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On calculations of exact distributions of waiting times of 

discrete patterns based on generating functions 

Sigeo Aki* 

Abstract. The rational generating fuuctiom; of the probabilities and 
cmnulative probabilities of the geometric distribution of order k are investi­
gated. All the roots of each denominator are rigoronsly proved to be simple 
if p fc + 1). It is also shown that the distrib11tion of the waiting time for 
(k1, k2)-c,·ents has llie 'similar propen.y. The results are applied to numeri­
cal calculations of probability and cumulative probability of the distribution0. 
Further, explicit expressions for the probability functions of the geometric dis­
tributions of order 2,3, and 4 are given by using partial fraction expansion of 
the g<-;ner<lting functions. IvioreoYer, as an example that the denominator of a 
rational generating funcr.ion has rnnltiple roots. the negative binomial distri­
bution of order 2 with parameter (r, p) are studied. Explicit expressions of the 
probability function and the cumulative distribution function are prm·ided. 
They are also u;;eful for numerical calculations. 

1. Introduction 

The discrete distribntion theory on runs and patterns in random sPquences 
with variou,; dcp(mdency, such as .1\Iarlmv, higher-order Markov, exchangeahle, or 
partially exchangeable models (for example, see llalakrishnan and KouLras [3], 
Inoue, Aki, Hirano[9], Aki[l], Aki and Hirano[2]). In the present paper, we focus 
on calculations of exact probabilities of the distributions based on the probability 
and cumulatiw probability generatiug fnnctions. 

For example, the next recurrence formula is useful for the calculation of the 
geometric distribution of order k, which is the distribution of the waiting time vllk 
for the first 1-mn of kin independent sequence of {0, 1}-valued random 
variables X 1• • ••• with X;= 1) = p = 1 -q. 

if 0 :S: X < k. 
if X= k, 
ifk+l:S:x:S: 
if X?: 2k + 1, 

'''here Gk(p: :r) = P(vll, = x). Usuallv. \Ve can obtain the probabilities or cumula-
tive probabilitic::; of the distribution using the aboYe formula very fast. However, 
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when the probability p of the occurrence of 1 is small an cl/ or k is large, it takes 
much time for the calculation of large x, such as the calculation of 90-percentile 
point of such a clistribntion. If we are interested in numericAl calculations even in 
such cases, WP can select another method, the partial fractiou expansion for rational 
generating functions. Fellcr[6j examined asymptotic evaluation of the probability 
distribution of the waiting time for the first 1-run of length k in independent bi­
nary trials. As the pnrtial fraction expansion of rational generating functions in 

the complex plane leads exact evalnation of the coefficients as well as their asymp­
totic eyaJuatioH, we can perfonn sufficiently exact numerical evaluation. By nsing 
the method, Shmuelli nnd Cohcn[l2] calculated probability functions of the geo­
metric distributions of order k and the negative binomial distributions of order k 

numerically. 
Fir:ot, in the present paper, 1ve shall calculate the probability function~ of the 

geometric distribution of order k after examining Feller's result on the roots of 
the denominator of the probability generating function. Further, we evaluate the 
cumulative probabilities of the distribution for some large Yc.tlues by applying the 
partial fraction expansion. \Vhen we use the partial fraction expansion for a ratio­
nal generating function. we need multiplicity of each root of the clenomim1tor. In 
Section 4 we give other examples of rational generating functions. In the examples, 
the multiplicity of each root of the denominators can be examined theoretically. 
The distributions are waiting tinws of so called ( k 1, k2 )-evf'nts. We shall prow that 
all the roots of the denominator of the probability generating function arc simple. 
The partial fraction expansion is very useful in numerical calculations. However, 
if all the roots of the dcnominMor of a rational generating function are obtained 
explicitly. we may be able to give an explicit expression of the probability function 

of the clistrihution. The denominators of the probability generating functions of 
the geometric distributions of orcler 2,3 and 4 have degree less than i), and hence 
all the roots can be written explicitly. We give explicit expressions of these distri­
butions in Section 5. In Section 6, we examine the negatiYe binomial distribution 
of order 2 with parameter (r, where r is an arbitrarily given positive integer, 
as an example that all the roots of the denominator of the probability generating 
function are explicitly and the mnltiplicity of the roots are exactly r. 

