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Abstract. In cryptographic applications, there is often a need for
protecting privacy of users besides integrity of message transmitted in a public
channel. In information-theoretic (or unconditional) security setting, a model

of GA-codes (Group Authentication codes) which can ensure both the integrity
of the message and the anonymity for senders was proposed. In this model,
there are multiple senders and a single receiver. And, one of the senders can
generate an authenticated message anonymously. That is, the receiver can

verify the validity of the authenticated message, but he cannot specify the
sender of it. In GA-codes, it is assumed that both the sender and receiver
are honest. However, it may be unnatural and an ideal assumption in several

situations. In this paper, we remove the assumption and newly propose a
formal definition (i.e., the model and security definitions) of GA2-codes (Group
Authentication codes with Arbitration). In GA2-codes, it is assumed that the
sender or the receiver can be dishonest and thus a dispute between them may

occur. To resolve such a dispute, we introduce an honest arbiter in GA2-codes.
This model can be considered as natural extension of that of both the GA-
codes and the traditional A2-codes (Authentication codes with Arbitration).
In addition, we propose a construction which meets our security definition of

GA2-codes by using polynomials over finite fields. We also consider the case
that the arbiter is not always honest and call this model GA3-codes (GA2-
codes with protection against arbiter’s attack), which is further extension of
GA2-codes and be naturally considered from a similar setting of the traditional

A3-codes (A2-code with protection against arbiter’s attack).

1. Introduction

In order to theoretically show the security of cryptographic schemes, there are

two types of approaches: The security relies on the computational infeasibility

of breaking it (called computational security) or on the theoretical impossibility

of breaking it, even by using unbounded computing power (called information-

theoretic security or unconditional security). Since computational security is based

on the assumptions of difficulty of intractable problems, it can only hold under

assumptions on the adversary’s computational resources (i.e., the adversary is as-

sumed to be a polynomial-time Turing machine). In other words, the adversary
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who has an unbounded computational power can break every scheme with com-

putational security by at least exhaustive search over a key space (or by more

efficient algorithms). In addition, it is known that quantum computers, if built,

can solve the factoring and discrete logarithm problems in quantum-polynomial

time [8]. On the other hand, information-theoretic security relies on no assump-

tion of computationally intractable problems and specific computational models.

Thus, even if algorithms and computer technologies are rapidly developed in the

future, information-theoretically secure cryptographic schemes can still guarantee

the security. From these points, we can find the advantage of information-theoretic

security.

In cryptographic application, there is need for protecting privacy of users be-

sides integrity of data transmitted in a public channel. In information-theoretic

security setting, a model of GA-codes (Group Authentication codes) which can en-

sure both the integrity of the message and the anonymity for senders was proposed

by Hanaoka et al [5]. In this model, it is assumed that both the sender and the re-

ceiver are mutually trusted. However, it may be unnatural and an ideal assumption

in many situations. In this paper, we remove this assumption and newly propose

a formal model. More specifically, we newly propose a model and a security def-

inition of the GA2-codes (GA-codes with Arbitration) in which a trusted arbiter

is provided so that the arbiter can resolve a dispute between the sender and the

receiver. This model can be considered as extension of both the GA-codes and the

A2-codes. In addition, we show a construction which meets our security definition

of the GA2-codes. Also, we consider the case that the arbiter is not always hon-

est and call this model the GA3-code (GA2-code with protection against Arbiter’s

attack), which is similar to the setting of A3-codes.

The rest of this paper is organized as follows: In Section 2, we survey the

information-theoretically secure authentication code and its variants. In Section

3, we propose a model and a security definition of GA2-codes. In Section 4, we

give a construction of GA2-codes by using polynomials over finite fields. Finally,

in Section 5, we consider a security definition and a construction of GA3-codes.

2. Authentication code and its Variants

2.1. A-codes

Authenticity (or integrity) is one of the fundamental and important crypto-

graphic functions, and authentication/signature schemes are usually used for pro-

viding this function. In particular, A-code (Authentication-code) is the traditional

authentication scheme with information-theoretic security which was originally pro-

posed by Gilbert, McWilliams and Sloan [3], and later developed by Simmons [9].

For simplicity, throughout this paper, we assume that there is a trusted author-

ity whose role is to generate and to distribute secret-keys of entities. We call this

model the trusted initializer model as in [6]. The model of A-codes involves three
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participants, a sender S, a receiver R and a trusted initializer TI. The A-code Φ

consists of a three-tuple of algorithms (Gen, Tag, Ver) with three spaces, MA, A
and K, where these three spaces are finite sets of possible messages, authenticators

(or tags), and secret-keys, respectively. Gen is a key generation algorithm executed

by TI, which takes a security parameter on input and outputs a secret-key k. For

a communication, the sender S generates an authenticator by using Tag with the

secret-key and a message. Tag is an algorithm for generating an authenticator.

Tag takes a message m ∈ MA and a secret-key k ∈ K on input and outputs an

authenticator α ∈ A, and we write α =Tag(k,m) for it. Then, S sends the au-

thenticated message (i.e., the pair of the message and authenticator) (m,α) to the

receiver over a public channel.

On receiving (m,α), a receiver R can check the validity of it by using Ver. That

is, the received authentication code originates from the sender and it has not been

substituted during the transmission over the public channel. Ver takes the pair of

the message and the authenticator (m,α) and a secret-key k on input, and outputs

valid or invalid, and we write valid = Ver(k, (m,α)) or invalid = Ver(k, (m,α)) for

it.

In A-codes, for simplicity we assume the following one-time model: it is allowed

to generate an authenticator and transmit a pair of a message and an authenticator

among senders only once; and the receiver is allowed to verify a pair of a message

and an authenticator at most one time.

In A-codes, security under consideration is protection against an adversary,

called opponent, who can impersonate the sender by inserting a message on the

channel (Impersonation Attack), or can replace the pair of a message and an au-

thenticator sent with another one (Substitution Attack). Formally, the security of

A-codes is defined as follows.

Definition 1 (Security of A-code). Let Φ be an A-code in the one-time

model. The scheme Φ is said to be an ϵ-one-time secure A-code, if P
(A)
O ≤ ϵ,

where P
(A)
O is defined by P

(A)
O := max(P

(A)
IO

, P
(A)
SO

), and P
(A)
IO

and P
(A)
SO

are given

as follows.

Impersonation attack : The adversary O tries to generate a fraudulent pair of

a message and an authenticator (m,α) that will be accepted by a receiver R.

The success probability of this attack denoted by P
(A)
IO

is defined as

P
(A)
IO

:= max
(m,α)

Pr(R accepts (m,α)).

Substitution attack : The adversary O can observe a transmitted pair of a mes-

sage and an authenticator (m,α) which is generated by the sender S, and

then tries to generate a fraudulent pair of a message and an authenticator

(m′, α′) that will be accepted by a receiver R. The success probability of this
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who has an unbounded computational power can break every scheme with com-
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the security. From these points, we can find the advantage of information-theoretic

security.
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a formal model. More specifically, we newly propose a model and a security def-

inition of the GA2-codes (GA-codes with Arbitration) in which a trusted arbiter
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receiver. This model can be considered as extension of both the GA-codes and the

A2-codes. In addition, we show a construction which meets our security definition

of the GA2-codes. Also, we consider the case that the arbiter is not always hon-

est and call this model the GA3-code (GA2-code with protection against Arbiter’s

attack), which is similar to the setting of A3-codes.

The rest of this paper is organized as follows: In Section 2, we survey the

information-theoretically secure authentication code and its variants. In Section

3, we propose a model and a security definition of GA2-codes. In Section 4, we

give a construction of GA2-codes by using polynomials over finite fields. Finally,

in Section 5, we consider a security definition and a construction of GA3-codes.

2. Authentication code and its Variants
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Authenticity (or integrity) is one of the fundamental and important crypto-

graphic functions, and authentication/signature schemes are usually used for pro-

viding this function. In particular, A-code (Authentication-code) is the traditional

authentication scheme with information-theoretic security which was originally pro-

posed by Gilbert, McWilliams and Sloan [3], and later developed by Simmons [9].

For simplicity, throughout this paper, we assume that there is a trusted author-

ity whose role is to generate and to distribute secret-keys of entities. We call this

model the trusted initializer model as in [6]. The model of A-codes involves three
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participants, a sender S, a receiver R and a trusted initializer TI. The A-code Φ

consists of a three-tuple of algorithms (Gen, Tag, Ver) with three spaces, MA, A
and K, where these three spaces are finite sets of possible messages, authenticators

(or tags), and secret-keys, respectively. Gen is a key generation algorithm executed

by TI, which takes a security parameter on input and outputs a secret-key k. For

a communication, the sender S generates an authenticator by using Tag with the

secret-key and a message. Tag is an algorithm for generating an authenticator.

Tag takes a message m ∈ MA and a secret-key k ∈ K on input and outputs an

authenticator α ∈ A, and we write α =Tag(k,m) for it. Then, S sends the au-

thenticated message (i.e., the pair of the message and authenticator) (m,α) to the

receiver over a public channel.

On receiving (m,α), a receiver R can check the validity of it by using Ver. That

is, the received authentication code originates from the sender and it has not been

substituted during the transmission over the public channel. Ver takes the pair of

the message and the authenticator (m,α) and a secret-key k on input, and outputs

valid or invalid, and we write valid = Ver(k, (m,α)) or invalid = Ver(k, (m,α)) for

it.

In A-codes, for simplicity we assume the following one-time model: it is allowed

to generate an authenticator and transmit a pair of a message and an authenticator

among senders only once; and the receiver is allowed to verify a pair of a message

and an authenticator at most one time.

In A-codes, security under consideration is protection against an adversary,

called opponent, who can impersonate the sender by inserting a message on the

channel (Impersonation Attack), or can replace the pair of a message and an au-

thenticator sent with another one (Substitution Attack). Formally, the security of

A-codes is defined as follows.

Definition 1 (Security of A-code). Let Φ be an A-code in the one-time

model. The scheme Φ is said to be an ϵ-one-time secure A-code, if P
(A)
O ≤ ϵ,

where P
(A)
O is defined by P

(A)
O := max(P

(A)
IO

, P
(A)
SO

), and P
(A)
IO

and P
(A)
SO

are given

as follows.

Impersonation attack : The adversary O tries to generate a fraudulent pair of

a message and an authenticator (m,α) that will be accepted by a receiver R.

The success probability of this attack denoted by P
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IO

is defined as

P
(A)
IO

:= max
(m,α)

Pr(R accepts (m,α)).

Substitution attack : The adversary O can observe a transmitted pair of a mes-

sage and an authenticator (m,α) which is generated by the sender S, and

then tries to generate a fraudulent pair of a message and an authenticator
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attack denoted by P
(A)
SO

is defined as

P
(A)
SO

:= max
(m′,α′)

max
(m,α)̸=(m′,α′)

Pr(R accepts (m′, α′) | (m,α)).

The traditional A-code is the most fundamental primitive for providing func-

tionality of authenticity with information-theoretic security. Based on it, various

extended models or variants of the A-code are proposed so far. We briefly explain

the two major extension of the A-code, A2-codes and A3-codes, below.

2.2. A2-codes and A3-codes

In A-codes, since the two parties share a common secret-key, it must be as-

sumed that they trust each other, or equivalently they are assumed to be honest

players in each other. However, it may be unnatural and an ideal assumption in

many situations. Therefore, an extension of A-code based on a more natural as-

sumption, called A2-code (Authentication code with Arbitration) is introduced by

Simmons[10, 11]. In A2-codes, the sender or the receiver can be dishonest. Thus,

a dispute between them may occur, i.e., the sender denies a pair of messages and

authenticators after having sent it, or the receiver forged a sender’s authenticated

massage and claims its validity. To solve the above dispute, the third participant,

called an arbiter, is introduced in A2-code. The arbiter is always honest and the

sender and the receiver must trust the arbiter’s honesty. The role of the arbiter is

to solve the dispute between the sender and the receiver as a judge in the court.

Following the above scenario, there are five kinds of attacks in this model: im-

personation by the outsider, impersonation by the sender, impersonation by the

receiver, substitution by the outsider, and substitution by the receiver.

The assumption of the arbiter’s honestly in A2-codes is very natural in several

situations, however the opposite situation is pointed out in [11]. In order to remove

the assumption that the arbiter is always honest, Brickell and Stinson [1] introduced

the A3-code (A2-code with protecting against Arbiter’s attack). Afterward, Safavi-

Naini and Wang [7] introduced a more generic model of A3-codes in which the

arbiter can collude with a malicious entity. In the model of A3-code, it is assumed

that the arbiter is not always honest, which we call the arbiter being semi-honest

in this paper. It means that the arbiter makes a judgment honestly in the case of

a dispute, however he may take a fraudulent behavior in cooperation with some

malicious entity. Intuitively, the semi-honest arbiter is like a judge who behaves

honestly in the court, however he does not necessarily behave honestly outside of

the court. And thus, it requires a weaker assumption and may be preferable in

several situations.

We now summarize assumptions of participant’s honesty in A-code, A2-code

and A3-code in Table 1.

Next, we show the formal definitions of A2-codes and A3-codes.
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Assumptions of participant’s honesty

Sender Receiver Arbiter

A-code Honest Honest —

A2-code Dishonest Dishonest Honest

A3-code Dishonest Dishonest Semi-honest

Table 1. Assumptions of participant’s honesty in A-code, A2-code and
A3-code.

