of Linear Logic 73

follows. There are two possibilities in the inference rule of the lowest node of the

proof tree. If ⊗ right is applied, since the left hand side of this sequence has only one

formula, A or B&C in the right hand side must be entailed by empty. This does

not work. And if & left is applied, though A⊗B or A⊗C must entail A⊗(B&C), C

or B is lacked in the left hand side. Thus, there are no proof of (A⊗B)&(A⊗C) ⊢
A ⊗ (B&C). However, I((A ⊗ B)&(A ⊗ C)) = {[A,B]} ∩ {[A,C]} = ∅ and

I(A ⊗ (B&C)) = {[A]}⊗I({[B]} ∩ {[C]}) = {[A]}⊗I ∅ = ∅. As both sides are

empty, I((A ⊗ B)&(A ⊗ C)) ⊆ I(A ⊗ (B&C)). Therefore the completeness of

logical system does not hold.

This trial for constructing näıve semantics clarifies the difficulty of interpreting

of-course connective. It is known that the meaning of exponential connectives are

sometimes difficult. As Girard noted in [3], the semantics of exponential gave in

the original paper[6] is ad hoc.

It is also well known that the interpretation of multiplicative disjunction

&

is

hard to explain. Most trite explanation is that

&

is dual of ⊗. But in this note,

linear negation is also omitted. Thus, duality is difficult to treat. Entailment is

sometimes explained as consumption relation and is defined by

&

and negation.

Maybe there is some hint to interpret multiplicative disjunction.

4. Conclusion and future works

This note proposed a näıve semantics of a sub set of intuitionistic linear logic.

In the proposed semantics, similar to the previous work, each formula is mapped

into a set of multiset of atomic formula. However, compared to the previous work,

it is more straightforward because additive conjunction and disjunction are inter-

preted into intersection and union respectively. It can be said that the proposed

semantics maps each formula into the possible set of quantity of resources that

present simultaneously.

As many connectives are omitted in this note, some semantics should be found

in the future which successfully interpret more connectives from the point of view

that each proposition represents associating resource.

References

[1] Yamaguchi, F., “A Sound Abduction on Asynchronous Process Synthesis,” Proceedings of

the 23rd IASTED International Conference on Modelling, Identification and Control, pp.
621–625, Grindelwald, Switzerland, (Feb. 2004)

[2] F.Yamaguchi, M.Nakanishi, “Induction in a Subset of Linear Logic, its Soundness and Com-
pleteness,” Transactions of the Japanese Society for Artificial Intelligence, Vol. 15, No.6, pp.

1074–1080, 2000
[3] Jean-Yves Girard, Yves Lafont and Laurent Regnier, Advances in Liner Logic, London Math-

ematical Society Lecture Note Series 222, Cambridge University Press, 1995.
[4] Naoki Kobayashi and Akinori Yonezawa, ACL — a concurrent linear logic programming

paradigm —, In Dale Miller, editor, Logic Programming, Proceedings of the 1993 Interna-
tional Symposium, pp. 279–294, MIT Press, October 1993.

【140417-0-5】JMM_7_本文.indd 78 2014/04/28 10:16:17

72 F. Yamaguchi

• For ⊗ right rule

I(Γ ⊎ ∆) = I(Γ)⊗I I(∆) and both of I(Γ) ⊆ I(A) and I(∆) ⊆ I(B)

are the inductive assumptions. Since I(Γ)⊗I I(∆) ⊆ I(Γ)⊗I I(B) ⊆
I(A)⊗I I(B) = I(A⊗B), Thus, I(Γ ⊎∆) ⊆ I(A⊗B)

Therefore, I(Γ) ⊆ I(A) holds where a proof tree of a sequent Γ ⊢ A exists.

3. Discussion

At first, the notion in the previous work of Yamaguchi et al.[2] should be cor-

rected. The main idea in constructing the semantics is similar to the previous work:

each formula is associated with a set of multiset of atomic formula. In contrast to

the previous work, the direction of the inclusion relation is reversed and of-course

connective is omitted. The inference rules related to the of-course connective is as

follows.

