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Distributions of numbers of runs and scans on higher order 

Markov directed acyclic graphs with generation 

Kiyoshi INOUE 

Abstract. In this paper, we introduce a class of a directed acyclic 
grapi1 on the assumption that the collection of random variables indexed l1v 

the veJ·tices has a higher order :\I:ukov dependence . .-\ method for the study 
of the cxuct distributions of the numbem of runs and scans on the higher order 
Markov directed acyclic graph is presented by the method of conditional prob
ability generating functions. We show that our theoretical results can easily be 
carried out through some computer algebra system,; and give some numerical 
results i'or run an cl scan statistics in order to demonstrate the feasibility of our 
theoretical results. As applications, two special reliability systems are consid
ered, which arc closely related to our general results. Finally, we address the 
parameter estimation problems in the distributions of runs and scans through 
the maximum lik0lihood estimation. 

Key words and phrases: Run, scan, overlapping enumeration scheme, graphical 
modeL directed acyclic graph, Markov property, reliability, parameter estimation, proba
bility generating function. 

1. Introduction 

The distribution theory of runs and scans has been successfully developed by 
many authors. Several generalizations of the run and scan statistics can be found 
in the statisticalliteratmc and have been nseful in many applications, such as reli-

thcory, statistical qnality control, molecular biology ami epidemiology (sec 
Feller [8], Ebneshahrashoob and Sobel [7], Fu and Koutras [9], Fu nad Lou [10], 
Kontras and Alexandrou [17], Balakrishnan and Koutras [4], Glaz: and Balakrish
nan ·11], Glaz d al. '12]. [13]. In recent years, coHsiderable attention b paid 
to the theory of runs and scans in the graphical models. Especially, the theory 
and applications in directed acyclic graphs (DAG's) have been of great interest to 
researchers in a wide range of subjects (sec Aki . [2], Inouc and Aki :14], [16] 
and Jonczy aEd Haenni '181). 

In this paper, we introduce a higher order Markov diTected acyclic gmph with 

genemtion (DAG with generation) and present a method for deriving the exact 
distribution::; of the numbers of ruEs and scans on the DAG with generation by ex

tensive use of the method of conditional probability generating functions (p.g.f. 's). 
In Section 2, we introduce the concept of the m-th order Markov DAG with 

generation. \Ve 21lso introduce all necessary definitions and notations that will be 
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used remaining sections. In Section 3, we give '' general result for deri viug the 

exact distributions of runs and scans on the DAG with generation by extending 

the method of conditional p.g.f.'s. Our method presented in the pilpcr will provide 
a feasible algorithm for the distributions of runs cmd sc<cms. Our model i:-; closely 

related to some interesting reliability systems called consccutivc-k-out-of-n:F and 
k-within-consccurivc-u·-ont-of-n:F (sec Aki and Hinmo [3]. Inoue and Aki [15]. [16], 
Chao et al. [5] and Chung et al. ~6]). In Section 4, some applications to practical 
problems in the reliability theory are given in order to show our theoretical results, 

which illustrate the potential use of run and scan statistics. In Sectiou 5, we address 
the parameter estimation in the distributions of runs and scans. 

2. Definitions and notations 

According to Lauritzen [19] and Ripley [21], we shall use some basic notations 
in graphical models. Let G = , E) be a directed acyclic graph, which is often 

abbreviated as DAG, where V is a finite set of vertices and the set of edges E is 
a subset of the set Y x V of ordered pairs of distinct vertices. The edges are all 

directed. Here, an edge v) E E is directed if tic E. The condition of acyclic 

means that there does not exist a sequence of vertices v1, ... , Vn such that (v1, v2), 

(v2, V::J) .... ,(vn.1JJ) arc edges in E. 
·we \Vill define the din;cted ac~cclic graph with generation (see Inoue and Aki 

[16]). 

DHL'HTIO:\ l. (Directed acyclic graph with generation) 

The dirrcted acyclic graph will be called a directed acyclic graph with generation 

u 
( i) for given positive h 1 , ... ,hn, there e:rists a sequence of sets 

~7 (l),V(2) .... ,V(g) ofthe veTtices su.ch as V(i) = {v1(i), ... ,vhJi)}, L = 1,2, ... ,g 

and V= uf= 1 , {con.cention: ·v(i) = 0 and h; = 0 fori::::; 0), 
(ii) (u,v) tic E, every u E V(i), v E :V(j), i 2: j, i,j = 1,2 . ... ,g, 
(iii) ( v, u) tic E, for every u E V( i), v E V (j). i - j 2: 2, i, j = 1, 2, ... ,g. 