A2-codes: Formally, A2-codes are defined as follows. In A2-codes, there are a

sender S, a receiver R, an arbiter A, and a trusted initializer TI. The A2-code Θ

consists of a four-tuple of algorithms (AGen, Auth, Vrfy, AVrfy) with five spaces,

M̃A, Ã, KS , KR, and KA, where M̃A is a finite set of possible messages, Ã is a

finite set of possible authenticators, and KS , KR, and KA are finite sets of possible

secret keys of the sender S, the receiver R, and the arbiter A, respectively. AGen

is a key generation algorithm executed by TI, which takes a security parameter on

input and outputs secret-keys kS , kR, and kA for S, R, and A, respectively. For a

communication, the sender S generates an authenticator by using Auth with the

secret-key and a message. Auth takes a message m ∈ M̃A and a secret-key kS ∈ KS

on input and outputs an authenticator α ∈ Ã, and we write α = Auth(kS ,m)

for it. On receiving (m,α), a receiver R can check the validity of it by using

Vrfy. That is, Vrfy takes the pair of the message and the authenticator (m,α)

and a secret-key kR ∈ KR on input, and outputs valid or invalid, and we write

valid = Vrfy(kR, (m,α)) or invalid = Vrfy(kR, (m,α)) for it. If a dispute between

S and R occurs, A can resolve the dispute based on the following judgment by

using his secret key kA.

(1) R ascribes an authenticated message (m,α) to Si, but S denies it. Then, S

or R asks for arbitration.

- R wins if A accepts (m,α) (i.e. AVrfy(kA, (m,α)) = valid).

- R loses otherwise.

(2) S produces (m,α) such that R will accept it. After having sent it to R, S

attempts to deny having created (m,α). Then, S or R asks for arbitration.

- S wins if A rejects (m,α) (i.e. AVrfy(kA, (m,α)) = invalid).

- S loses otherwise.

(3) After knowing that R rejected (m,α), S claims that (m,α) is valid. Then, S

or R asks for arbitration.

- S wins if A accepts (m,α) (i.e. AVrfy(kA, (m,α)) = valid).

- S loses otherwise.
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attack denoted by P
(A)
SO

is defined as

P
(A)
SO

:= max
(m′,α′)

max
(m,α)̸=(m′,α′)

Pr(R accepts (m′, α′) | (m,α)).
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sender and the receiver must trust the arbiter’s honesty. The role of the arbiter is
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Following the above scenario, there are five kinds of attacks in this model: im-

personation by the outsider, impersonation by the sender, impersonation by the
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The assumption of the arbiter’s honestly in A2-codes is very natural in several

situations, however the opposite situation is pointed out in [11]. In order to remove
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the A3-code (A2-code with protecting against Arbiter’s attack). Afterward, Safavi-

Naini and Wang [7] introduced a more generic model of A3-codes in which the

arbiter can collude with a malicious entity. In the model of A3-code, it is assumed

that the arbiter is not always honest, which we call the arbiter being semi-honest

in this paper. It means that the arbiter makes a judgment honestly in the case of

a dispute, however he may take a fraudulent behavior in cooperation with some

malicious entity. Intuitively, the semi-honest arbiter is like a judge who behaves

honestly in the court, however he does not necessarily behave honestly outside of

the court. And thus, it requires a weaker assumption and may be preferable in

several situations.
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and A3-code in Table 1.
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Assumptions of participant’s honesty
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input and outputs secret-keys kS , kR, and kA for S, R, and A, respectively. For a

communication, the sender S generates an authenticator by using Auth with the

secret-key and a message. Auth takes a message m ∈ M̃A and a secret-key kS ∈ KS

on input and outputs an authenticator α ∈ Ã, and we write α = Auth(kS ,m)

for it. On receiving (m,α), a receiver R can check the validity of it by using
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and a secret-key kR ∈ KR on input, and outputs valid or invalid, and we write

valid = Vrfy(kR, (m,α)) or invalid = Vrfy(kR, (m,α)) for it. If a dispute between

S and R occurs, A can resolve the dispute based on the following judgment by

using his secret key kA.

(1) R ascribes an authenticated message (m,α) to Si, but S denies it. Then, S
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- R wins if A accepts (m,α) (i.e. AVrfy(kA, (m,α)) = valid).

- R loses otherwise.

(2) S produces (m,α) such that R will accept it. After having sent it to R, S

attempts to deny having created (m,α). Then, S or R asks for arbitration.

- S wins if A rejects (m,α) (i.e. AVrfy(kA, (m,α)) = invalid).

- S loses otherwise.
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In A2-codes, for simplicity we assume the following one-time model as in the

model of A-codes: the sender is allowed to generate an authenticator and transmit

an authenticated message only once; each of the arbiter and the receiver is allowed

to verify an authenticated message at most one time.

Next, we define the security definition of A2-codes. In A2-codes, an adversary

can perform impersonation attacks, substitution attacks, denial attacks, and claim

attacks. Impersonation attacks and substitution attacks are the same as those in

A-codes. In denial attacks, the adversary produces an authenticated message (i.e.,

a pair of messages and authenticators) such that R will accept it, but attempts

to deny the authenticated message after having sent it. In claim attacks, after

knowing that R rejected an authenticated message, the adversary claims that it is

valid. The aim of this attack is to compel R to accept the authenticated message

even if R rejected it.

We now classify the attacks according to adversary’s types: an outsider O

who can only have access to public information, a dishonest sender S, a dishonest

receiver R, or possible collusion of them. Then, the security definition of A2-codes

is defined as follows.

Definition 2 (Security of A2-code). Let Θ be an A2-code in the one-time

model. The scheme Θ is said to be δ-one-time secure, if max(P
(A2)
O , P

(A2)
S , P

(A2)
R ) ≤

δ, where P
(A2)
O is the same as P

(A)
O in Definition 1, and P

(A2)
S and P

(A2)
R are defined

as follows.

(i) Attacks by S: Let P
(A2)
S := max(P

(A2)
D , P

(A2)
C ), where P

(A2)
D and P

(A2)
C are

given as follows.

(1) Denial attack: After sending an authenticated message to the receiver

R, the dishonest sender S tries to deny having sent it. S tries to gen-

erate (m,α) such that R accepts it and A rejects it (i.e., S wins in the

arbitration). The success probability of this attack denoted by P
(A2)
D is

defined as

P
(A2)
D := max

kS

max
(m,α)

Pr(R accepts (m,α) ∧A rejects (m,α) | kS).

(2) Claim attack: After knowing that the receiver R has rejected an authen-

ticated message, S tries to claim that it is valid. S tries to generate

(m,α) such that R rejects it and the arbiter A accepts it (i.e., S wins in

the arbitration). The success probability of this attack denoted by P
(A2)
C

is defined as

P
(A2)
C := max

kS

max
(m,α)

Pr(R rejects (m,α) ∧A accepts (m,α) | kS).
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(ii) Attacks by R: The dishonest receiver R tries to trump up an authenticated

message from the sender. Let P
(A2)
R := max(P

(A2)
IR

, P
(A2)
SR

), where P
(A2)
IR

and

P
(A2)
SR

are given as follows.

Impersonation attack: R tries to generate a fraudulent authenticated mes-

sage (m,α) such that the arbiter A accepts it. The success probability of this

attack denoted by P
(A2)
IR

is defined as

P
(A2)
IR

:= max
kR

max
(m,α)

Pr(A accepts (m,α) | kR).

Substitution attack: R can observe a transmitted authenticated message

(m,α) which is generated by S, and then tries to generate a fraudulent one

(m′, α′) such that the arbiter A accepts it and (m′, α′) ̸= (m,α). The success

probability of this attack denoted by P
(A2)
SR

is defined as

P
(A2)
SR

:= max
kR

max
(m′,α′)

max
(m,α)̸=(m′,α′)

Pr(A accepts (m′, α′) | kR, (m,α)).

A3-codes: In this paper, we consider the security of the traditional A3-code in

[1]. Formally, the A3-code, which is the A2-code without the assumption that the

arbiter is always honest, is defined as follows.

Definition 3 (Security of A3-code). Let Θ be a δ-one-time secure A2-

code. The scheme Θ is said to be a δ-one-time secure A3-code, if P
(A3)
A is at most

δ, where P
(A3)
A is defined as follows.

- Attacks by A: The malicious arbiter A tries to trump up an authenticated

message from the sender. Let P
(A3)
A := max(P

(A3)
IA

, P
(A3)
SA

), where P
(A3)
IA

and

P
(A3)
SA

are given as follows.

Impersonation attack: A tries to generate a fraudulent authenticated mes-

sage (m,α) such that the receiver R will accept it. The success probability of

this attack denoted by P
(A3)
IA

is defined as

P
(A3)
IA

:= max
kA

max
(m,α)

Pr(R accepts (m,α) | kA).

Substitution attack: A can observe a transmitted authenticated message

(m,α) which is generated by S, and then tries to generate a fraudulent one

(m′, α′) such that the receiver R will accept it and (m′, α′) ̸= (m,α). The
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In A2-codes, for simplicity we assume the following one-time model as in the
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model. The scheme Θ is said to be δ-one-time secure, if max(P
(A2)
O , P

(A2)
S , P

(A2)
R ) ≤

δ, where P
(A2)
O is the same as P

(A)
O in Definition 1, and P

(A2)
S and P

(A2)
R are defined

as follows.

(i) Attacks by S: Let P
(A2)
S := max(P

(A2)
D , P

(A2)
C ), where P

(A2)
D and P

(A2)
C are

given as follows.
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erate (m,α) such that R accepts it and A rejects it (i.e., S wins in the

arbitration). The success probability of this attack denoted by P
(A2)
D is

defined as

P
(A2)
D := max

kS

max
(m,α)

Pr(R accepts (m,α) ∧A rejects (m,α) | kS).

(2) Claim attack: After knowing that the receiver R has rejected an authen-

ticated message, S tries to claim that it is valid. S tries to generate

(m,α) such that R rejects it and the arbiter A accepts it (i.e., S wins in

the arbitration). The success probability of this attack denoted by P
(A2)
C

is defined as

P
(A2)
C := max

kS

max
(m,α)

Pr(R rejects (m,α) ∧A accepts (m,α) | kS).
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(ii) Attacks by R: The dishonest receiver R tries to trump up an authenticated
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(A2)
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IR

, P
(A2)
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P
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attack denoted by P
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IR
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P
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kR

max
(m,α)
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P
(A2)
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(m,α)̸=(m′,α′)

Pr(A accepts (m′, α′) | kR, (m,α)).

A3-codes: In this paper, we consider the security of the traditional A3-code in

[1]. Formally, the A3-code, which is the A2-code without the assumption that the

arbiter is always honest, is defined as follows.

Definition 3 (Security of A3-code). Let Θ be a δ-one-time secure A2-

code. The scheme Θ is said to be a δ-one-time secure A3-code, if P
(A3)
A is at most

δ, where P
(A3)
A is defined as follows.

- Attacks by A: The malicious arbiter A tries to trump up an authenticated

message from the sender. Let P
(A3)
A := max(P

(A3)
IA

, P
(A3)
SA

), where P
(A3)
IA

and

P
(A3)
SA

are given as follows.

Impersonation attack: A tries to generate a fraudulent authenticated mes-

sage (m,α) such that the receiver R will accept it. The success probability of

this attack denoted by P
(A3)
IA

is defined as

P
(A3)
IA

:= max
kA

max
(m,α)

Pr(R accepts (m,α) | kA).

Substitution attack: A can observe a transmitted authenticated message

(m,α) which is generated by S, and then tries to generate a fraudulent one

(m′, α′) such that the receiver R will accept it and (m′, α′) ̸= (m,α). The

【140417-0-5】JMM_7_本文.indd   97 2014/04/28   10:16:24



92 T. Seito et al.

Number of Sender Number of Receiver Additional Property

A-code Single Single —

GA-code Multiple Single Anonymity of Senders
Table 2. The model and additional property of A-codes and GA-codes.

success probability of this attack denoted by P
(A3)
SA

is defined as

P
(A3)
SA

:= max
kA

max
(m′,α′)

max
(m,α)̸=(m′,α′)

Pr(R accepts (m′, α′) | kA, (m,α)).

2.3. GA-codes

In several cryptographic applications (e.g., e-voting and electronic bidding),

there is a need for protecting users’ privacy (anonymity) besides integrity of data

transmitted in a public channel. The group signature scheme introduced by Chaum

and Van Heyst proposed the scheme which can satisfy both requirements [2]. This

scheme allows a group member to sign (authenticate) a message anonymously on

behalf of the group. However, in the case of dispute between members of the

groups, the identity of a sender of a signed message can be revealed only by a

privileged participant, called a group manager. Group signatures have mainly

been studied from a viewpoint of computational security so far. The extension of

A-codes, called GA-codes (Group Authentication codes) was proposed by Hanaoka

et al. [5]. The GA-code is an information-theoretically secure authentication code

with anonymity whose function is similar to that of computationally secure group

signatures. In the model of GA-codes, there are multiple senders, a single receiver

and a group authority. For communication, one of the senders can anonymously

send an authenticated message to the receiver. And then, the receiver can verify the

validity of it, however, he cannot specify the sender of the authenticated message

by himself. If the receiver wants to reveal the identity of the sender, he can only

obtain it by cooperating with the group authority. In GA-code, it is assumed that

the receiver is honest, and there are four kinds of attacks: impersonation by the

outsider, impersonation by a collusion group of malicious senders, substitution by

the outsider, and substitution by a collusion group of malicious senders. Here, we

summarize the features of A-codes and GA-codes in Table 2.

Formally, the model of GA-codes is as follows. The model of GA-codes involves

n + 3 participants, n senders S1, . . . , Sn, a receiver R, a group authority G, and

a trusted initializer TI. For convenience, for each sender Si ∈ {S1, S2, . . . , Sn}
we use the same symbol Si to denote the identity of the sender. The GA-code

Φ consists of a four-tuple of algorithms (KGen, Sign, GVrfy, Open) with n +

4 spaces, MG, AG, AK1, . . . ,AKn, VK, and GK, where they are finite sets of

possible messages, possible authenticators (or tags), possible secret-keys of senders

S1, . . . , Sn, possible secret-keys of the receiver, and possible secret-keys of the group

authority, respectively. KGen is a key generation algorithm executed by TI, which
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takes a security parameter on input and outputs secret-keys ak1, . . . , akn, vk, gk

for S1, . . . , Sn, R,G, respectively. For a communication, the sender Si generates

an authenticator by using Sign with the secret-key and a message. Sign takes a

message m ∈ MG and an Si’s secret-key aki ∈ AKi on input and outputs an

authenticator σ ∈ AG, and we write σ =Sign(aki,m) for it. Then, Si sends the

authenticated message (m,σ) to the receiver over a public channel. On receiving

(m,σ), a receiver R can check the validity of it by using GVrfy. GVrfy takes an

authenticated message (m,σ) and an R’s secret-key vk on input, and outputs valid

or invalid, and we write valid = GVrfy(vk, (m,σ)) or invalid = GVrfy(vk, (m,σ))

for it.