2. Partial fraction expansion 

Let cf.>(z) be the generating function of the sequence of numbers {an}, i.e., 
cf.>( z) = Lk akzk. Feller[6] proved the following useful proposition. 

Pn.OPOSITIOS 1. E!u.ppose that the genemtiru; function is of the for-m :) = 

~~~~, where U(z) and V(z) ar-e polynomials without common mats. Assume that 
the degr-ee of U ( z) is lower than that of V ( z), say m. Further-. assume that V ( z) = 0 
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ha/' distinct roots z1, z2, ... , ::;m. Then, an can be written us 

Pl P2 Pm 
an = ~n+l + ~n+l + ... + n+l' 

4 1 ""2 Zrn 

wlu:u Pk , fork '~-' l, 2, .... nL 

After proving the above proposition, Feller discussed approximation of an by 
using the only one root of V( z), which has the minimum absolute Yalue among the 
roots. 

However, the partial fraction expansion provides useful exact calculation of an 
by using all the roots of V(z) even in the case that F(z) has multiple roots. Here, we 
illtroduce the general result of the partial fraction expansion of rational generating 
functions. 

PROPOSITION 2. Suppose that the generating function is of the form CJ)(z) = 
n~~. wher-e [T( z) and V( z) are polynomials without common mats. Assume that 
the degree of ·) is lov:er than that . Assume that V(z) cun be written as 

z) at z = 

IS 

Consequently, the partiu.l fraction of())(z) is written as 

N 

<I>(z) = 2:: fi(z). 
i=l 

For a of the pror,osition. sec, for example, Conway[{. Flajolet and 
Sedgewick~7] (Theorem 1V.9), or Pemantle and vVilson[lO]. The coefficient a~} 
in the above expansion can be obtained by 

(i) a . 
-.J 

1 -J U(z) 
-:-::---.:-:- lim --.-. --( z -
(ki- .J)! z-+z; dzk,-J V(z) 

Here, v\'e obtain the coefficient of zn in the partial fraction expansion given in 
Proposition 2. expanding every term of f, , we have 
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we can further it as 

Therefore, the coefficient of ;:;n in the expansion of ci>(z) can be written as 

ki ' 
\.~ """'(-l)r (i) (r + n- l)\ ~.. 

0 L.-t ~' a_r r--l.-n 

i=l r=l n 2 i 

Since the partial fraction expansion for a rational generating function is an 
exact formula, we can obtain the sequence exactly by using the expansion if all the 
roots of the denominator are available. Generally, roots of algebraic equations of 
clegree morr than 4 do not have ;cm algchrrtic cxprPssion with a finite number of 
orwrations involving jnst the coefficients of the algebraic equationc;o Hence. we need 
repeated methods for getting all the roots until they satisfy sufficient precision. 

3. Probability and cumulative probability functions of the geomet­
ric distribution of order k 

The gem•n1ting functions of the probability and the cumulatiYe probability of 
the geometric distribution of order k is written as 

(t) = (1- pt)(pt)k 
rP 1 - t + pkqtk+l 

and 

These functions are writteiJ in Balakrishnan and Koutras[3]. Let us study the 
roots of the polynomial l t + pk which is a factor of the both denomiHators 
<l.bove. For ::;implicity. dividing the polynomial by the constant ~o that it.'i leading 
coefficient becomes l, we shall stndy the roots of the polynomial f(t) = tk+l_ct+c, 

where c = p}q. 

LEMMA 1 0 If 0 < p < 1 and p # k! 1 . then f ( t) = tk+ 1 et + c = 0 doe; not 

have a nmltiple root. 