Fori = 1, 2, ... , g, each set F( i) is called i-th generation. 

Suppose that we have a collection of {0, 1 }-valued random variables { Xv, v E 1/} 
(we sa.y success aud failure for the outcomes ., 1" and ., 0", respectively). Let X (n) = 

(Xu, (n), ... , Xvhn (n)) for n = 1, 2, ... , g and let E(d) = {0, l}d ford= 1, 2, ... , . 
\!Ve will define a higher order Markov directed acyclic graph with generation. 

DEFI:i'ITIO:i' 2. (the m-th order Markov directed acyclic graph with genera

tion) 
Thr collection of random variables {X ( n), n = L 2, . . . . will be called a homo-

geneous m-th order Markov directed acyclic graph with generation if 
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(i) there cJ:ists the initial distr-ibution at first geneTation P(X(1) = e(l)) = p(e(l)), 
e(l) E E(hr) 

every sequence = (e1 , ... , ehi (i)) E E(hi), i = 2, ... , g, tlurr: exists the 

conditional probability which satisfies the following condition: 

for every i = 2, 3, ... , g, if i :::; m, then 

p (i) = f(i) I X(1) = c(l), ... , X(i- 1) = - 1)) = p I e(l), .... e(i- 1)). 

for every i = 2, 3, ... , g, if i > rn, then 

P i)=e(i)IX(1)= .... ,X(i~-l)=e(i-1)) 

= P (X(i) = e(ij I X(i- m)= e(i- m), ... , X(i- 1) = e(i- 1)) 

= p (e(i) I e(i- m), ... , e(i- 1)). 

The distrihutions of the numbers of runs and scans arc inyestigatecl based on the 
overlapping enumeration scheme (Type III enumeration scheme). We enumerate 
the number of overlapping success runs of length k in the sense of Ling's [20] 
counting and enumerate the number of overlapping windmyc; of length u; containiug 
at least k successes each. observed on the DAG ·with generation (sec Iuuue and Aki 
[16]). It is evident that the scan statistics reduce to the run statistics in the special 
case when w = k. 

To make lhe definition of overlapping enumeration scheme transparent to the 
reader. we illustrate how to enumerate the number of overlapping succc~s nms and 
the number of overlapping scans on the DAG with generation by using Figure 1. 

The first generation 

The second generation 

The third generation 

The fourth generation 

The fifth generation 

Fig. 1. An example to illustrate overlapping enumeration scheme on a DAG with generation. 

Then we can find out the following 6 overlapping "•"-runs of length 3 on DAG 

with generation in Figure l: R1 = ( u2(l), v2 , 1.'2(3)), = (v2(l). v3(2), v2 

R3 = (2),v2(3),v2(4)), n1 = (v3(2),v2(:3),v2(4)), R5 = (v2(3),v2(4),v2(5)), and 
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R6 = ( v2(3), v2( 4), v,,(5)). For example, the case where ( w, k) = ( 4, 3) is considered. 
Then we can timl out tlw following 16 m·crlapping scans on DAG vvith gew:ration 

in Figure 1: S\ = (vl (1)' v2 (2), v2 (3), v2( 4))' s2 ( V2 (1 ), L'2 (2), vl (:3), V2 ( 4))' 
83 (112(1), v2(2). v2(3), 1'2(4)), 84 (t'2(1), vA2), v2(3). v3(4)), 
85 (t:z(l),v3 .v2(3),t'2(4)), 86 (1),v3 v2(3),L':l(4)), 
S7 (v2(2), vl(3), v2(4), v2(6)), Ss (v2(2), 111(3), u2(-±), v4(5)), 
8g ( 2)' V2 ( 3)' V2 ( 4). 1':_) ( 5))' 810 ( 2)' 7)2 • V2 ( 4)' V l ( 5))' 
Sn (v2(2). V:z , v2(4), u4(6)), S12 (v2(2), v2(J), v3(4), c4 (.5)), 
813 (u:,(2),v2(:3),v2(4),v2(5)), 814 = (v3(2),v2(3),v2(4),v3(5)), 815 = 
(v3(2), (3), V? !), and = (v3 , v2(3), cl(4), t'4(:S)). 