In GA-codes, an adversary can perform impersonation attacks or substitution

attacks, which is the same situation as that of A-codes. We classify the attacks

according to adversary’s types: an outsider O who can only have access to public

information, and a group of k malicious senders. Here, we assume that a group

authority and the receiver are honest. Also, we denote a group of k (1 ≤ k ≤ n−1)

malicious senders by S(i1, . . . , ik) := {Si1 , . . . , Sik} and their secret information by

eS(i1,...,ik). Also let W̃ := {S(i1, . . . , ik) | S(i1, . . . , ik) ⊂ S}. Then, security of

GA-codes is defined as follows.

Definition 4 (Security of GA-code). Let Ψ be a GA-code in the one-

time model. The scheme Ψ is said to be a (p, k, n)-one-time secure GA-code, if the

following conditions are satisfied.

1) Each of R and G obtains no information on the identity of the sender from

an authenticated message alone. Namely, for any i ∈ {1, 2, . . . , n}, we have

a) max
(m,σ)

max
vk

|Pr(Si | vk, (m,σ))− Pr(Si | vk)| = 0; and

b) max
(m,σ)

max
gk

|Pr(Si | gk, (m,σ))− Pr(Si | gk)| = 0.

The above equations mean that, after distributing secret-keys vk and gk, any

authenticated message (m,σ) will reveal no information on the identity of

senders. Note that the above σ is taken such that σ = Sign(aki,m) for some

aki and m.

2) No information on the identity of the sender of (m,σ) is leaked from (m,σ)

itself against malicious senders S(i1, . . . , ik). Namely, for any S(i1, . . . , ik) ∈
W̃ and Si ∈ S \ S(i1, . . . , ik), we have

max
(m,σ)

max
akS(i1,...,ik)

∣∣Pr(Si | akS(i1,...,ik), (m,σ))− Pr(Si | akS(i1,...,ik))
∣∣ = 0,

This equation means that, after distributing secret-keys akS(i1,...,ik), any au-

thenticated message (m,σ) will reveal no information on the identity of

senders.

【140417-0-5】JMM_7_本文.indd   98 2014/04/28   10:16:25



92 T. Seito et al.

Number of Sender Number of Receiver Additional Property
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success probability of this attack denoted by P
(A3)
SA

is defined as

P
(A3)
SA

:= max
kA

max
(m′,α′)

max
(m,α)̸=(m′,α′)

Pr(R accepts (m′, α′) | kA, (m,α)).

2.3. GA-codes

In several cryptographic applications (e.g., e-voting and electronic bidding),

there is a need for protecting users’ privacy (anonymity) besides integrity of data

transmitted in a public channel. The group signature scheme introduced by Chaum

and Van Heyst proposed the scheme which can satisfy both requirements [2]. This

scheme allows a group member to sign (authenticate) a message anonymously on

behalf of the group. However, in the case of dispute between members of the

groups, the identity of a sender of a signed message can be revealed only by a

privileged participant, called a group manager. Group signatures have mainly

been studied from a viewpoint of computational security so far. The extension of

A-codes, called GA-codes (Group Authentication codes) was proposed by Hanaoka

et al. [5]. The GA-code is an information-theoretically secure authentication code

with anonymity whose function is similar to that of computationally secure group

signatures. In the model of GA-codes, there are multiple senders, a single receiver

and a group authority. For communication, one of the senders can anonymously

send an authenticated message to the receiver. And then, the receiver can verify the

validity of it, however, he cannot specify the sender of the authenticated message

by himself. If the receiver wants to reveal the identity of the sender, he can only

obtain it by cooperating with the group authority. In GA-code, it is assumed that

the receiver is honest, and there are four kinds of attacks: impersonation by the

outsider, impersonation by a collusion group of malicious senders, substitution by

the outsider, and substitution by a collusion group of malicious senders. Here, we

summarize the features of A-codes and GA-codes in Table 2.

Formally, the model of GA-codes is as follows. The model of GA-codes involves

n + 3 participants, n senders S1, . . . , Sn, a receiver R, a group authority G, and

a trusted initializer TI. For convenience, for each sender Si ∈ {S1, S2, . . . , Sn}
we use the same symbol Si to denote the identity of the sender. The GA-code

Φ consists of a four-tuple of algorithms (KGen, Sign, GVrfy, Open) with n +

4 spaces, MG, AG, AK1, . . . ,AKn, VK, and GK, where they are finite sets of

possible messages, possible authenticators (or tags), possible secret-keys of senders

S1, . . . , Sn, possible secret-keys of the receiver, and possible secret-keys of the group

authority, respectively. KGen is a key generation algorithm executed by TI, which
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takes a security parameter on input and outputs secret-keys ak1, . . . , akn, vk, gk

for S1, . . . , Sn, R,G, respectively. For a communication, the sender Si generates

an authenticator by using Sign with the secret-key and a message. Sign takes a

message m ∈ MG and an Si’s secret-key aki ∈ AKi on input and outputs an

authenticator σ ∈ AG, and we write σ =Sign(aki,m) for it. Then, Si sends the

authenticated message (m,σ) to the receiver over a public channel. On receiving

(m,σ), a receiver R can check the validity of it by using GVrfy. GVrfy takes an

authenticated message (m,σ) and an R’s secret-key vk on input, and outputs valid

or invalid, and we write valid = GVrfy(vk, (m,σ)) or invalid = GVrfy(vk, (m,σ))

for it.

In GA-codes, an adversary can perform impersonation attacks or substitution

attacks, which is the same situation as that of A-codes. We classify the attacks

according to adversary’s types: an outsider O who can only have access to public

information, and a group of k malicious senders. Here, we assume that a group

authority and the receiver are honest. Also, we denote a group of k (1 ≤ k ≤ n−1)

malicious senders by S(i1, . . . , ik) := {Si1 , . . . , Sik} and their secret information by

eS(i1,...,ik). Also let W̃ := {S(i1, . . . , ik) | S(i1, . . . , ik) ⊂ S}. Then, security of

GA-codes is defined as follows.

Definition 4 (Security of GA-code). Let Ψ be a GA-code in the one-

time model. The scheme Ψ is said to be a (p, k, n)-one-time secure GA-code, if the

following conditions are satisfied.

1) Each of R and G obtains no information on the identity of the sender from

an authenticated message alone. Namely, for any i ∈ {1, 2, . . . , n}, we have

a) max
(m,σ)

max
vk

|Pr(Si | vk, (m,σ))− Pr(Si | vk)| = 0; and

b) max
(m,σ)

max
gk

|Pr(Si | gk, (m,σ))− Pr(Si | gk)| = 0.

The above equations mean that, after distributing secret-keys vk and gk, any

authenticated message (m,σ) will reveal no information on the identity of

senders. Note that the above σ is taken such that σ = Sign(aki,m) for some

aki and m.

2) No information on the identity of the sender of (m,σ) is leaked from (m,σ)

itself against malicious senders S(i1, . . . , ik). Namely, for any S(i1, . . . , ik) ∈
W̃ and Si ∈ S \ S(i1, . . . , ik), we have

max
(m,σ)

max
akS(i1,...,ik)

∣∣Pr(Si | akS(i1,...,ik), (m,σ))− Pr(Si | akS(i1,...,ik))
∣∣ = 0,

This equation means that, after distributing secret-keys akS(i1,...,ik), any au-

thenticated message (m,σ) will reveal no information on the identity of

senders.
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3) All of the success probabilities of the following attacks, P
(GA)
O and P

(GA)
S , are

at most p ∈ [0, 1].

(i) Attacks by O: The outsider O tries to trap the receiver R. Let

P
(GA)
O := max(P

(GA)
IO

, P
(GA)
SO

), where P
(GA)
IO

and P
(GA)
SO

are given as fol-

lows.

Impersonation attack : O tries to generate a fraudulent authenticated

message (m,σ) that will be accepted by a receiver R. The success

probability of this attack denoted by P
(GA)
IO

is defined as

P
(GA)
IO

:= max
(m,σ)

Pr(R accepts (m,σ)).

Substitution attack : O can observe a transmitted authenticated mes-

sage (m,σ) which is generated by one of the senders Si, and then

tries to generate a fraudulent authenticated message (m′, σ′) ̸=
(m,σ) that will be accepted by a receiver R. The success probability

of this attack denoted by P
(GA)
SO

(Si) is defined as

P
(GA)
SO

(Si) := max
(m′,σ′)

max
(m,σ) ̸=(m′,σ′)

Pr(R accepts (m′, σ′) | (m,σ)).

Then, P
(GA)
SO

is defined as P
(GA)
SO

:= max
Si∈S

P
(GA)
SO

(Si).

(ii) Attacks by S(i1, . . . , ik): In this attack, a group of malicious senders

S(i1, . . . , ik) tries to trump up an authenticated message from the sender

Si ∈ S \ S(i1, . . . , ik). Let P
(GA)
S := max(P

(GA)
IS

, P
(GA)
SS

), where P
(GA)
IS

and P
(GA)
SS

are given as follows.

Impersonation attack : S(i1, . . . , ik) tries to generate a fraudulent

authenticated message (m,σ) such that the receiver R accepts it and

someone in S \ S(i1, . . . , ik) is detected as the sender of it. The

success probability of this attack is denoted by P
(GA)
IS

is defined as

P
(GA)
IS

(S(i1, . . . , ik)) := max
akS(i1,...,ik)

max
(m,σ)

Pr(R accepts (m,σ) ∧ someone in S \ S(i1, . . . , ik)
is detected as the sender of (m,σ) | akS(i1,...,ik)).

Then, we define P
(GA)
IS

:= max
S(i1,...,ik)∈W̃

P
(GA)
IS

(S(i1, . . . , ik)).

Substitution attack : S(i1, . . . , ik) can observe a transmitted authen-

ticated message (m,σ) which is generated by Si ∈ S \ S(i1, . . . , ik),
and then tries to generate a fraudulent one (m′, σ′) such that the

receiver R accepts it and someone in S \ S(i1, . . . , ik) is detected as
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the sender of it. The success probability of this attack is denoted by

P
(GA)
SS

(S(i1, . . . , ik), Si) is defined as

P
(GA)
SS

(S(i1, . . . , ik), Si) := max
akS(i1,...,ik)

max
(m′,σ′)

max
(m,σ) ̸=(m′,σ′)

Pr(R accepts (m′, σ′) ∧ someone in S \ S(i1, . . . , ik)
is detected as the sender of (m′, σ′) | akS(i1,...,ik), (m,σ)).

Then, P
(GA)
SS

is defined as

P
(GA)
SS

:= max
S(i1,...,ik)∈W̃

max
Si∈S\S(i1,...,ik)

P
(GA)
SS

(S(i1, . . . , ik), Si).

As in A-codes, in GA-codes it must be assumed that all entities are honest

players, however, it may be unnatural and an ideal assumption in many situations.

In the next section, we will propose an extension of GA-codes based on a more

natural assumption, and we call it GA2-code (GA-code with Arbitration).

3. GA2-codes: The Model and Security Definition

3.1. The model

In this section, we introduce a model of GA2-codes. In GA2-codes, there are

the following entities: n senders S1, S2, . . ., Sn, a receiver R, a group authority

G, an arbiter A, and a trusted initializer TI, where n is a positive integer. For

convenience, as in GA-codes, for each sender Si ∈ {S1, S2, . . . , Sn} we use the same

symbol Si to denote the identity of the sender. Once being given secret information,

Si can generate an authenticator by using his secret information and a message, and

R can verify it by using his secret information. Additionally, by cooperating with

G, R can obtain the identity of the sender of it. In the case of dispute between

Si and R, A can resolve the dispute by using his secret information. A formal

definition is given as follows.

Definition 5 (GA2-code). A GA2-code (GA-code with Arbitration) Π in-

volves n+4 entities, TI, S1, S2, . . ., Sn, R, G and A, and consists of six algorithms

(GGen, GSign, GVer, GOpen, AVer, AOpen) with n+ 5 spaces M, ES1 , . . ., ESn ,

ER, EG, EA, and Σ, where all of the above algorithms except GGen are determinis-

tic and all of the above spaces are finite. In addition, Π is executed with five phases

as follows.

– Notation.

- Entities: TI is a trusted initializer, Si (1 ≤ i ≤ n) is a sender. Let

S := {S1, S2, . . . , Sn} be a set of senders. And, R is a receiver, G is a

group authority, A is an arbiter.
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3) All of the success probabilities of the following attacks, P
(GA)
O and P

(GA)
S , are

at most p ∈ [0, 1].

(i) Attacks by O: The outsider O tries to trap the receiver R. Let

P
(GA)
O := max(P

(GA)
IO

, P
(GA)
SO

), where P
(GA)
IO

and P
(GA)
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are given as fol-

lows.

Impersonation attack : O tries to generate a fraudulent authenticated

message (m,σ) that will be accepted by a receiver R. The success

probability of this attack denoted by P
(GA)
IO

is defined as

P
(GA)
IO

:= max
(m,σ)

Pr(R accepts (m,σ)).

Substitution attack : O can observe a transmitted authenticated mes-

sage (m,σ) which is generated by one of the senders Si, and then
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of this attack denoted by P
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(Si) is defined as
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Then, P
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is defined as P
(GA)
SO

:= max
Si∈S

P
(GA)
SO

(Si).