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PROOF. Assume that the equation j(t) = U has a multiple root o.. Then, 
f'(a) = 0 holds. Since f'(t) = (k+1)tk -c and c > 0, it holds that cYk = k~l. Thus, 

there exists a nonnegative integer£ E {0, 1, 2, ... , k -1} such that n = \) k~l ei 2
;::' 

holds, where ~is the k-th root of k~l. f(a) = 0 implies that 

/ k;-c)k+l -2~f(k+l) ~ ·2TP \V k+f e"--k- - c V _k_.L_, -1 e'--r;c- + c = 0. 

dividing the both sides by c (> 0), we obtain 

Here, ei2 "e 1 implies 

k {ii;· c _i21f!. ·-.. -. . --. e k = 1. 
k-,1 k+l 

Further, since k ' 1 
k+l V > 0, 

f 

" must be a positive real number. Therefore, 

£ = 0. = 1 and k!l ~ = 1 hold. Consequently, \Ye obtain 

1 
(1 - p) 

c (k--;- l)k+l. 

Let us examine whether such a p exists between 0 and 1. \Vc set g(p) = pk(1- p). 
Since g'(p) = kpk- 1 (1- p)- , we see that g(p) takes its maximum g(~;! 1 ) = 

(k+~;k+, at p = k~l. Therefi)re, the value of p is only p = which satisfies 

l- k( . ) - _,.k Tl· . ·f· --1- k .()- h+l -0 d . !·· . ;::-P 1-p- (k-"-ll'·+'· ms,l Pri"+l'.f t -t -ct+c- oesnot lct"\e 
a multiple root. This completes the proof. D 

REMARK 1 In Felle(6] (p.236) it is proved that j( t) = tk+l- et -T- c = 0 does 
not have a multiple root if p < ,! 1 • Lemma 1 proves the statement not only for 

p E (0, ~,::r) but also for p E C~ 1 .1). When p = k!l, we see that the multiple 

root is ~ 

PROPOSITIOl\ 3. For 0 < p < 1, let q = 1- p. We denote by F(J:) the 
cum·ulative probability at :r; the geometr·ic distribution of ordt'r k, where k ·is a 

. Then, all the roots z;, z2 , ... , zk of the polynornial h(t) = 1- qt­
- · ·.- pk-lqtk are simple. Further, fori= 0., 1, 2 .... , k, there exist comple:r 
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num.bers po,pt,P2,···,Pk such that 

k 

L Pi 
F(:r) = ~+l' zx " 

i=O ' 

k 

wheTe z0 = 1, 1/(t) = (1- t)h(t) and for ·i = 0, 1, 2, ... , k, p; = v--;(z;). 

PROOF. From Remark 1 \Ve see that the only one root t = l of f(t) may possibly 
be a multiple root which is also a roue of the nun1crator of and 1/J( t). Dividing 
by (1- pt) the numerator and the denominator of <P(t) and t/J(t), we have 

(pt)k . (pt)k 
r/;(t) = h(t) and lf.:(t) = (1 _ t)h(t), where h(t) = 1- qt- pqt2- ... - pk-lqtk. 

Then. Lemma l implies th21t h(t) does not have a multiple root. Koting that 
h(1) = pk fc. 0, we see that (1- t)h(t) also does nut have a multiple root. Here, we 
shall use Proposition l. The generating function of the cumulative probabilities of 
the geometric distribution of order k, ·which is shifted so that the support begins 
with 0, is w1·itten as 

Let ::-1, z2, .... ::-,,, be the roots of the polynomial h(t). Setting zo 
0, 1, ... , k, we defiuc 

k -p 
Pi= lP(zi)' 

1 for i 

where = (1-t)h(t). Then, since the generating function meets the assumption 
uf Proposition 1. we obtain the following partial fraction exp::msion 

k 

L Pi <P(z) = ---
. (zi - z) 
2=0 

(!; 1 
---
-- 1- ~ i=O ;:.,z zi 

k :x: ( \n 
= t; Pi~ !_) 

The coefficient of zn of the generating function <P(z) is the cumulative probability 
at n. of the shifted geometric distribution of order k. Thf'rcfore, the cmnulative 
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probabilit\~ nt of the usual geometric distribution of order k is written as 

k 

"' Pi F(x) = L x-k+l' 
i=O zi 

vvhich completes the proof. 0 

EXAC\fl'LE 1. By using thP algorithm given in Propo~ition :3, we shall cal­