3. Distributions of runs and scans 

To begin with, we study the distribution of the number of the overlapping scans 
on the m-th order Markov DAG with generation. Let q)(w,k) (t) be the probability 
generating function (p.g.f.) of the distribution oft he number of overlapping scans. 
Let w* = max{w, m+ 1} and for n = 1, ... , g, let c/J~w,k) ([e]~t-w*+2 ; t) be the p.g.f. 
of the conditional distribution of the number of occurrences of the overlapping 
scans from the ( n. + 1 )- th generation to the g- th generation along the direction in 
{ Xv, v E V} given that at the generation V(n- w* + 2), ... , V(n) the outcomes 
c(n- u( + 2) E E(hn-- -'-2), .... e(n) E E(hn) are observed, where 

{ 
(e(i), ... , e(j)) if i :S: j, 

= c(j) if i > j 
(e(l), ... , e(j)) if i :S: 0 < j. 

Given that at the generation V(n -w* +2), ... , V(n+ 1) the outcomes v.•* + 2) E 

E(hn-w'+2), ... , + 1) E E(hn+d are observed, we will denote the number of 
occurrences of overlapping scans at the vertex v by N(u, [e]~!;v+2 ). 

THEOREJ\I 3. The p.g.f. w k)(t) and the conditional p.g.j. 's 

cjJ~,w,k)([eJ~:-w-+2 ;t), n = 1, ... ,g, satisfy the following recursive relation: 

c/J(w,kJ(t) = L p(e(l)) tL:cceV(l) N(,.r(l)) c/Jiw hi (e(1); t), 

c(l)EE(hl) 

dJ(w,k) 
.n p(e(n + 1) I n-m+l 

e(n+l)EE(h,+J) 

! (w,k) ([e]n . t\ = 1 9n n-w*+2' ) ' n =g. 

N(v,rer:- 1 

<::;g-L 

(1) 

(2) 

(3) 

Proof I3y considering the outcomes ar the first generation, we can obtain the 
first equation (1) immediately. Let Yr~w,k) be the number of occurrences of the 
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overlapping scans from the ( + 1)-th gcnereltion to the g-th generation along the 
direction in {Xv, u E V}. Then the proof of the equation (2) is completed by 
observing that 

([ ln ) ' Y w.k) I (· . ( ) e n_,,,.+ 2 :t = E_t n X n) = .... ,X n- w* + 2 = c(n ~ w* + 
= P(X(n + l) = c(n + l)jX(n) = e(n), ... ,X(n ~ <r* + 2) = e(n ~ w* + 2)) 

xE[tY,;'" k) IX(n + 1) = e(n + 1), ... , X(n ~ w* + 2) = e(n ~ w* + 2)] 

L p(e(n + l) ! [eJ~-m~l) II (tN(?· n-w+2)) 

e(n+l)EE(hn+l) vEV(n+l) 

[ 
y(w,k)_"' N( re]n+l ) I X(n + 1) = e(n + 1) ... xE t n L.....·vEF(n+l) v,~ n-w+2 . . . ' 

I···· X(n ~ w* + 2) = e(n ~ 

< IX(n + 1) = e(n + 1), .... X -- w* + 3) = e(n ~ tc* + :3)]. 

It is easy to see the last equation (3). The proof is completed. D 

REMARK 3.1. As alreod!J mentioned, d is clear that in the case uJ1rre 
u· = k. the rjJ(w,k) rcrl·uces to the p.g.f. of the number of overlapping success 

runs of length k. The evaluation of the p.g.j. can be read·ily performed throngh the 

recurrence relations (1), and (3) w = k. 

VVe illustrate how to derive the p.g.f. through the following example. 

Example 3.1 The number of overlapping runs of length 2 
Consider the case where w = k. It is clear that the p.g.f. reduces to the 

p.g.f. of the number of overlapping success runs of length k. The evaluation of the 
p.g.f. can be rendily performed through the recurrence relations (1). (2) and (3) 
by setting w = k. 