(ii) Attacks by S(i1, . . . , ik): In this attack, a group of malicious senders

S(i1, . . . , ik) tries to trump up an authenticated message from the sender

Si ∈ S \ S(i1, . . . , ik). Let P
(GA)
S := max(P

(GA)
IS

, P
(GA)
SS

), where P
(GA)
IS

and P
(GA)
SS

are given as follows.

Impersonation attack : S(i1, . . . , ik) tries to generate a fraudulent

authenticated message (m,σ) such that the receiver R accepts it and

someone in S \ S(i1, . . . , ik) is detected as the sender of it. The

success probability of this attack is denoted by P
(GA)
IS

is defined as

P
(GA)
IS

(S(i1, . . . , ik)) := max
akS(i1,...,ik)

max
(m,σ)

Pr(R accepts (m,σ) ∧ someone in S \ S(i1, . . . , ik)
is detected as the sender of (m,σ) | akS(i1,...,ik)).

Then, we define P
(GA)
IS

:= max
S(i1,...,ik)∈W̃

P
(GA)
IS

(S(i1, . . . , ik)).

Substitution attack : S(i1, . . . , ik) can observe a transmitted authen-

ticated message (m,σ) which is generated by Si ∈ S \ S(i1, . . . , ik),
and then tries to generate a fraudulent one (m′, σ′) such that the

receiver R accepts it and someone in S \ S(i1, . . . , ik) is detected as
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the sender of it. The success probability of this attack is denoted by

P
(GA)
SS

(S(i1, . . . , ik), Si) is defined as

P
(GA)
SS

(S(i1, . . . , ik), Si) := max
akS(i1,...,ik)

max
(m′,σ′)

max
(m,σ) ̸=(m′,σ′)

Pr(R accepts (m′, σ′) ∧ someone in S \ S(i1, . . . , ik)
is detected as the sender of (m′, σ′) | akS(i1,...,ik), (m,σ)).

Then, P
(GA)
SS

is defined as

P
(GA)
SS

:= max
S(i1,...,ik)∈W̃

max
Si∈S\S(i1,...,ik)

P
(GA)
SS

(S(i1, . . . , ik), Si).

As in A-codes, in GA-codes it must be assumed that all entities are honest

players, however, it may be unnatural and an ideal assumption in many situations.

In the next section, we will propose an extension of GA-codes based on a more

natural assumption, and we call it GA2-code (GA-code with Arbitration).

3. GA2-codes: The Model and Security Definition

3.1. The model

In this section, we introduce a model of GA2-codes. In GA2-codes, there are

the following entities: n senders S1, S2, . . ., Sn, a receiver R, a group authority

G, an arbiter A, and a trusted initializer TI, where n is a positive integer. For

convenience, as in GA-codes, for each sender Si ∈ {S1, S2, . . . , Sn} we use the same

symbol Si to denote the identity of the sender. Once being given secret information,

Si can generate an authenticator by using his secret information and a message, and

R can verify it by using his secret information. Additionally, by cooperating with

G, R can obtain the identity of the sender of it. In the case of dispute between

Si and R, A can resolve the dispute by using his secret information. A formal

definition is given as follows.

Definition 5 (GA2-code). A GA2-code (GA-code with Arbitration) Π in-

volves n+4 entities, TI, S1, S2, . . ., Sn, R, G and A, and consists of six algorithms

(GGen, GSign, GVer, GOpen, AVer, AOpen) with n+ 5 spaces M, ES1 , . . ., ESn ,

ER, EG, EA, and Σ, where all of the above algorithms except GGen are determinis-

tic and all of the above spaces are finite. In addition, Π is executed with five phases

as follows.

– Notation.

- Entities: TI is a trusted initializer, Si (1 ≤ i ≤ n) is a sender. Let

S := {S1, S2, . . . , Sn} be a set of senders. And, R is a receiver, G is a

group authority, A is an arbiter.
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- Spaces: M is a finite set of possible messages, ES1 , . . . , ESn are finite

sets of possible keys of senders S1, . . . , Sn, respectively. ER is a finite

set of possible receiver’s secret keys, EG is a finite set of possible group

authority’s secret keys, and EA is a finite set of possible arbiter’s secret

keys. Σ is a finite set of possible authenticators.

- Algorithms: GGen is a key generation algorithm, GSign: ESi ×M → Σ

is an authenticator generation algorithm which outputs an authenticator

message, and GVer: ER × M × Σ → {valid, invalid} is a verification

algorithm for the receiver. GOpen: ER × EG ×M× Σ → S ∪ {⊥} is an

open algorithm for the group authority and the receiver, where ⊥ implies

the invalid symbol, AVer: EA×M×Σ → {valid,invalid} is a verification

algorithm for the arbiter, and AOpen: EA × EG ×M× Σ → S ∪ {⊥} is

an open algorithm for the group authority and the arbiter.

1. Key Generation and Distribution by TI. In the initial phase, TI

generates the following keys by using GGen: a secret key eSi ∈ ESi for

Si (1 ≤ i ≤ n), a secret key eR ∈ ER for R, a secret key eG ∈ EG for G,

and a secret key eA ∈ EA for A. These keys are distributed to corresponding

entities via secure channels. After distributing these keys, TI deletes these

keys from his memory, and each entity keeps his own key secret.

2. Authenticator Generation. In order to send a message m ∈ M to R with

authenticity and anonymity, Si ∈ S generates an authenticator σ by using

his key eSi and m, that is σ = GSign(eSi ,m), and transmits (m,σ) to R.

3. Verification. R verifies the validity of (m,σ) by using eR. If

GV er(eR, (m,σ)) = valid then R accepts it, and otherwise R rejects it.

4. Tracing. If R wants to reveal the identity of the sender of (m,σ), R

can obtain it by cooperating with G if G approves R’s request, that is

GOpen(eR, eG, (m,σ)) = Si, where σ = GSign(eSi ,m).

5. Arbitration. In the case of dispute between Si and R, A can resolve the

dispute based on the following judgment by using his secret key eA.

(1) Cooperating with G, R ascribes an authenticated message (m,σ) to Si,

but Si denies it. Then, Si or R asks for arbitration.

- R wins if A accept (i.e. AV er(eA, (m,σ)) = valid) and can reveal

the identity of the sender Si from (m,σ) by cooperating with G (i.e.

AOpen(eA, eG, (m,σ)) = Si).

- R loses otherwise.

(2) Si produces (m,σ) such that R will accept it. After having sent it to

R, Si attempts to deny having created (m,σ). Then, Si or R asks for

arbitration.
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- Si wins if A rejects (m,σ) (i.e. AV er(eA, (m,σ)) = invalid).

- Si loses otherwise.

(3) After knowing that R rejected (m,σ), Si claims that (m,σ) is valid.

Then, Si or R asks for arbitration.

- Si wins if A accepts (m,σ) (i.e. AV er(eA, (m,σ)) = valid).

- Si loses otherwise.

In the above model, for simplicity we assume the following conditions: it is al-

lowed to generate an authenticator and transmit an authenticated message among

senders only once; both the receiver and the arbiter are allowed to verify an au-

thenticated message at most one time; and the group authority is allowed to reply

to a request only at most one time.

3.2. Adversarial model and security definition

In this section, we define a security definition of GA2-codes. In GA2-codes,

the arbiter is assumed to be always honest. As in A2-codes, an adversary can

perform impersonation attacks, substitution attacks, denial attacks or claim at-

tacks by creating a fraudulent an authenticated message. These attacks are the

same as those in A2-codes. We now classify the attacks according to adversary’s

types: An outsider O who can only have access to public information, a group of

k malicious senders, a dishonest receiver R and possible collusion of them. Here,

we assume that a group authority is honest, and we do not consider colluding at-

tacks including the outsider, because the outsider has no secret-key information.

As in GA-codes, we denote a group of k (1 ≤ k ≤ n − 1) malicious senders by

S(i1, . . . , ik) := {Si1 , . . . , Sik} and their secret information by eS(i1,...,ik). Also let

W := {S(i1, . . . , ik) | S(i1, . . . , ik) ⊂ S}. Then, we give a formal security definition

of GA2-code below.

Definition 6 (Security of GA2-code). Let Π be a GA2-code in the one-

time model. The scheme Π is said to be (p, k, n)-one-time secure, if the following

conditions are satisfied.

1) Each of R, A and G obtains no information on the identity of the sender

from an authenticated message alone. Namely, the following conditions are

satisfied: For any i ∈ {1, 2, . . . , n}, we have

a) max
(m,σ)

max
eR

|Pr(Si | eR, (m,σ))− Pr(Si | eR)| = 0;

b) max
(m,σ)

max
eA

|Pr(Si | eA, (m,σ))− Pr(Si | eA)| = 0; and

c) max
(m,σ)

max
eG

|Pr(Si | eG, (m,σ))− Pr(Si | eG)| = 0.

The above equations mean that, after distributing secret-keys eR, eA, eG, each
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- Spaces: M is a finite set of possible messages, ES1 , . . . , ESn are finite

sets of possible keys of senders S1, . . . , Sn, respectively. ER is a finite

set of possible receiver’s secret keys, EG is a finite set of possible group

authority’s secret keys, and EA is a finite set of possible arbiter’s secret

keys. Σ is a finite set of possible authenticators.

- Algorithms: GGen is a key generation algorithm, GSign: ESi ×M → Σ

is an authenticator generation algorithm which outputs an authenticator

message, and GVer: ER × M × Σ → {valid, invalid} is a verification

algorithm for the receiver. GOpen: ER × EG ×M× Σ → S ∪ {⊥} is an

open algorithm for the group authority and the receiver, where ⊥ implies

the invalid symbol, AVer: EA×M×Σ → {valid,invalid} is a verification

algorithm for the arbiter, and AOpen: EA × EG ×M× Σ → S ∪ {⊥} is

an open algorithm for the group authority and the arbiter.

1. Key Generation and Distribution by TI. In the initial phase, TI

generates the following keys by using GGen: a secret key eSi ∈ ESi for

Si (1 ≤ i ≤ n), a secret key eR ∈ ER for R, a secret key eG ∈ EG for G,

and a secret key eA ∈ EA for A. These keys are distributed to corresponding

entities via secure channels. After distributing these keys, TI deletes these

keys from his memory, and each entity keeps his own key secret.

2. Authenticator Generation. In order to send a message m ∈ M to R with

authenticity and anonymity, Si ∈ S generates an authenticator σ by using

his key eSi and m, that is σ = GSign(eSi ,m), and transmits (m,σ) to R.

3. Verification. R verifies the validity of (m,σ) by using eR. If

GV er(eR, (m,σ)) = valid then R accepts it, and otherwise R rejects it.

4. Tracing. If R wants to reveal the identity of the sender of (m,σ), R

can obtain it by cooperating with G if G approves R’s request, that is

GOpen(eR, eG, (m,σ)) = Si, where σ = GSign(eSi ,m).

5. Arbitration. In the case of dispute between Si and R, A can resolve the

dispute based on the following judgment by using his secret key eA.

(1) Cooperating with G, R ascribes an authenticated message (m,σ) to Si,

but Si denies it. Then, Si or R asks for arbitration.

- R wins if A accept (i.e. AV er(eA, (m,σ)) = valid) and can reveal

the identity of the sender Si from (m,σ) by cooperating with G (i.e.

AOpen(eA, eG, (m,σ)) = Si).

- R loses otherwise.

(2) Si produces (m,σ) such that R will accept it. After having sent it to

R, Si attempts to deny having created (m,σ). Then, Si or R asks for

arbitration.
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- Si wins if A rejects (m,σ) (i.e. AV er(eA, (m,σ)) = invalid).

- Si loses otherwise.

(3) After knowing that R rejected (m,σ), Si claims that (m,σ) is valid.

Then, Si or R asks for arbitration.

- Si wins if A accepts (m,σ) (i.e. AV er(eA, (m,σ)) = valid).

- Si loses otherwise.

In the above model, for simplicity we assume the following conditions: it is al-

lowed to generate an authenticator and transmit an authenticated message among

senders only once; both the receiver and the arbiter are allowed to verify an au-

thenticated message at most one time; and the group authority is allowed to reply

to a request only at most one time.

3.2. Adversarial model and security definition

In this section, we define a security definition of GA2-codes. In GA2-codes,

the arbiter is assumed to be always honest. As in A2-codes, an adversary can

perform impersonation attacks, substitution attacks, denial attacks or claim at-

tacks by creating a fraudulent an authenticated message. These attacks are the

same as those in A2-codes. We now classify the attacks according to adversary’s

types: An outsider O who can only have access to public information, a group of

k malicious senders, a dishonest receiver R and possible collusion of them. Here,

we assume that a group authority is honest, and we do not consider colluding at-

tacks including the outsider, because the outsider has no secret-key information.

As in GA-codes, we denote a group of k (1 ≤ k ≤ n − 1) malicious senders by

S(i1, . . . , ik) := {Si1 , . . . , Sik} and their secret information by eS(i1,...,ik). Also let

W := {S(i1, . . . , ik) | S(i1, . . . , ik) ⊂ S}. Then, we give a formal security definition

of GA2-code below.

Definition 6 (Security of GA2-code). Let Π be a GA2-code in the one-

time model. The scheme Π is said to be (p, k, n)-one-time secure, if the following

conditions are satisfied.

1) Each of R, A and G obtains no information on the identity of the sender

from an authenticated message alone. Namely, the following conditions are

satisfied: For any i ∈ {1, 2, . . . , n}, we have

a) max
(m,σ)

max
eR

|Pr(Si | eR, (m,σ))− Pr(Si | eR)| = 0;

b) max
(m,σ)

max
eA

|Pr(Si | eA, (m,σ))− Pr(Si | eA)| = 0; and

c) max
(m,σ)

max
eG

|Pr(Si | eG, (m,σ))− Pr(Si | eG)| = 0.