culate :c;uruP cumulative probabilities of rhe geometric distribution of order k 

using R, which is an open-source software environment for statistical comput­
ing and graphics [11]. In Appendix, we provide R source programs includ­
ing functions pgeometric(x, k, p), dgeometric(x, k, p), pgeo(x, k, p), 

dgeo(x, k, p). Here, pgeometric() and dgeometric() arc based on 
sition 3, and pgeo () and dgeo () are based on the recurrence relation 
in Section 1. vVe have calculated the cumulative probabilities of G 10 (0.:1) for 

X= 100, 1000, 10000, 100000, 1000000, 10000000. 
As R's reply to each command 

pgeometric(c(100,1000,10000,100000,1000000,10000000),10,0.3) 

and 

pgeo(c(100,1000,10000,100000,1000000,10000000),10,0.3) , 

the following same sequence 

[1] 0.0003778577 0.0040897915 0.0404594110 0.3385530590 
[5] 0.9839744984 1.0000000000 

is returuecl. However, the elapsed time of the calculation for x = 10000UUO 

by the function pgeo () was over 30 seconds whereas the elapsed time was zero in 
seconds by the function pgeometric () in my personal computer. In fact, R's reply 

to the commands 

system.time(pgeo(10000000,10,0.3)) [3] 

and 

system.time(pgeometric(10000000,10,0.3)) [3] 

are 36.92 and 0, respectively. 

4. \Vaiting time for the (k1 , k2 )-event 

In this section we shall give an example of distributions whose generating func­

tions of the probability and the cumulative probability are rational functions. More­

over, the numerators and the denominators of the functions do not have multiple 

roots. 
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Let k1 nncl k2 be greater than one. Let T be the waiting time in inde-

pendent {0, 1}-valued sequence for 1-run of length k 2 just after 0-run of length k1 

or more. The distribution ofT is the waiting time for the (k1 , k2 )-eveut (see Huang 
and Tsai[8j. Dafnis, A nt:ccmlakos. an cl Philippou[5~. and Stefanov and IV1anca~l3]). 

Let us dtTive the probability generating function rjl(t) ofT by using the method 

of conditional probability generating functioms. Let cj;0 (t) be the conditional prob­
ability generating function of the waiting time for the (k1 , k2 )-event horn starting 
with a time at which n (L to be precise~ a 0-run of length 1, is observed. Similarly, 
we define tlie conditional probabjlity generating function cj;1 (t) of the time 

for the (k1 , k2 )-event from starting with a time at which a 1 is observed just after 
0-run of length or more. Then, the following relations hold. 

\Ve shall soh·e the above equation::; for obtaining cj;(t). vVe can rewrite each equation 

as 

By deleting cj;1 (t) from the last two equations, and substituting the first equation, 
we obtain an Pquation ·which inclndes only (t). Solving the equation we hcwe 

multiph·ino -'1!:_ we obtain 
" b 1-pt' 

The roots of the denominator of ~.;'!(t) is the same as the roots of the polynomial 

f(t). = tkt+k2 - et+ c, where c = , 1 "''. p 'C.: lj 

PROPOSJT!ON 4. Let k1 and be ·integers than on.f. Then, all the 

roots of f(t) are simple. 

PROOF. By setting k + k2 , we can write f' = ktk-l r:. Suppose that 

the equation flt) = 0 has a multiple root n. Then, from J'(a) = 0, we :sec that 
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f and hence there exists an integer I! E {0, 1, 2 .... , k- 2} such that 

{{_ ') 