In the case where (w, k) = (2, 2), we derive the p.g.f. of the distribution of the 
number of overlapping runs of length 2 on DAG with generation in Fig 2. Since 
tht' first generation has thc vertex {v 1 (1)}. vve have from the equation (1) 

rpl 2,2l(t) = p((1))q?~2 2)((1); t) + p((O))<P~2 ' 1 ! ((0): t). 

Next. noting that the second generation has the vertices {v1 (2),v2(2)} and the 
third generation has the vertices { v1 } , \YC have 

I/Jl2 '2) ((1): t) = p((1, 1)1(1))t29~2 ' 2 l ((1), (1, 1); t) + p((1, O)l(l))trp~2 ' 2l((1), (1, 0); t) 

+p((O, 1)1(1 ((1), (0, l); t) + O)j(l))ljJ~2 ' 2 ) , (0, 0); t), 

((0); t) = p((L 1)1(0))9~2 ' 2 ) ((0), (1, 1); t) + p((1, O)j(O))cj>~2 ' 2 ) ((0), (L 0); t) 
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+p((O, 1)j(0))1>~~u) ((0), (0, 1); t) + p((O, O)j(0))1>~2 ' 2 )((0), (0, 0); t), 

From the ion (2), we have 

1>~2 ' 2)((1), (1, 1): t) 

= p((l)j(l). (1, l))t2 1;6~2 ' 2 )((1, 1), (1);t) + p((O)j(1), (L 1))1>12 '2J((L 1), (0); t), 

((1), (L 0); t) 

= p((1)j(1), (1, O))t1>~2 ' 2 ) ((L 0), (1); t) + p((O)j(1), (1, 0))1>~2 ' 2 ) ((1, 0), (0); t), 

((1), (0, 1); t) 

= p((1) , (0, 1)) ((0, 1), : t) + p((O)j(1), (0, 1))9'!12 '2)((0, l), (0); t), 

1>~2 ' 2 )((1), (0, 0): t) 
(? ?' '2 2) = p((1)j(l), (0, O))ol---) ((0, 0) : t) + p((O)I(1), (0, O))(i)\' ((0, 0), (0); t), 

<p~2 ' 2 )((0), (1, 1); t) 

= p((1)j(O), (1, 1))t2 1>~2 ' 2l((L 1), (1); t) + p((O)j(O), (1, 1))1>~2 ' 2 ) ((1, 1), (0): t), 

((0). (1. D); t) 

= p((1)j(O), (1, O))t<P~2 ' 2 ) ((1, 0), (1); t) + p((O)j(O), (1, 0))1>~2 ' 2 ) ((1, 0), (0); t), 

1>~2 ' 2 ) ((0), (0, 1); t) 

= p((l)I(D). (0, ((0, 1), \1); t) + p((O)j(O), (0,1))(6~2 ' 2 )((0, l). (0); t), 

1>~2 ' 2 ) ((0), (0, 0): t) 

= p((1)j(O), (0, 0))0~2 ' 2 ) ((0, 0), (1); t) + p((O)j(O), (0, 0))1>~2 ' 2 )((0, 0), (0); t). 

From the equation (3), we have 

1>~2 ' 2\(1, 1), (1);t) = (p~2 ' 2)((LO), (1);t) = 1>~2 ' 2 )((0, 1), (l);t) 

((0, 0). (1); t) = ((1, 1), (0); t) = rfl:~~ 2 ) ((1, 0), (0): t) 

= 1>12 ' 2)((0, 1), (0); t) = 1>12 ' 2) ((0, 0), (0); t) = 1, 

Conscquentlv, vHo obtain 

<P~2 · 2 l((1), (1, 1);t) = p((lJI(1), (1, 1))t2 + p((O)I(1), (1,1)), 

4>~2 • 2) ((1), (1, 0); t) = p((1)j(1), (1, O))t + p((O)j(1), (L 0)), 

((1), 1); t) = p((l)l(1), (CL 1))t + p((O)I , (0, 1)), 

1>~:2,l) ((1), (0, 0); t) = rp~2 ' 2 ) ((0), (0, 0); t) = 1, 

0~2 • 2\(0), (1, 1); t) = p((1)j(O), (1, 1))t2 + p((O)j(O), (L 1)), 

((0), (1. 0); t) = l)I(O), (1, 0) )t + p((O)I(OJ, (1, 0)). 
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((0), (0, 1): t) = p((1)j(O), (0, l))t + p((O)j(O), (0.1)). 