The above equations mean that, after distributing secret-keys eR, eA, eG, each
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of R, A and G obtains no information on the identity of the sender from

arbitrary (m,σ), where σ is taken such that σ = GSign(eSi ,m) for some eSi

and m.

2) No information on the identity of the sender of (m,σ) is leaked from (m,σ) it-

self against the following adversaries: (i) malicious senders S(i1, . . . , ik); and

(ii) the collusion between malicious senders S(i1, . . . , ik) and the malicious

receiver R. Namely, for any S(i1, . . . , ik) ∈ W and Si ∈ S \ S(i1, . . . , ik), we
have

a) max
(m,σ)

max
eS(i1,...,ik)

∣∣Pr(Si | eS(i1,...,ik), (m,σ))− Pr(Si | eS(i1,...,ik))
∣∣ = 0; and

b) max
(m,σ)

max
eS(i1,...,ik)

max
eR

∣∣Pr(Si | eS(i1,...,ik), eR, (m,σ))− Pr(Si | eS(i1,...,ik), eR)
∣∣ = 0.

3) All of the success probabilities of the following attacks,

P
(GA2)
O , P

(GA2)
S , P

(GA2)
D , P

(GA2)
C , P

(GA2)
R and P

(GA2)
SR , are at most p ∈ [0, 1].

(i) Attacks by O: In this attack, the outsider O tries to trap the receiver

R. Let P
(GA2)
O := max(P

(GA2)
IO

, P
(GA2)
SO

), where P
(GA2)
IO

and P
(GA2)
SO

are

given as follows.

Impersonation attack : O tries to generate a fraudulent authenticated

message (m,σ) that will be accepted by a receiver R. The success

probability of this attack denoted by P
(GA2)
IO

is defined as

P
(GA2)
IO

:= max
(m,σ)

Pr(R accepts (m,σ)).

Substitution attack : O can observe a transmitted authenticated mes-

sage (m,σ) which is generated by one of the senders Si, and then

tries to generate a fraudulent one (m′, σ′) ̸= (m,σ) that will be ac-

cepted by a receiver R. The success probability of this attack denoted

by P
(GA2)
SO

(Si) is defined as

P
(GA2)
SO

(Si) := max
(m′,σ′)

max
(m,σ)̸=(m′,σ′)

Pr(R accepts (m′, σ′) | (m,σ)).

Then, P
(GA2)
SO

is defined as P
(GA2)
SO

:= max
Si∈S

P
(GA2)
SO

(Si).

(ii) Attacks by S(i1, . . . , ik): In this attack, we consider the following three

cases.

(1) A group of malicious senders S(i1, . . . , ik) tries to trump up an au-

thenticated message from some honest sender Si ∈ S \S(i1, . . . , ik).
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Let P
(GA2)
S := max(P

(GA2)
IS

, P
(GA2)
SS

), where P
(GA2)
IS

and P
(GA2)
SS

are

given as follows.

Impersonation attack: S(i1, . . . , ik) tries to generate a fraudulent

authenticated message (m,σ) such that both R and A accept it and

someone in S \ S(i1, . . . , ik) is detected as the sender of it. The

success probability of this attack is denoted by P
(GA2)
IS

is defined as

P
(GA2)
IS

(S(i1, . . . , ik)) := max
eS(i1,...,ik)

max
(m,σ)

Pr(R and A accept (m,σ) ∧ someone in S \ S(i1, . . . , ik)
is detected as the sender of (m,σ) | eS(i1,...,ik)).

Then, we define P
(GA2)
IS

:= max
S(i1,...,ik)∈W

P
(GA2)
IS

(S(i1, . . . , ik)).

Substitution attack: S(i1, . . . , ik) can observe a transmitted

authenticated message (m,σ) which is generated by Si ∈ S \
S(i1, . . . , ik), and then tries to generate a fraudulent one (m′, σ′)

such that both R and A accept it and someone in S \ S(i1, . . . , ik)

is detected as the sender of it. The success probability of this attack

is denoted by P
(GA2)
SS

(S(i1, . . . , ik), Si) is defined as

P
(GA2)
SS

(S(i1, . . . , ik), Si) := max
eS(i1,...,ik)

max
(m′,σ′)

max
(m,σ) ̸=(m′,σ′)

Pr(R and A accept (m′, σ′) ∧ someone in S \ S(i1, . . . , ik)
is detected as the sender of (m′, σ′) | eS(i1,...,ik), (m,σ)).

Then, P
(GA2)
SS

is defined as

P
(GA2)
SS

:= max
S(i1,...,ik)∈W

max
Si∈S\S(i1,...,ik)

P
(GA2)
SS

(S(i1, . . . , ik), Si).

(2) After sending an authenticated message to the receiver R, the

malicious senders S(i1, . . . , ik) tries to deny having sent it. Let

P
(GA2)
D := max(P

(GA2)
ID

, P
(GA2)
SD

), where P
(GA2)
ID

and P
(GA2)
SD

are

given as follows.

Denial attack without legal authenticated messages:

S(i1, . . . , ik) tries to generate (m,σ) such that R accepts it and A

rejects it (i.e., S(i1, . . . , ik) wins in the arbitration). The success

probability of this attack denoted by P
(GA2)
ID

(S(i1, . . . , ik)) is defined

as

P
(GA2)
ID

(S(i1, . . . , ik)) :=
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of R, A and G obtains no information on the identity of the sender from

arbitrary (m,σ), where σ is taken such that σ = GSign(eSi ,m) for some eSi

and m.

2) No information on the identity of the sender of (m,σ) is leaked from (m,σ) it-

self against the following adversaries: (i) malicious senders S(i1, . . . , ik); and

(ii) the collusion between malicious senders S(i1, . . . , ik) and the malicious

receiver R. Namely, for any S(i1, . . . , ik) ∈ W and Si ∈ S \ S(i1, . . . , ik), we
have

a) max
(m,σ)

max
eS(i1,...,ik)

∣∣Pr(Si | eS(i1,...,ik), (m,σ))− Pr(Si | eS(i1,...,ik))
∣∣ = 0; and

b) max
(m,σ)

max
eS(i1,...,ik)

max
eR

∣∣Pr(Si | eS(i1,...,ik), eR, (m,σ))− Pr(Si | eS(i1,...,ik), eR)
∣∣ = 0.

3) All of the success probabilities of the following attacks,

P
(GA2)
O , P

(GA2)
S , P

(GA2)
D , P

(GA2)
C , P

(GA2)
R and P

(GA2)
SR , are at most p ∈ [0, 1].

(i) Attacks by O: In this attack, the outsider O tries to trap the receiver

R. Let P
(GA2)
O := max(P

(GA2)
IO

, P
(GA2)
SO

), where P
(GA2)
IO

and P
(GA2)
SO

are

given as follows.

Impersonation attack : O tries to generate a fraudulent authenticated

message (m,σ) that will be accepted by a receiver R. The success

probability of this attack denoted by P
(GA2)
IO

is defined as

P
(GA2)
IO

:= max
(m,σ)

Pr(R accepts (m,σ)).

Substitution attack : O can observe a transmitted authenticated mes-

sage (m,σ) which is generated by one of the senders Si, and then

tries to generate a fraudulent one (m′, σ′) ̸= (m,σ) that will be ac-

cepted by a receiver R. The success probability of this attack denoted

by P
(GA2)
SO

(Si) is defined as

P
(GA2)
SO

(Si) := max
(m′,σ′)

max
(m,σ)̸=(m′,σ′)

Pr(R accepts (m′, σ′) | (m,σ)).

Then, P
(GA2)
SO

is defined as P
(GA2)
SO

:= max
Si∈S

P
(GA2)
SO

(Si).

(ii) Attacks by S(i1, . . . , ik): In this attack, we consider the following three

cases.

(1) A group of malicious senders S(i1, . . . , ik) tries to trump up an au-

thenticated message from some honest sender Si ∈ S \S(i1, . . . , ik).
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Let P
(GA2)
S := max(P

(GA2)
IS

, P
(GA2)
SS

), where P
(GA2)
IS

and P
(GA2)
SS

are

given as follows.

Impersonation attack: S(i1, . . . , ik) tries to generate a fraudulent

authenticated message (m,σ) such that both R and A accept it and

someone in S \ S(i1, . . . , ik) is detected as the sender of it. The

success probability of this attack is denoted by P
(GA2)
IS

is defined as

P
(GA2)
IS

(S(i1, . . . , ik)) := max
eS(i1,...,ik)

max
(m,σ)

Pr(R and A accept (m,σ) ∧ someone in S \ S(i1, . . . , ik)
is detected as the sender of (m,σ) | eS(i1,...,ik)).

Then, we define P
(GA2)
IS

:= max
S(i1,...,ik)∈W

P
(GA2)
IS

(S(i1, . . . , ik)).

Substitution attack: S(i1, . . . , ik) can observe a transmitted

authenticated message (m,σ) which is generated by Si ∈ S \
S(i1, . . . , ik), and then tries to generate a fraudulent one (m′, σ′)

such that both R and A accept it and someone in S \ S(i1, . . . , ik)

is detected as the sender of it. The success probability of this attack

is denoted by P
(GA2)
SS

(S(i1, . . . , ik), Si) is defined as

P
(GA2)
SS

(S(i1, . . . , ik), Si) := max
eS(i1,...,ik)

max
(m′,σ′)

max
(m,σ) ̸=(m′,σ′)

Pr(R and A accept (m′, σ′) ∧ someone in S \ S(i1, . . . , ik)
is detected as the sender of (m′, σ′) | eS(i1,...,ik), (m,σ)).

Then, P
(GA2)
SS

is defined as

P
(GA2)
SS

:= max
S(i1,...,ik)∈W

max
Si∈S\S(i1,...,ik)

P
(GA2)
SS

(S(i1, . . . , ik), Si).

(2) After sending an authenticated message to the receiver R, the

malicious senders S(i1, . . . , ik) tries to deny having sent it. Let

P
(GA2)
D := max(P

(GA2)
ID

, P
(GA2)
SD

), where P
(GA2)
ID

and P
(GA2)
SD

are

given as follows.

Denial attack without legal authenticated messages:

S(i1, . . . , ik) tries to generate (m,σ) such that R accepts it and A

rejects it (i.e., S(i1, . . . , ik) wins in the arbitration). The success

probability of this attack denoted by P
(GA2)
ID

(S(i1, . . . , ik)) is defined

as

P
(GA2)
ID

(S(i1, . . . , ik)) :=
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max
eS(i1,...,ik)

max
(m,σ)

Pr(R accepts (m,σ) ∧A rejects (m,σ) | eS(i1,...,ik)).

Then, we define P
(GA2)
ID

:= max
S(i1,...,ik)∈W

P
(GA2)
ID

(S(i1, . . . , ik)).

Denial attack with legal authenticated messages:

S(i1, . . . , ik) can observe a transmitted authenticated message

(m,σ) which is generated by Si ∈ S \ S(i1, . . . , ik), and then tries

to generate (m′, σ′) such that R accepts it and A rejects it (i.e.,

S(i1, . . . , ik) wins in the arbitration). The success probability of

this attack denoted by P
(GA2)
SD

(S(i1, . . . , ik), Si) is defined as

P
(GA2)
SD

(S(i1, . . . , ik), Si) := max
eS(i1,...,ik)

max
(m′,σ′)

max
(m,σ) ̸=(m′,σ′)

Pr(R accepts (m′, σ′) ∧A rejects (m′, σ′) | eS(i1,...,ik), (m,σ)).

Then, P
(GA2)
SD

is defined as

P
(GA2)
SD

:= max
S(i1,...,ik)∈W

max
Si∈S\S(i1,...,ik)

P
(GA2)
SD

(S(i1, . . . , ik), Si).

(3) After knowing that R has rejected an authenticated message,

S(i1, . . . , ik) tries to claim that it is valid. Let P
(GA2)
C :=

max(P
(GA2)
IC

, P
(GA2)
SC

), where P
(GA2)
IC

and P
(GA2)
SC

are given as fol-

lows.

Claim attack without legal authenticated messages:

S(i1, . . . , ik) tries to generate (m,σ) such that R rejects it and A

accepts it (i.e., S(i1, . . . , ik) wins in the arbitration). The success

probability of this attack denoted by P
(GA2)
IC

(S(i1, . . . , ik)) is defined

as

P
(GA2)
IC

(S(i1, . . . , ik)) :=

max
eS(i1,...,ik)

max
(m,σ)

Pr(R rejects (m,σ) ∧A accepts (m,σ) | eS(i1,...,ik)).

Then, we define P
(GA2)
IC

:= max
S(i1,...,ik)∈W

P
(GA2)
IC

(S(i1, . . . , ik)).

Claim attack with legal authenticated messages: S(i1, . . . , ik)

can observe a transmitted authenticated message (m,σ) which is

generated by Si ∈ S\S(i1, . . . , ik), and then tries to generate (m′, σ′)

such that R rejects it and A accepts it (i.e., S(i1, . . . , ik) wins in

the arbitration). The success probability of this attack denoted by
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P
(GA2)
SC

(S(i1, . . . , ik), Si) is defined as

P
(GA2)
SC

(S(i1, . . . , ik), Si) := max
eS(i1,...,ik)

max
(m′,σ′)

max
(m,σ) ̸=(m′,σ′)

Pr(R rejects (m′, σ′) ∧A accepts (m′, σ′) | eS(i1,...,ik), (m,σ)).

Then, P
(GA2)
SC

is defined as

P
(GA2)
SC

:= max
S(i1,...,ik)∈W

max
Si∈S\S(i1,...,ik)

P
(GA2)
SC

(S(i1, . . . , ik), Si).

(iii) Attacks by R: The malicious receiver R tries to trump up an

authenticated message from some honest sender. Let P
(GA2)
R :=

max(P
(GA2)
IR

, P
(GA2)
SR

), where P
(GA2)
IR

and P
(GA2)
SR

are given as follows.