\· ' .. i~ a= ·· e k-1 
\ k 

holds. Since n is also a root of f(t), it holds that 

c k 

k 
C ~·)~t i 2?rP k If . 2-rr£ --. e~" e k 1 -c - 1 -e'k-1 +c=O. 
k ' k 

Dividing by c the both sides of the equation, we obtain 

Noting that ri27rf = 1, we see that 

and hence we have 1! = 0. Therefore. we obtain c = k" 1 • Here, we examine (k-1 )k 
whether some p E (0. 1) exists satisfying 

1 (kl + -1)kl+k2-1 

(kl + k2)kl+k2 

vVe set g(p) = p"'2 (l- for p E (0, 1). Then, g(p) attain::; it::; maximum value at 

P = , k+2k and the ma:'\:imum value is 
ti::I 2 

since k:1 > 1 and k2 > 1 hold. the next inequality holds 

and we see that such a p E (0. 1) satisfying the above equation clews not exist. This 
is a contradiction with tlH• assumption that f(t) has a multiple root. Finally, we 
shall prove the above Let a > 1 be a constant and let h ( x) = (;r + a -
1)"-'-a- 1 -r:'o0 . Since h' (x) = (1, log(x+a -1) )(r:+a -l)x+a-l- (1 +log > 0 
and h(l) = 0, > 0 holds for all x > 1. Thus, by setting :1: = k1 and a = k2 . 

we obtain the above inequality. This completes the proof. D 

EXAMPLE 2. By using the algorithm given in Proposition 4, we shall calculate 
some cumulative probabilities of the waiting time for (k1 • k2)-event using R. In 
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Table 1. Values of cumulative probabilities of the waiting time for 
(k1,k2)-event with k1 = k2 = 6. These values are calculated based on 
the partial fraction expansion of the generating function of cumulative 

of the distribution given in Proposition 4 . 

p X= 100 . . r c= 1000 X= l00(!CJ X= 100000 
0.1 I 0.00005 0.00053 0.00529 0.05175 
0.2 0.00149 0.016,16 0.15432 0.81323 
0.3 0.00761 0.08140 0.57581 0.99981 
0.1 0.01690 0.17256 0.8i5238 1.00000 
0.5 0.02155 0.21505 0.913:3:3 1.00000 
0.6 0.01690 0.17256 0.85238 1.00000 
0.7 0.00761 0.08140 0.57581 0.99981 
0.8 0.00149 0.016116 0.15432 0.81323 
0.9 0.00005 0.00053 0.00-529 0.0517!5 

Appendix, we provide R functions pk1k2 (x, k1, k2, p) and dk1k2 (x, k1, k2, 

p). Here, we have tabulated the cumulative probabilities of (6,6)-event for x = 
100,1000,10000 and 100000 with p = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9. Since 
k1 = k2 = 6. the cumulative probabilities are symmetric with respect to p about 

p = ~- Every rmv of the table has been calculated hy the following R command 

round(pk1k2(c(100,1000,10000,100000),6,6, p),digits=5) . 

5. Some explicit expressions of waiting times 

In the sections, \VC have seen that the approach from the partial frac-
tion expansion is very useful for nmnerical calculations of probabilities and cumu­

lative probabilities of waiLing time distributions. However, when the roots of the 
denominator of a rational generating function are written explicitly, we can obtain 

explicit expressions of the probabilities or cumulative probabilities. As examples 
of such ca0es, \Ve shall discuss expressions of the geometric dic;tributions of 
order 2, 3 a.nd 4. Though some combinatorial explicit expressions of probabilities of 
the distribution::, are known, explicit expressions without multinomial or binomial 

coefficients may be of interest. 

5.1. Geometric distribution of order 2 
Let us of the probability function of the geometric 

distribution of order 2. The generating function of the shifted geometric 