Then we have 

1;~2 · 2 l ((1); t) = p((1, 1)1(1))t2 [p((1)[(1), (1, 1))t2 + p((O)I(1), (1, 1))] 

+ p((L O)j(l))t [p((l)l(l), (L O))t + p((O)I(l), (L 0))] 

+ p((O, 1)1(1))l [p((l)l(l), (0, l))t + p((O)I(l), (CL l))] + p((O, O)j( 

9l2 '2l((O): t) = p((1, l)I(Dl) l)I(O), (L 1))t:J + p((O)I(O), (L l))j 

+ p((1, O)j(O)) [p((l)I(O), (1, O))t + p((O)I(O), (1, 0))] 

+ p((O, l)j(O)) [p((1)I(O), (0, 1))t + p((O)I(O), (0, 1))] + p((O, O)I(O)). 

Therefore. we have 

1;(2 ' 2l(t) = p((l)) [p((1, 1)1(1)){' [p((l)l(l), (1, l))t2 + p((O)I(l), (1, 1))] 

+p((l, O)j(l))t [p((l)l(l), (1, O))t + p((O)I(1), (1, 0))] + p((O, 1)l(l))t 

x [p((1)l(l), (0, 1))t + p((O)j(l), (0, 1))] + p((O, O)j(1))] 

(U)) [P( ( 1' 1) I ( 0)) :p( ( 1) I ( 0)) ( L 1) + p( ( 0) I ( ()). ( L 1)) J 

+p((1,0)I(O)) 1(0), (1, O))t + p((O)I(O), (1. 0))] + p((O, l)I(O)) 

X [p((l)I(O), (0, 1))t + p((O)j(O), (0, 1))] + p((O, O)j(O))]. 

vl(l) Q 
I I \ 

Fig. 2. Overlapt)ing nms on the ;\Imkov DAG with generation. 

R.EiviARK 3.2, Letting w = k = 1 in Theorem 3, we can obtain the distribution 
of the number of successes in the DA G with generation. In the special case when 
k = 1 and P(Xvj(i) = 1) =p(= 1-q), j = 1,2, ... , hi.· i = 1,2, ... ,g, it is easy to see 
that 1;(t) = q)N, where N iB the cardinu.lity of V. This i.s !.he usual b;norrrioJ 

distribution. 

RDIARK 3.3. When hi = 1 fori= 1, 2, ,,, g, the DAG with generat-ion reduces 
to a time homogeneous two-state IViarkov chain. Then the distributions of the 

number of overlapping success runs and scans are called Type III Markov binomial 

distribut'io n 
respectively 

order k and liT Markov binomial distribution of oTder 
Balakrishnan and Koutms 
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Example 3.2 : The number of overlapping success runs and scans 
'We consider the distributions of numbers of overlapping succcss'runs and scans 

on the second order l\ibrkov DAG with generation given in Figure 3, resp(•ctively. 
For i = l, 2, ... , 7, let S(i) be the number of successes in the i-th gsncration, that 
is, S(i) = X 1 (i) + X 2 (i) + · · · + Xh;(i) and F(i) be the number of failures in the 
i-th generation. that is. = h; -- S(i). For the second orcler Markuv DAG with 
generation giYcn in Figure 3, we assume that the conditional independence 

-l)) 
=IJP (i+'! = ej(i + 1) I X(i) = e(i). X(i- l) = e('i- l)), 

.i=1 

the initial probabilities 

P(Xu1 (1) = 0) = q, (4) 

and the transition probabilities 

P(Xuj(2) = OIXu1 (1) = 0) = q2 , j = 1,2, (5) 

(6) 
1 

P(X,j(2) = OIX,,1 (1) = 1) = q2 ' j = 1, 2, 

P (Xv;(i+l) = 0 I X(i) = e(i), X(i- 1) = e(i -1)) (7) 