Impersonation attack: R tries to generate a fraudulent authenticated

message (m,σ) such that A accepts it and someone of senders is detected

as the sender of (m,σ). The success probability of this attack denoted

by P
(GA2)
IR

is defined as

P
(GA2)
IR

:=max
eR

max
(m,σ)

Pr(A accepts (m,σ)∧

someone in S is detected as the sender of (m,σ) | eR).

Substitution attack: R can observe a transmitted authenticated mes-

sage (m,σ) which is generated by Si, and then tries to generate a fraudu-

lent one (m′, σ′) ̸= (m,σ) such that A accepts it and someone of senders

is detected as the sender of (m′, σ′). The success probability of this attack

denoted by P
(GA2)
SR

(Si) is defined as

P
(GA2)
SR

(Si) := max
eR

max
(m,σ)

max
(m′,σ′) ̸=(m,σ)

Pr(A accepts (m′, σ′)∧

someone in S is detected as the sender of (m′, σ′) | eR, (m,σ)).

Then, P
(GA2)
SR

is defined as P
(GA2)
SR

:= max
Si∈S

P
(GA2)
SR

(Si)

(iv) Collusion-attacks by S(i1, . . . , ik) and R: The malicious senders

S(i1, . . . , ik) and the receiver R collude together and try to trump up

an authenticated message from some honest sender. Let P
(GA2)
SR :=

max(P
(GA2)
ISR

, P
(GA2)
SSR

), where P
(GA2)
ISR

and P
(GA2)
SSR

are given as follows.

Impersonation attack: S(i1, . . . , ik) and R try to generate a fraudu-

lent authenticated message (m,σ) such that A accepts it and someone in

S \ S(i1, . . . , ik) is detected as the sender of it. The success probability

【140417-0-5】JMM_7_本文.indd   106 2014/04/28   10:16:30



100 T. Seito et al.
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S(i1, . . . , ik) tries to claim that it is valid. Let P
(GA2)
C :=

max(P
(GA2)
IC

, P
(GA2)
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), where P
(GA2)
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and P
(GA2)
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are given as fol-

lows.

Claim attack without legal authenticated messages:

S(i1, . . . , ik) tries to generate (m,σ) such that R rejects it and A

accepts it (i.e., S(i1, . . . , ik) wins in the arbitration). The success

probability of this attack denoted by P
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(S(i1, . . . , ik)) is defined

as
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(GA2)
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max
eS(i1,...,ik)

max
(m,σ)

Pr(R rejects (m,σ) ∧A accepts (m,σ) | eS(i1,...,ik)).

Then, we define P
(GA2)
IC

:= max
S(i1,...,ik)∈W

P
(GA2)
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(S(i1, . . . , ik)).

Claim attack with legal authenticated messages: S(i1, . . . , ik)

can observe a transmitted authenticated message (m,σ) which is

generated by Si ∈ S\S(i1, . . . , ik), and then tries to generate (m′, σ′)

such that R rejects it and A accepts it (i.e., S(i1, . . . , ik) wins in

the arbitration). The success probability of this attack denoted by
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P
(GA2)
SC

(S(i1, . . . , ik), Si) is defined as

P
(GA2)
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(S(i1, . . . , ik), Si) := max
eS(i1,...,ik)

max
(m′,σ′)

max
(m,σ) ̸=(m′,σ′)

Pr(R rejects (m′, σ′) ∧A accepts (m′, σ′) | eS(i1,...,ik), (m,σ)).

Then, P
(GA2)
SC

is defined as

P
(GA2)
SC

:= max
S(i1,...,ik)∈W

max
Si∈S\S(i1,...,ik)

P
(GA2)
SC

(S(i1, . . . , ik), Si).

(iii) Attacks by R: The malicious receiver R tries to trump up an

authenticated message from some honest sender. Let P
(GA2)
R :=

max(P
(GA2)
IR

, P
(GA2)
SR

), where P
(GA2)
IR

and P
(GA2)
SR

are given as follows.

Impersonation attack: R tries to generate a fraudulent authenticated

message (m,σ) such that A accepts it and someone of senders is detected

as the sender of (m,σ). The success probability of this attack denoted

by P
(GA2)
IR

is defined as

P
(GA2)
IR

:=max
eR

max
(m,σ)

Pr(A accepts (m,σ)∧

someone in S is detected as the sender of (m,σ) | eR).

Substitution attack: R can observe a transmitted authenticated mes-

sage (m,σ) which is generated by Si, and then tries to generate a fraudu-

lent one (m′, σ′) ̸= (m,σ) such that A accepts it and someone of senders

is detected as the sender of (m′, σ′). The success probability of this attack

denoted by P
(GA2)
SR

(Si) is defined as

P
(GA2)
SR

(Si) := max
eR

max
(m,σ)

max
(m′,σ′) ̸=(m,σ)

Pr(A accepts (m′, σ′)∧

someone in S is detected as the sender of (m′, σ′) | eR, (m,σ)).

Then, P
(GA2)
SR

is defined as P
(GA2)
SR

:= max
Si∈S

P
(GA2)
SR

(Si)

(iv) Collusion-attacks by S(i1, . . . , ik) and R: The malicious senders

S(i1, . . . , ik) and the receiver R collude together and try to trump up

an authenticated message from some honest sender. Let P
(GA2)
SR :=

max(P
(GA2)
ISR

, P
(GA2)
SSR

), where P
(GA2)
ISR

and P
(GA2)
SSR

are given as follows.

Impersonation attack: S(i1, . . . , ik) and R try to generate a fraudu-

lent authenticated message (m,σ) such that A accepts it and someone in

S \ S(i1, . . . , ik) is detected as the sender of it. The success probability
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of this attack denoted by P
(GA2)
ISR

(S(i1, . . . , ik)) is defined as

P
(GA2)
ISR

(S(i1, . . . , ik)) := max
eS(i1,...,ik)

max
eR

max
(m,σ)

Pr(A accepts (m,σ) ∧ someone in S \ S(i1, . . . , ik)
is detected as the sender of (m,σ) | eS(i1,...,ik), eR).

Then, P
(GA2)
ISR

is defined as P
(GA2)
ISR

:= max
S(i1,...,ik)∈W

P
(GA2)
ISR

(S(i1, . . . , ik)).

Substitution attack: S(i1, . . . , ik) and R can observe a transmitted

authenticated message (m,σ) which is generated by Si, and then try to

generate a fraudulent one (m′, σ′) ̸= (m,σ) such that A accepts it and

someone in S \ S(i1, . . . , ik) is detected as the sender of it. The success

probability of this attack denoted by P
(GA2)
SSR

is defined as

P
(GA2)
SSR

(S(i1, . . . , ik), Si) := max
eS(i1,...,ik)

max
eR

max
(m,σ)

max
(m′,σ′)̸=(mσ)

Pr(A accepts (m′, σ′) ∧ someone in S \ S(i1, . . . , ik)
is detected as the sender of (m′, σ′) | eS(i1,...,ik), eR, (m,σ)).

Then, P
(GA2)
SSR

is defined as

P
(GA2)
SSR

:= max
S(i1,...,ik)∈W

max
Si∈S\S(i1,...,ik)

P
(GA2)
SSR

(S(i1, . . . , ik), Si).

4. GA2-codes: Construction

In this section, we propose a construction of the one-time secure GA2-code based

on polynomials over finite fields. We show our construction method by combining

the A2-code and bijective mappings. This idea is similar to that of GA-codes in

[5]. In the following, the finite field with q elements is denoted by GF (q), where q

is a prime power and q ≥ n. In addition to this, the degree of xi in a multivariable

polynomial f(x1, . . . , xn) is denoted by degxi
f , and in particular, the degree of a

polynomial f(x) with one variable x is simply denoted by deg f .

1. Key Generation and Distribution by TI: Let M = GF (q) \ {0}. TI

chooses uniformly at random four polynomials fd(x) and gd(x) (d = 0, 1)

over GF (q) with one variable x, in which the degree of x is at most k + 1.

TI also chooses vR, vA ∈ GF (q) uniformly at random. Also, TI chooses

distinct numbers βi (i = 1, 2, . . . , n) from GF (q) uniformly at random

such that f0(βi) + f1(βi)vR ̸= f0(βj) + f1(βj)vR and f0(βi) + f1(βi)vA ̸=
f0(βj) + f1(βj)vA for any i, j with 1 ≤ i < j ≤ n. TI randomly generates

two bijective mappings π1 : GF (q) → S and π2 : GF (q) → S such that
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π1(f0(βi) + f1(βi)vR) = Si and π2(f0(βi) + f1(βi)vA) = Si for any i. TI

constructs a polynomial F (x, y, z) :=
∑1

i=0(fi(x)+ zgi(x))y
i. Next, TI gives

eSi := (βi, F (βi, y, z)), eR := (vR, F (x, vR, z)), eA := (vA, F (x, vA, z)), and

eG := (π1, π2) to Si, R, A, and G, respectively, via secure channels. After

distributing those keys, TI deletes his memory.

2. Authenticator Generation: For m ∈ M, Si generates an authenticator σ

by σ = (βi, h(y)), where h(y) := F (βi, y, z)|z=m.

3. Verification: R accepts (m,σ) as valid if and only if h(y)|y=vR
=

F (x, vR, z)|x=βi,z=m.

4. Tracing: When R wants to reveal the identity of the sender of (m,σ), R

first sends a request to G. If R’s request is approved by G, R transmits

F (βi, vR, 0) via a secure channel. Then, G reveals the sender’s identity by

Si = π1(F (βi, vR, 0)) and transmits this result back to R.

5. Arbitration.

(1) Cooperating with G, R ascribes an authenticated message (m,σ) to Si,

but Si denies it. Then, Si or R asks for arbitration.

- R wins if h(y)|y=vA = F (x, vA, z)|x=βi,z=m and Si =

π2(F (βi, vA, 0)).

- R loses otherwise.

(2) Si produces (m,σ) such that R will accept it. After having sent it to

R, Si attempts to deny having created (m,σ). Then, Si or R asks for

arbitration.

- Si wins if h(y)|y=vA ̸= F (x, vA, z)|x=βi,z=m.

- Si loses otherwise.

(3) After knowing that R has rejected (m,σ), Si claims that (m,σ) is valid.

Then, Si or R asks for arbitration.

- Si wins if h(y)|y=vA = F (x, vA, z)|x=βi,z=m.

- Si loses otherwise.

The following theorem shows that the above construction meets our security

definition of GA2-codes.

Theorem 1. The above construction results in (1/q, k, n)-one-time secure

GA2-code requiring the following memory sizes:

|Σ| = nq2, |ESi | = nq4 for i = 1, 2, . . . , n,

|ER| = |EA| = q2k+5, |EG| = (n!)2.
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of this attack denoted by P
(GA2)
ISR

(S(i1, . . . , ik)) is defined as
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Then, P
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is defined as P
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In this section, we propose a construction of the one-time secure GA2-code based

on polynomials over finite fields. We show our construction method by combining

the A2-code and bijective mappings. This idea is similar to that of GA-codes in

[5]. In the following, the finite field with q elements is denoted by GF (q), where q

is a prime power and q ≥ n. In addition to this, the degree of xi in a multivariable

polynomial f(x1, . . . , xn) is denoted by degxi
f , and in particular, the degree of a

polynomial f(x) with one variable x is simply denoted by deg f .

1. Key Generation and Distribution by TI: Let M = GF (q) \ {0}. TI

chooses uniformly at random four polynomials fd(x) and gd(x) (d = 0, 1)

over GF (q) with one variable x, in which the degree of x is at most k + 1.

TI also chooses vR, vA ∈ GF (q) uniformly at random. Also, TI chooses

distinct numbers βi (i = 1, 2, . . . , n) from GF (q) uniformly at random

such that f0(βi) + f1(βi)vR ̸= f0(βj) + f1(βj)vR and f0(βi) + f1(βi)vA ̸=
f0(βj) + f1(βj)vA for any i, j with 1 ≤ i < j ≤ n. TI randomly generates

two bijective mappings π1 : GF (q) → S and π2 : GF (q) → S such that
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π1(f0(βi) + f1(βi)vR) = Si and π2(f0(βi) + f1(βi)vA) = Si for any i. TI

constructs a polynomial F (x, y, z) :=
∑1

i=0(fi(x)+ zgi(x))y
i. Next, TI gives

eSi := (βi, F (βi, y, z)), eR := (vR, F (x, vR, z)), eA := (vA, F (x, vA, z)), and

eG := (π1, π2) to Si, R, A, and G, respectively, via secure channels. After

distributing those keys, TI deletes his memory.

2. Authenticator Generation: For m ∈ M, Si generates an authenticator σ

by σ = (βi, h(y)), where h(y) := F (βi, y, z)|z=m.

3. Verification: R accepts (m,σ) as valid if and only if h(y)|y=vR
=

F (x, vR, z)|x=βi,z=m.

4. Tracing: When R wants to reveal the identity of the sender of (m,σ), R

first sends a request to G. If R’s request is approved by G, R transmits

F (βi, vR, 0) via a secure channel. Then, G reveals the sender’s identity by

Si = π1(F (βi, vR, 0)) and transmits this result back to R.

5. Arbitration.

(1) Cooperating with G, R ascribes an authenticated message (m,σ) to Si,

but Si denies it. Then, Si or R asks for arbitration.

- R wins if h(y)|y=vA = F (x, vA, z)|x=βi,z=m and Si =

π2(F (βi, vA, 0)).

- R loses otherwise.

(2) Si produces (m,σ) such that R will accept it. After having sent it to

R, Si attempts to deny having created (m,σ). Then, Si or R asks for

arbitration.

- Si wins if h(y)|y=vA ̸= F (x, vA, z)|x=βi,z=m.

- Si loses otherwise.

(3) After knowing that R has rejected (m,σ), Si claims that (m,σ) is valid.

Then, Si or R asks for arbitration.