Γ ⊢ B
(! increase)

!A,Γ ⊢ B

!A, !A,Γ ⊢ B
(! decrease)

!A,Γ ⊢ B

A,Γ ⊢ B
(! left)

!A,Γ ⊢ B

!Γ ⊢ A
(! right)

!Γ ⊢!A

A näıve meaning of !A is arbitrary number of A connected with ⊗. In fact, !A ⊢ 1

holds and !A ⊢ A⊗X holds if !A ⊢ X is assumed as follows:

⊢ 1

!A ⊢ 1

A ⊢ A

!A ⊢ A !A ⊢ X

!A, !A ⊢ A⊗X

!A ⊢ A⊗X

Here, 1 is the identity element of ⊗ such that both A⊗ 1 ⊢ A and A ⊢ A⊗1 hold.

And thus, in the previous work, I(!A) is mapped into a set of all multisets which

contains zero or more A i.e. {[], [A], [A,A], [A,A,A], . . .}. But in this case, the

direction of inclusion relation interpreting ⊢ have to be ⊇, because !A ⊢ A holds

where I(A) = {[A]}. This was the original mistake of the previous work. In order

to reverse the direction of inclusion relation, & and ⊕ are interpreted by ∪ and

∩ respectively (they are also reversed). By duality, some properties discussed in

[2] looks hold. However, as & is (additive) conjunction, it is misleadable when &
interpreted as union instead of intersection.

In this note, the soundness of logic system is shown. For completeness, the

opposite side of righteousness, there exists counter examples such that I(Γ) ⊆ I(A)

holds but Γ ⊢ A has no proof tree. For instance, (A⊗B)&(A⊗C) ⊢ A⊗ (B&C)

has no proof tree. The intuitive explanation of no-existence of the proof tree is as

A Set Theoretical Semantics for a Subsystem of Linear Logic 73

follows. There are two possibilities in the inference rule of the lowest node of the

proof tree. If ⊗ right is applied, since the left hand side of this sequence has only one

formula, A or B&C in the right hand side must be entailed by empty. This does

not work. And if & left is applied, though A⊗B or A⊗C must entail A⊗(B&C), C

or B is lacked in the left hand side. Thus, there are no proof of (A⊗B)&(A⊗C) ⊢
A ⊗ (B&C). However, I((A ⊗ B)&(A ⊗ C)) = {[A,B]} ∩ {[A,C]} = ∅ and

I(A ⊗ (B&C)) = {[A]}⊗I({[B]} ∩ {[C]}) = {[A]}⊗I ∅ = ∅. As both sides are

empty, I((A ⊗ B)&(A ⊗ C)) ⊆ I(A ⊗ (B&C)). Therefore the completeness of

logical system does not hold.

This trial for constructing näıve semantics clarifies the difficulty of interpreting

of-course connective. It is known that the meaning of exponential connectives are

sometimes difficult. As Girard noted in [3], the semantics of exponential gave in

the original paper[6] is ad hoc.

It is also well known that the interpretation of multiplicative disjunction

&

is

hard to explain. Most trite explanation is that

&

is dual of ⊗. But in this note,

linear negation is also omitted. Thus, duality is difficult to treat. Entailment is

sometimes explained as consumption relation and is defined by

&

and negation.

Maybe there is some hint to interpret multiplicative disjunction.

4. Conclusion and future works

This note proposed a näıve semantics of a sub set of intuitionistic linear logic.

In the proposed semantics, similar to the previous work, each formula is mapped

into a set of multiset of atomic formula. However, compared to the previous work,

it is more straightforward because additive conjunction and disjunction are inter-

preted into intersection and union respectively. It can be said that the proposed

semantics maps each formula into the possible set of quantity of resources that

present simultaneously.

As many connectives are omitted in this note, some semantics should be found

in the future which successfully interpret more connectives from the point of view

that each proposition represents associating resource.