{ 

q2 , ~ F ( i) . S ( i - 1) ~ F ( i 1), 

q~, S(i) < F(i), S(i- 1) ~ F(i- 1), 
- q~, S(i) ~ F(i) ... S(~ 1) < F(i- 1), 

q4 < . S(z- 1) < F(1- 1), 

for j = 1.2, ... ,hi+l, i = 1 2, .. .,6. 
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I Vl (6) 0 .... - .. --··-.-- -· --------- 0 V5(6) 
I , 

\ 
I \ 

7 7 \ ,- I \ I \ 
0 0 . -.- .. ------ 0 0 

1!1 (7) V2(7) 1!6(7) 1!7(7) 

Fig .. 3. An example of the DAG with generation. 

Then we can derive the p.g.f.'s of the numbers of overlapping runs and scans by 
using the algorithm presented in Theorem 3. In Figures 4 and 5, vVe have presented 
the graphs of the distributions of numbers of overlapping success runs of length 3 
and scans in the case where (w, k) = 2), respectively. 

0.05 

0 5 lO 15 20 40 60 

Fig. 4. The number of overlapping runs 

(q ~ 0.3) 

4. Application to reliability systems 

0 5 10 15 2(1 40 60 

Fig. 5. The number of overlapping scans 

(q = 0.5) 

Let N be the cardinality of V. Suppose that a reliability system with N compo

nents are allocated at the vertices V one by one. Then we will consider two special 
reliability systems, which arc closely related to the distributions of runs and scans. 
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One is called the consecutive-k-out-of-JV :F system where the system fails if and only 
if k consecutiw components fail. The other is called the k-within-consectdiue-w

md-of-N:F system where the system fails if and only if there is k failed components 
within the moving window of length w in the system (see Chao et aL [5], Aki and 
Hirano '3], Clwng et al. '6] and Fn and Lou [10]), Here, each component can only 
be in one of two states, either operating or failed, and so also the entire system, 
The reliability evaluation of the consecutive systems has become au important and 
integr<:1l part of the planning, de:;ign and operation of engineering :;ystems :;uch as 
r<tdar stations, fluid transportation networks and atomic power plants, Originally, 
the system cc:m;:;i,ting of N componentc; pL1ced in a line (labeled as first, second, 
and so on, up to N-th) is considered and the JV components in the system arc 
assumed to work independently of each other, Several extensions to the directed 
trees of the systems were subsequently stuclied by Aki [1]. , Inouc and Aki [14], 
[15], Furthermore, the systems on a l\Iarkov DAG with generation were discussed 
by Inouc and Aki [16]. 

In this section, we will study more complex consecutive systems on a m-th order 
l\Iarkov DAG with generation, However, the reliability of the system can be easily 
calculated by mDking n::;c of Theorem 3, Then we can obtain useful information for 
the more efficient study of these systems, >vhich provides clues to the maintenance, 
Assume that each vertex is a component of a system and can be in one of two 
state;,;, either operating or failed (\ve define a "success'' as a failed component) and 
so also the entire system on the DAG with generation, 

For simplicity, the reliability of the system is investigated under the assumption 
that all the components work according to a second order Markov chain, that is, 
the collection of random variables { Xv, v E V} is a second order Markov DAG vvith 
generation. vVe consider the reliability of the systems on the second order J\farkov 
DAG 'With generation given in Figure 3 nnder the assumptions , (5), (6) and 
(7), The probability q means the reliability value of each component. 

4.1. The reliabilities of consecutive systems 
The reliability of the whole system is given by 4/w,k) (0), which is a function of 

q. \Vc define the reliability R(q) of the s:.·stern by 

c(w,k) 

R(q) = L aiqi (8) 
i=O 

where p(w k) is the degree of the polynomial q;(w,k) (0) in q. 

vYe consider the reliability of consecntive-k-out-of-N:F system un the DAG with 

generation, which can be effectively evaluated by the aid of Theorem 3, 

Example 4.1 : The consecutive-k-out-of-N:F system 
In the case where k = 3, the consecutive system on the DAG with generation 
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in Figure 3 is considered. \Ne can obtain the reliability of tlw whole s~·stem. 
However, the expression of R( q) is omitted here since it is very lengthy. In Figure 
6, we give the graph of the reliability of the consecutive system. 

vYc treat the relia.lJilit.y of k-withiu-consecutiw-w-ont-of-N:F system on the 
DAG with generation, which can be easily obtained by the aid of Theorem 3. 