- Si wins if h(y)|y=vA = F (x, vA, z)|x=βi,z=m.

- Si loses otherwise.

The following theorem shows that the above construction meets our security

definition of GA2-codes.

Theorem 1. The above construction results in (1/q, k, n)-one-time secure

GA2-code requiring the following memory sizes:

|Σ| = nq2, |ESi | = nq4 for i = 1, 2, . . . , n,
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Proof. To complete the proof of Theorem 1, we show the following lemmas.

Lemma 1. For any f(y), g(y) ∈ GF (q)[y] such that deg f ≤ 1, deg g ≤ 1 and

g(y) ̸= f(y), the probability that g(v) = f(v) for randomly chosen v ∈ GF (q) is at

most 1/q.

Proof. The probability that g(v) = f(v) for randomly chosen v ∈ GF (q) is

|{v ∈ GF (q) | g(y) ̸= f(y) ∧ g(v) = f(v)}|
|{v ∈ GF (q)}|

=
|{v ∈ GF (q) | G(y) ̸= 0 ∧G(v) = 0 ∧ degG ≤ 1}|

|{v ∈ GF (q)}|

≤1

q
,

where G(y) := g(y)− f(y). This completes the proof. □

Lemma 2. In the above construction, it holds that

max(P
(GA2)
IO

, P
(GA2)
IS

, P
(GA2)
IR

, P
(GA2)
ISR

) ≤ 1

q
, and

max(P
(GA2)
SO

, P
(GA2)
SS

, P
(GA2)
SR

, P
(GA2)
SSR

) ≤ 1

q
.

Proof. We show P
(GA2)
SSR

≤ 1/q. To succeed in substitution attacks, the col-

luders consisting of S(i1, . . . , ik) and R try to create a fraudulent authenticated

message (m′, σ′) = (m′, βi, h̃(y)) which A will accept, after observing a valid

one (m,σ) = (m,βi0 , h(y)) with (m′, σ′) ̸= (m,σ), where βi, βi0 /∈ {βi1 , . . . , βik}
and σ is generated by Si0 /∈ S(i1, . . . , ik). We consider probability of guess-

ing F (βi, vA,m
′) from information that the colluders have. Then, we con-

sider two cases: (i) βi = βi0 and m′ ̸= m; (ii) βi ̸= βi0 . First, we con-

sider the case (i). F (βi, y,m
′) = (g0(βi) + g1(βi)y)(m

′ − m) + h(y) and the

colluders try to guess the polynomial g0(βi) + g1(βi)y from their information

F (βi1 , y, z), . . . , F (βik , y, z). However, degx F (x, y, z) ≤ k + 1 and the number of

information on F (x, y, z) which the colluders have is at most k. Therefore, they can-

not guess g0(βi)+ g1(βi)y with probability more than 1/q, and hence cannot guess

such F (βi, vA,m
′) with probability more than 1/q. Next, we consider the case (ii).

Then, the colluders try to guess the polynomial F (βi, y,m
′) from their k informa-

tion F (βi1 , y,m
′), . . . , F (βik , y,m

′) and observed information h(y) = F (βi0 , y,m).

However, degx F (x, y, z) ≤ k+1 and the number of information on F (x, y, z) which

the colluders have is at most k + 1. Therefore, they cannot guess F (βi, y,m
′) and

hence F (βi, vA,m
′) with probability more than 1/q. From the above discussion, it

follows that the success probability of substitution attacks is at most 1/q.
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In a manner similar to the above one, we can also prove that P
(GA2)
SO

, P
(GA2)
SS

,

and P
(GA2)
SR

are at most 1/q. In addition, it is shown that all kinds of impersonation

attacks are at most 1/q in a similar way. □

Lemma 3. In the above construction, P
(GA2)
D ≤ 1/q.

Proof. First, we show P
(GA2)
SD

≤ 1/q. To succeed in the denial attacks, any

set of colluders S(i1, . . . , ik) tries to produce a fraudulent authenticated message

(m′, σ′) = (m′, βi, h̃(y)) which R will accept, but A will not, after observing a valid

one (m,σ) = (m,βi0 , h(y)), where βi0 /∈ {βi1 , . . . , βik}. Namely, the colluders try

to find a polynomial h̃(y) that satisfies the following conditions:

h̃(y)|y=vR = F (βi, y,m
′)|y=vR (1)

h̃(y)|y=vA ̸= F (βi, y,m
′)|y=vA (2)

In particular, the second condition (2) implies that the colluders have to find

h̃(y) such that h̃(y) ̸= F (βi, y,m
′). Here, we note that the colluders can know

F (βi, y,m
′) since βi ∈ {βi1 , . . . , βik}. However, since the colluders do not know

R’s secret information vR, they cannot create h̃(y) such that h̃(y) ̸= F (βi, y,m
′)

and h̃(vR) = F (βi, vR,m
′) (i.e., condition (1)) with the probability more than 1/q,

even if they have the information h(y) = F (βi0 , y,m). This follows from Lemma 1

by applying f(y) := F (βi, y,m
′), g(y) := h̃(y) and v := vR. Therefore, the success

probability of the denial attack, P
(GA2)
SD

, is at most 1/q. Similarly, we can also

prove P
(GA2)
ID

≤ 1/q. Hence, P
(GA2)
D ≤ 1/q. □

Lemma 4. In the above construction, P
(GA2)
C ≤ 1/q.

Proof. Since vR and vA are constructed in a similar way, it is easy to show that

the statement is true by Lemma 3. □

Lemma 5. In the above construction, each of S(i1, . . . , ik), R, A and G obtains

no information on the identity of the sender of (m,σ) from (m,σ) itself and own

secret information. Furthermore, even if malicious senders S(i1, . . . , ik) collude

with the malicious receiver R, they cannot get any information on that. If (m,σ)

is valid, R and A can reveal the identity of the sender of (m,σ) by cooperating with

G with probability 1, respectively.

Proof. First of all, we prove that each of R, A and G cannot obtain any

information on the identity of the sender of (m,σ) alone. Namely, we prove the

following:

(a) max
(m,σ)

max
eR

|Pr(Si | eR, (m,σ))− Pr(Si | eR)| = 0;
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Proof. To complete the proof of Theorem 1, we show the following lemmas.

Lemma 1. For any f(y), g(y) ∈ GF (q)[y] such that deg f ≤ 1, deg g ≤ 1 and

g(y) ̸= f(y), the probability that g(v) = f(v) for randomly chosen v ∈ GF (q) is at

most 1/q.

Proof. The probability that g(v) = f(v) for randomly chosen v ∈ GF (q) is

|{v ∈ GF (q) | g(y) ̸= f(y) ∧ g(v) = f(v)}|
|{v ∈ GF (q)}|

=
|{v ∈ GF (q) | G(y) ̸= 0 ∧G(v) = 0 ∧ degG ≤ 1}|

|{v ∈ GF (q)}|

≤1

q
,

where G(y) := g(y)− f(y). This completes the proof. □

Lemma 2. In the above construction, it holds that

max(P
(GA2)
IO

, P
(GA2)
IS

, P
(GA2)
IR

, P
(GA2)
ISR

) ≤ 1

q
, and

max(P
(GA2)
SO

, P
(GA2)
SS

, P
(GA2)
SR

, P
(GA2)
SSR

) ≤ 1

q
.

Proof. We show P
(GA2)
SSR

≤ 1/q. To succeed in substitution attacks, the col-

luders consisting of S(i1, . . . , ik) and R try to create a fraudulent authenticated

message (m′, σ′) = (m′, βi, h̃(y)) which A will accept, after observing a valid

one (m,σ) = (m,βi0 , h(y)) with (m′, σ′) ̸= (m,σ), where βi, βi0 /∈ {βi1 , . . . , βik}
and σ is generated by Si0 /∈ S(i1, . . . , ik). We consider probability of guess-

ing F (βi, vA,m
′) from information that the colluders have. Then, we con-

sider two cases: (i) βi = βi0 and m′ ̸= m; (ii) βi ̸= βi0 . First, we con-

sider the case (i). F (βi, y,m
′) = (g0(βi) + g1(βi)y)(m

′ − m) + h(y) and the

colluders try to guess the polynomial g0(βi) + g1(βi)y from their information

F (βi1 , y, z), . . . , F (βik , y, z). However, degx F (x, y, z) ≤ k + 1 and the number of

information on F (x, y, z) which the colluders have is at most k. Therefore, they can-

not guess g0(βi)+ g1(βi)y with probability more than 1/q, and hence cannot guess

such F (βi, vA,m
′) with probability more than 1/q. Next, we consider the case (ii).

Then, the colluders try to guess the polynomial F (βi, y,m
′) from their k informa-

tion F (βi1 , y,m
′), . . . , F (βik , y,m

′) and observed information h(y) = F (βi0 , y,m).

However, degx F (x, y, z) ≤ k+1 and the number of information on F (x, y, z) which

the colluders have is at most k + 1. Therefore, they cannot guess F (βi, y,m
′) and

hence F (βi, vA,m
′) with probability more than 1/q. From the above discussion, it

follows that the success probability of substitution attacks is at most 1/q.
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In a manner similar to the above one, we can also prove that P
(GA2)
SO

, P
(GA2)
SS

,

and P
(GA2)
SR

are at most 1/q. In addition, it is shown that all kinds of impersonation

attacks are at most 1/q in a similar way. □

Lemma 3. In the above construction, P
(GA2)
D ≤ 1/q.

Proof. First, we show P
(GA2)
SD

≤ 1/q. To succeed in the denial attacks, any

set of colluders S(i1, . . . , ik) tries to produce a fraudulent authenticated message

(m′, σ′) = (m′, βi, h̃(y)) which R will accept, but A will not, after observing a valid

one (m,σ) = (m,βi0 , h(y)), where βi0 /∈ {βi1 , . . . , βik}. Namely, the colluders try

to find a polynomial h̃(y) that satisfies the following conditions:

h̃(y)|y=vR = F (βi, y,m
′)|y=vR (1)

h̃(y)|y=vA ̸= F (βi, y,m
′)|y=vA (2)

In particular, the second condition (2) implies that the colluders have to find

h̃(y) such that h̃(y) ̸= F (βi, y,m
′). Here, we note that the colluders can know

F (βi, y,m
′) since βi ∈ {βi1 , . . . , βik}. However, since the colluders do not know

R’s secret information vR, they cannot create h̃(y) such that h̃(y) ̸= F (βi, y,m
′)

and h̃(vR) = F (βi, vR,m
′) (i.e., condition (1)) with the probability more than 1/q,

even if they have the information h(y) = F (βi0 , y,m). This follows from Lemma 1

by applying f(y) := F (βi, y,m
′), g(y) := h̃(y) and v := vR. Therefore, the success

probability of the denial attack, P
(GA2)
SD

, is at most 1/q. Similarly, we can also

prove P
(GA2)
ID

≤ 1/q. Hence, P
(GA2)
D ≤ 1/q. □

Lemma 4. In the above construction, P
(GA2)
C ≤ 1/q.

Proof. Since vR and vA are constructed in a similar way, it is easy to show that

the statement is true by Lemma 3. □

Lemma 5. In the above construction, each of S(i1, . . . , ik), R, A and G obtains

no information on the identity of the sender of (m,σ) from (m,σ) itself and own

secret information. Furthermore, even if malicious senders S(i1, . . . , ik) collude

with the malicious receiver R, they cannot get any information on that. If (m,σ)

is valid, R and A can reveal the identity of the sender of (m,σ) by cooperating with

G with probability 1, respectively.

Proof. First of all, we prove that each of R, A and G cannot obtain any

information on the identity of the sender of (m,σ) alone. Namely, we prove the

following:

(a) max
(m,σ)

max
eR

|Pr(Si | eR, (m,σ))− Pr(Si | eR)| = 0;
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(b) max
(m,σ)

max
eA

|Pr(Si | eA, (m,σ))− Pr(Si | eA)| = 0; and

(c) max
(m,σ)

max
eG

|Pr(Si | eG, (m,σ))− Pr(Si | eG)| = 0.

First, we prove (a). Since the receiver R having eR does not know the mapping

π1, R cannot guess the sender of (m,σ) effectively more than Pr(Si | eR). Hence,

the equality (a) holds. In a similar manner, it is easy to see that the equality

(b) holds, since the arbiter A having eA does not know the mapping π2. On the

other hand, since G having eG = (π1, π2) knows neither f0(βi) + f1(βi)vR nor

f0(βi) + f1(βi)vA, G cannot guess the sender of (m,σ) with probability effectively

more than Pr(Si | eG). Hence, the equality (c) holds.

Then, we prove that no information on the identity of the sender of (m,σ) is

leaked from (m,σ) against the following adversaries:

(d) any set of colluders S(i1, . . . , ik), namely,

max
(m,σ)

max
eS(i1,...,ik)

∣∣Pr(Si | eS(i1,...,ik), (m,σ))− Pr(Si | eS(i1,...,ik))
∣∣ = 0; and

(e) any collusion between S(i1, . . . , ik) and R, namely,

max
(m,σ)

max
eS(i1,...,ik)

max
eR

∣∣Pr(Si | eS(i1,...,ik), eR, (m,σ))− Pr(Si | eS(i1,...,ik), eR)
∣∣ = 0.

We next prove (d). Since S(i1, . . . , ik) knows neither π1 nor π2, they cannot

guess the sender of (m,σ) effectively more than Pr(Si | eS(i1,...,ik)), which implies

that (d) holds. Similarly, it is easy to see that (e) holds.

Finally, it is obvious from the construction that each of R and A can respectively

identify the sender of (m,σ) by cooperating with G with probability 1, if (m,σ) is

valid. □

Proof of Theorem 1. From Lemmas 2-5, it follows that our construction is a

( 1q , k, n)-one-time secure GA2-code. Furthermore, it is straightforward to evalu-

ate memory sizes required in the construction. □

5. Extension of GA2-codes: GA3-codes

In the GA2-code, it is assumed that the arbiter is always trusted. Here, we

remove this assumption and call this GA3-code, since this model can be regarded

as extension of GA2-codes and has properties similar to those of A3-codes.