References

[1] Yamaguchi, F., “A Sound Abduction on Asynchronous Process Synthesis,” Proceedings of

the 23rd IASTED International Conference on Modelling, Identification and Control, pp.
621–625, Grindelwald, Switzerland, (Feb. 2004)

[2] F.Yamaguchi, M.Nakanishi, “Induction in a Subset of Linear Logic, its Soundness and Com-
pleteness,” Transactions of the Japanese Society for Artificial Intelligence, Vol. 15, No.6, pp.

1074–1080, 2000
[3] Jean-Yves Girard, Yves Lafont and Laurent Regnier, Advances in Liner Logic, London Math-

ematical Society Lecture Note Series 222, Cambridge University Press, 1995.
[4] Naoki Kobayashi and Akinori Yonezawa, ACL — a concurrent linear logic programming

paradigm —, In Dale Miller, editor, Logic Programming, Proceedings of the 1993 Interna-
tional Symposium, pp. 279–294, MIT Press, October 1993.

【140417-0-5】JMM_7_本文.indd 79 2014/04/28 10:16:18

74 F. Yamaguchi

[5] A. Scedrov, A brief guide to linear logic, Bulletin of the European Association for Theoretical
Computer Science, Vol. 41, pp. 154–165, 1990.

[6] J.-Y. Girard, Linear Logic, Theoretical Computer Science, Vol. 90, pp. 1–102, 1987

[7] Standford Encyclopedia of Philosophy, http://www.stanford.edu/sep/

Fumihiko Yamaguchi

Department of Information and Computer Science, Keio University

Hiyoshi 3-14-1, Kouhoku, Yokohama, 223-8522, JAPAN

yamagu@nak.ics.keio.ac.jp

Josai Mathematical Monographs
vol. 7 (2014), pp. 75-83

A note on a two-dimensional integer sequence arised from a

study of physical random number generation

Koji Nuida

Abstract. In the research area of physical random number generation,

a kind of “post-process” function to improve the randomness of the generated
bit sequence has been studied. There a two-dimensional integer sequence
indexed by the input and the output lengths of the post-process functions
is associated to the evaluation of optimal quality of such functions. In this

short note, we briefly survey the previous work on the study of this integer
sequence, and propose some research topics for future work.

1. Introduction

Randomness is an essential resource for information security. In cryptographic

technologies (encryption, digital signature, authentication, etc.) to provide enough

level of security, bit sequences that are random enough (ideally, uniformly at ran-

dom) are usually used as auxiliary inputs to the protocols. Cryptographic pseu-

dorandom number generators (PRNGs) are well-studied tools to generate bit se-

quences sufficiently random for the cryptographic purposes. For such tools, it

should be noted that even such tools cannot create random sequences from noth-

ing; roughly speaking, PRNGs can only stretch a short but highly random input

sequence to long and enough random output sequence. Therefore, we need other

technologies to provide the random inputs for the PRNGs. A possible candidate

is so-called physical random number generators, which aim at extracting random

sequences from some physical phenomena of computers as physically implemented

devices. However, bit sequences generated by such devices may be not sufficiently

random in general. Therefore, we need some methodologies to extract highly ran-

dom sequences from given, possibly less random bit sequences.

In the present paper, we study the problem under the following simple model:

A given bit sequence consists of bits that are independent of each other, and each

bit has common bias ε; that is, a bit becomes 1 with probability 1/2+ε and 0 with

1/2−ε. In the setting, the classical technique of von Neumann [2] can convert such

a biased bit sequence to a completely unbiased one (by converting blocks 01 and

10 to bits 0 and 1, respectively, and discarding blocks 00 and 11), but the output

length of the technique is not constant (and it may even be empty in the worst

case). On the other hand, in the following, we discuss the conversion methodologies

with constant input and output lengths, as studied in e.g., [1, 3, 4]

75

【140417-0-5】JMM_7_本文.indd 80 2014/04/28 10:16:18