Example 4.2 : The k-within-·consecutive-v.·-out-of-N:F system 

In the case where (w, k) = (3, 2), the consecutive system on the DAG with 
generation given in Figure 3 is considered. The reliability R( q) of the whole system 
can be easily obtained making use of Theorem 3. Hm1cever, the expression of 
R( q) is omitted here since it is not represented in a simple form. 

Figure 6 is the graph of the reliability of the consecutive system. 

0.8 

0.6 

0.4 

0.2 

0~----~~--~~~----------------~ 
() 0.2 0.4 0.6 0.8 

Fig. 6. H.eliabilities of the two consecutive systems in Examples 4.1 and 4.2. 

5. Estimation problems 

vVe discuss the maximum likelihood estimation for the distribution of the num
ber of runs and scans, For simplicity, the parameter estimations are investigated 
on the second order ~farkov DAG with generation given in Figure 3 under the 
assumptions , (5), (G) and (7). We address the parameter estimation of q based 
on the number of run and scans. Let n 1, n2, ... , nt be independent observations 
of the number of runs and scans. vVe consider the statistical estimation of the 
pararnctcr q based on n 1, n2, ... , n i. We write 9(u·.li) ( t) = :Z:·i>O cd q )ti. we 

use the notation c; = [tiJ<P(w,kl(t) to extract the coefficient of fi in the probability 

generating function. 
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Then the likelihood function L(q) of q based on n 1 , Tl:z, .. , n 1 can be written as 

l 

L(q) = IT[tniJq}w,k)(t). (9) 
i=l 

The following arc examples illustrating how to obtain the ::viLE. 

Example .5.1 : Estimation based on runs 
\Ye investigate the estimation problem arising from the distribution of the nmn

ber of success runs of length 3. Table 1 is a simulated data set of the number of 
success runs of length 3 on the DAG with generation given in Figure 3 in the case 
where q = 0.4 and l = 10. 

Table 1: A simulated data set in the case where q = OA. 

1 2 3 4 ;J 6 7 8 9 10 
f--~-t-:-:::---~ 

48 22 37 46 21 38 27 27 35 40 

From the equation (9), we can obtain the likelihood function L(q) easily. How
ever, the likelihood function L( q) is omitted here since it is not represented in a 

form. In Figure 7, ·we give the graph oft he likclihoocl function based on the 
data in Tabk 1. 

3. X J0-!7 

\ 

2. X 10-l? \ 
\ 

1. X ]()-I? \ 

\ 
0 0.2 0 . ..+ 0.6 0.8 

q 

Fig. 7. The likelihood function L(q) based on the data in Table l. 

maximizing the likelihood function numerically, 1ve have the MLE !J 
0.3869. 
Example 5.2 : Estimation based on scans 

vVe address the estimation problem arising from the distribution of the number 

of scans in the case where (w, k) 2). Table 2 is a simulated data. set of the 
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number of scans on the DAG with generation given in Figure 3 in the case where 
(w, k) = (3, 2). q = 0.7 and l = 10. 

Table 2: A simulated data set in the case where q = 0. 7. 

I I~ 
2 ;) 4 :) 6 7 8 9 lO 

n, 1 23 :34 6 17 2 :32 1 4 

·working in the sanw fashion as we did in Example :3.1, from the equation 
vve can obtain the likelihood function L( q) immediately. However, the likelihood 
function l(q) is omitted here for the same reason as in Example 5.1. In Figure 8. 
we giw the graph of the likelihood function based on the data in Table 2. 

As already mentioned before, the ~fLE is obtained by maximizing the likelihood 
function. 

7. X 10-17 

6. X 10-!7 

5. X 10-l? 

4. X 10- 17 

3. X J()-J7 

2. X 10-! 7 

r 
I I 
I \ 
I 

0 ~------------~----~------~~-----
0 0.2 0.4 0.6 

q 

Fig. 8. The likelihood function L(q) based on the data in Table 2. 

Bv maxilni:oing the likelihood function numerically. we hcwc the \ILE q 
0.7145. 
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