Our model of GA3-codes is the same as that of GA2-codes (see Definition 5).

The difference between GA2-codes and GA3-codes lies in security definitions and

the security definition of GA3-codes is slightly stronger than that of GA2-codes. In

the model of GA3-codes, we assume that the arbiter honestly gives a judgment on

the case of a dispute based on the arbitration rule by using his secret key, however,

that the arbiter may perform impersonation or substitution attacks in cooperation
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with some malicious entities. We define the security definition of GA3-codes based

on the idea in [7]. However, in our model, we do not consider the case that the

arbiter A colludes with the receiver R. The reason is that A and R can always

find an authenticated message which will be accepted by their keys eA and eR,

since they have unbounded computational powers, which means that any colluding

group including A and R will always win in the arbitration. Therefore, in this sense

we consider that it is meaningless to consider the case (for example, see [4] for the

similar discussion).

We formally provide the security definition of GA3-codes as follows.

Definition 7 (Security of GA3-code). Let Π be a (p, k, n)-one-time se-

cure GA2-code. The scheme Π is said to be a (p, k, n)-one-time secure GA3-code if

the following conditions are satisfied.

1) No information on the identity of the sender of (m,σ) is leaked from (m,σ)

against collusion between arbitrary malicious senders S(i1, . . . , ik) and the

malicious arbiter A. Namely, for any S(i1, . . . , ik) ∈ W and Si ∈ S \
S(i1, . . . , ik), we have

max
(m,σ)

max
eS(i1,...,ik)

max
eA

∣∣Pr(Si | eS(i1,...,ik), eA, (m,σ))− Pr(Si | eS(i1,...,ik), eA)
∣∣ = 0.

The above equation means that, after distributing secret-keys eS(i1,...,ik) and

eA, S(i1, . . . , ik) and A obtain no information on the identity of the sender

from arbitrary (m,σ), where σ is taken such that σ = GSign(eSi ,m) for eSi

and m.

2) All of the success probabilities of attacks, P
(GA3)
A and P

(GA3)
SA , are at most p,

where P
(GA3)
A and P

(GA3)
SA are defined as follows.

(i) Attacks by A: The malicious arbiter A tries to trump up an

authenticated message from some honest sender. Let P
(GA3)
A :=

max(P
(GA3)
IA

, P
(GA3)
SA

), where P
(GA3)
IA

and P
(GA3)
SA

are given as follows.

Impersonation attack: A tries to generate a fraudulent authenticated

message (m,σ) such that R accepts it and someone of senders is detected

as the sender of (m,σ). The success probability of this attack denoted

by P
(GA3)
IA

is defined as

P
(GA3)
IA

:= max
eA

max
(m,σ)

Pr(R accepts (m,σ)∧

someone in S is detected as the sender of (m,σ) | eA).

Substitution attack: A can observe a transmitted authenticated mes-

sage (m,σ) which is generated by Si, and then tries to generate a fraudu-

【140417-0-5】JMM_7_本文.indd   112 2014/04/28   10:16:35



106 T. Seito et al.

(b) max
(m,σ)

max
eA

|Pr(Si | eA, (m,σ))− Pr(Si | eA)| = 0; and

(c) max
(m,σ)

max
eG

|Pr(Si | eG, (m,σ))− Pr(Si | eG)| = 0.

First, we prove (a). Since the receiver R having eR does not know the mapping

π1, R cannot guess the sender of (m,σ) effectively more than Pr(Si | eR). Hence,

the equality (a) holds. In a similar manner, it is easy to see that the equality

(b) holds, since the arbiter A having eA does not know the mapping π2. On the

other hand, since G having eG = (π1, π2) knows neither f0(βi) + f1(βi)vR nor

f0(βi) + f1(βi)vA, G cannot guess the sender of (m,σ) with probability effectively

more than Pr(Si | eG). Hence, the equality (c) holds.

Then, we prove that no information on the identity of the sender of (m,σ) is

leaked from (m,σ) against the following adversaries:

(d) any set of colluders S(i1, . . . , ik), namely,

max
(m,σ)

max
eS(i1,...,ik)

∣∣Pr(Si | eS(i1,...,ik), (m,σ))− Pr(Si | eS(i1,...,ik))
∣∣ = 0; and

(e) any collusion between S(i1, . . . , ik) and R, namely,

max
(m,σ)

max
eS(i1,...,ik)

max
eR

∣∣Pr(Si | eS(i1,...,ik), eR, (m,σ))− Pr(Si | eS(i1,...,ik), eR)
∣∣ = 0.

We next prove (d). Since S(i1, . . . , ik) knows neither π1 nor π2, they cannot

guess the sender of (m,σ) effectively more than Pr(Si | eS(i1,...,ik)), which implies

that (d) holds. Similarly, it is easy to see that (e) holds.

Finally, it is obvious from the construction that each of R and A can respectively

identify the sender of (m,σ) by cooperating with G with probability 1, if (m,σ) is

valid. □

Proof of Theorem 1. From Lemmas 2-5, it follows that our construction is a

( 1q , k, n)-one-time secure GA2-code. Furthermore, it is straightforward to evalu-

ate memory sizes required in the construction. □

5. Extension of GA2-codes: GA3-codes

In the GA2-code, it is assumed that the arbiter is always trusted. Here, we

remove this assumption and call this GA3-code, since this model can be regarded

as extension of GA2-codes and has properties similar to those of A3-codes.

Our model of GA3-codes is the same as that of GA2-codes (see Definition 5).

The difference between GA2-codes and GA3-codes lies in security definitions and

the security definition of GA3-codes is slightly stronger than that of GA2-codes. In

the model of GA3-codes, we assume that the arbiter honestly gives a judgment on

the case of a dispute based on the arbitration rule by using his secret key, however,

that the arbiter may perform impersonation or substitution attacks in cooperation
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with some malicious entities. We define the security definition of GA3-codes based

on the idea in [7]. However, in our model, we do not consider the case that the

arbiter A colludes with the receiver R. The reason is that A and R can always

find an authenticated message which will be accepted by their keys eA and eR,

since they have unbounded computational powers, which means that any colluding

group including A and R will always win in the arbitration. Therefore, in this sense

we consider that it is meaningless to consider the case (for example, see [4] for the

similar discussion).

We formally provide the security definition of GA3-codes as follows.

Definition 7 (Security of GA3-code). Let Π be a (p, k, n)-one-time se-

cure GA2-code. The scheme Π is said to be a (p, k, n)-one-time secure GA3-code if

the following conditions are satisfied.

1) No information on the identity of the sender of (m,σ) is leaked from (m,σ)

against collusion between arbitrary malicious senders S(i1, . . . , ik) and the

malicious arbiter A. Namely, for any S(i1, . . . , ik) ∈ W and Si ∈ S \
S(i1, . . . , ik), we have

max
(m,σ)

max
eS(i1,...,ik)

max
eA

∣∣Pr(Si | eS(i1,...,ik), eA, (m,σ))− Pr(Si | eS(i1,...,ik), eA)
∣∣ = 0.

The above equation means that, after distributing secret-keys eS(i1,...,ik) and

eA, S(i1, . . . , ik) and A obtain no information on the identity of the sender

from arbitrary (m,σ), where σ is taken such that σ = GSign(eSi ,m) for eSi

and m.

2) All of the success probabilities of attacks, P
(GA3)
A and P

(GA3)
SA , are at most p,

where P
(GA3)
A and P

(GA3)
SA are defined as follows.

(i) Attacks by A: The malicious arbiter A tries to trump up an

authenticated message from some honest sender. Let P
(GA3)
A :=

max(P
(GA3)
IA

, P
(GA3)
SA

), where P
(GA3)
IA

and P
(GA3)
SA

are given as follows.

Impersonation attack: A tries to generate a fraudulent authenticated

message (m,σ) such that R accepts it and someone of senders is detected

as the sender of (m,σ). The success probability of this attack denoted

by P
(GA3)
IA

is defined as

P
(GA3)
IA

:= max
eA

max
(m,σ)

Pr(R accepts (m,σ)∧

someone in S is detected as the sender of (m,σ) | eA).

Substitution attack: A can observe a transmitted authenticated mes-

sage (m,σ) which is generated by Si, and then tries to generate a fraudu-
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lent one (m′, σ′) ̸= (m,σ) such that R accepts it and someone of senders

is detected as the sender of (m′, σ′). The success probability of this attack

denoted by P
(GA3)
SA

(Si) is defined as

P
(GA3)
SA

(Si) := max
eA

max
(m,σ)

max
(m′,σ′) ̸=(m,σ)

Pr(R accepts (m′, σ′)∧

someone in S is detected as the sender of (m′, σ′) | eA, (m,σ)).

Then, P
(GA3)
SA

is defined as P
(GA3)
SA

:= max
Si∈S

P
(GA3)
SA

(Si).

(ii) Collusion-attack by S(i1, . . . , ik) and A: The malicious senders

S(i1, . . . , ik) and the arbiter A collude together and try to trump up

an authenticated message from some honest sender. Let P
(GA3)
SA :=

max(P
(GA3)
ISA

, P
(GA3)
SSA

), where P
(GA3)
ISA

and P
(GA3)
SSA

are given as follows.

Impersonation attack: S(i1, . . . , ik) and A try to generate a fraudu-

lent authenticated message (m,σ) such that R accepts it and someone in

S \ S(i1, . . . , ik) is detected as the sender of it. The success probability

of this attack denoted by P
(GA3)
ISA

(S(i1, . . . , ik)) is defined as

P
(GA3)
ISA

(S(i1, . . . , ik)) := max
eS(i1,...,ik)

max
eA

max
(m,σ)

Pr(R accepts (m,σ) ∧ someone in S \ S(i1, . . . , ik)
is detected as the sender of (m,σ) | eS(i1,...,ik), eA).

Then, P
(GA3)
ISA

is defined as P
(GA3)
ISA

:= max
S(i1,...,ik)∈W

P
(GA3)
ISA

(S(i1, . . . , ik)).

Substitution attack: S(i1, . . . , ik) and A can observe a transmitted

authenticated message (m,σ) which is generated by Si, and then try to

generate a fraudulent one (m′, σ′) ̸= (m,σ) such that R accepts it and

someone in S \ S(i1, . . . , ik) is detected as the sender of it. The success

probability of this attack denoted by P
(GA3)
SSA

is defined as

P
(GA3)
SSA

(S(i1, . . . , ik), Si) := max
eS(i1,...,ik)

max
eA

max
(m,σ)

max
(m′,σ′)̸=(m,σ)

Pr(R accepts (m′, σ′) ∧ someone in S \ S(i1, . . . , ik)
is detected as the sender of (m′, σ′) | eS(i1,...,ik), eA, (m,σ)).

Then, P
(GA3)
SSA

is defined as

P
(GA3)
SSA

:= max
S(i1,...,ik)∈W

max
Si∈S\S(i1,...,ik)

P
(GA3)
SSA

(S(i1, . . . , ik), Si).
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We next consider a construction of the GA3-code. Interestingly, the construc-

tion proposed in the previous section meets the security definition of the GA3-code.

Theorem 2. The construction proposed in Section 4 results in a ( 1q , k, n)-

one-time secure GA3-code.

Proof. What remains to be shown is that the construction satisfies that P
(GA3)
A

and P
(GA3)
SA are at most 1/q and the collusion between malicious senders and the

malicious arbiter cannot get any information on the identity of the sender of (m,σ)

from (m,σ) itself and their own information. We note that the arbiter’s key eA and

the receiver’s key eR are generated in a similar way. Therefore, it is easy to see that

P
(GA3)
A = P

(GA3)
R and P

(GA3)
SA = P

(GA3)
SR by Definition 7. In addition to this, by

Definition 7, the fact that R cannot obtain any information on the identity of the

sender of (m,σ) implies the fact that A cannot also get any information on that.

Thus, from Theorem 1, it follows that P
(GA3)
A and P

(GA3)
SA are at most 1/q and

max
(m,σ)

max
eS(i1,...,ik)

max
eA

∣∣Pr(Si | eS(i1,...,ik), eA, (m,σ))− Pr(Si | eS(i1,...,ik), eA)
∣∣ = 0.

□
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lent one (m′, σ′) ̸= (m,σ) such that R accepts it and someone of senders

is detected as the sender of (m′, σ′). The success probability of this attack

denoted by P
(GA3)
SA

(Si) is defined as

P
(GA3)
SA

(Si) := max
eA

max
(m,σ)

max
(m′,σ′) ̸=(m,σ)

Pr(R accepts (m′, σ′)∧

someone in S is detected as the sender of (m′, σ′) | eA, (m,σ)).

Then, P
(GA3)
SA

is defined as P
(GA3)
SA

:= max
Si∈S

P
(GA3)
SA

(Si).
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S(i1, . . . , ik) and the arbiter A collude together and try to trump up
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(GA3)
SA :=

max(P
(GA3)
ISA

, P
(GA3)
SSA

), where P
(GA3)
ISA

and P
(GA3)
SSA

are given as follows.
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S \ S(i1, . . . , ik) is detected as the sender of it. The success probability

of this attack denoted by P
(GA3)
ISA

(S(i1, . . . , ik)) is defined as

P
(GA3)
ISA

(S(i1, . . . , ik)) := max
eS(i1,...,ik)

max
eA

max
(m,σ)

Pr(R accepts (m,σ) ∧ someone in S \ S(i1, . . . , ik)
is detected as the sender of (m,σ) | eS(i1,...,ik), eA).

Then, P
(GA3)
ISA

is defined as P
(GA3)
ISA

:= max
S(i1,...,ik)∈W

P
(GA3)
ISA

(S(i1, . . . , ik)).

Substitution attack: S(i1, . . . , ik) and A can observe a transmitted
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