distribution of order 2 so that its :mpport begin;; with zero is written a;; 

p2 _P. 
1/J( C') = . = q 

~ 1 - qt - pqt2 ( Z1 - Z) ( Z:J - Z) ' 
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where z 1 and ~:? are the ruots of pqz2 + q:: - 1 = 0, that is, 

and 

The constant::; a and b rjJ( z) = 
a b p 

are u = ctnd 
::1 -: q 

b = -a. Then. we see that 

a b 
9(z)=--+--

zl- z Z2- z 

By extracting the cocffident of zn in the probability generating function, we see 
that the value of the probability function at n is 

0 1 a 1 u 
_n+l 
-] 

a 
...,.n+l · 
"'2 

Therefore, since the probability at n of the usual geometric distribution of order 
2 is the coefficient of zn- 2 in the above expansion, if X follows the geometric 
distribution of order 2, the probability function of X can be written as 

P(X= =p_{;§;-( 1 . - t "') 
qy4p+q (l /4v;~'~-.l...)"'-l (-l f4P+i_.l...)"-l 

2 V v"rJ 2v 2 y ]j2iJ 2v 

--;:=='=p=2 ===:;: { (' )4pq ~ q2 + q) x-l - ( -1)x ( j4pq: q2 - q) x-1} 
)4pq + q2 - -

p2' {(q+vf;p+4pq)·'-l (q-)~2+4pq)c-l}· 
J q2 + '±pq 2 \ 2 

Therefore. we have obtained the next proposition. 

PROPOSITION 5. f{ X follow8 the geometric distribution of order 2 with pa­
rameter p, the probability function can be written a/3 

P(X= 
p2 {(I]+ )q2 + 4pq J x-1 

j q2 + 4pq \ 2 J 
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for x = 2, 

EXAMPLE :3. In order to check the aboyc result numerically. 1vc luwe made 
the following R function dgeom2(x,p) based on Proposition 5. 

dgeom2<-function(x,p){ 
q<-1-p 

a<-sqrt(4*p*q+q-2) 
z1<-(a+q)/2 
z2<-(q-a)/2 
p~2/a*(z1-(x-1)-z2-(x-1))} 

To compare the values of probabilities of the geometric distribution of order 2 
based on dgeom2(x,p) with the values. calculated dgeo(x,k,p) based on the 
recurrence relation given in Sectiun 1, we have verifiPci R's replies to the commands 

round(dgeom2(1:20,0.7),digits=5) 
round(dgeo(1:20,2,0.7),digits=5) 

are the same as the following sequence 

[1] 0.00000 0.49000 0.14700 0.14700 
[7] 0.03175 0.02073 0.01289 0.00822 

[13] 0.00207 0.00131 0.00083 0.00052 
[19] 0.00013 0.00008 

0.07497 
0.00517 
0.00033 

Howeyer, the values of elapsed time for the commands 

dgeom2(100000,0.01) 

and 

dgeo(100000,2,0.01) 

0.05336 
0.00328 

0.00021 

\Vere 0 and 0.45 in seconds, respectively, ·whEJreas the values of the calculation were 

the same as 4. 957091e-09. 

5.2. Geometric distribution of order 3 
We can obtain an explicit of the function of the geometric 

distribution of order 3. The probability generating function of the shifted geometric 

distribution of order 3 can be represented as 

_p_ 
q 

where :::: 1 , z2 and z3 are the roots of p2qz3 + pqz2 + qz- 1 = 0. Setting 

A = 3 J27p2 + 14pq + 3q2 27p + 7q 
10 + 3 ' 6v up3q 54p q 
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the roots <:m' represented as 

( 1 
Z3 =I --A+ 

\ 2 

For j = 1, 2, 3, we set 

1!_ 

{!j = (1 • 
3z· 2 + ~z + 1 

J p J pz 

where i = v'=I. 

Then, the probability generating function can be vvritten as 

Therefore, if .Y follows the usual geometric distribution of order 3, it holds that 

37 

EXA:\IPLE 4. In order to check the above result numerically, we have made 
the following R function dgeom3(x,p) based on the above result. 

dgeom3<-function(x,p){ 
q<-1-p 
A<-sqrt(27*p~2+14*p*q+3*q~2)/6/sqrt(3)/p~3/q 

A<-(A+(27*p+7*q)/(54*p~3*q))~(1/3) 

z1<-A-2/(9*p-2*A)-1/3/p 
a<--A/2+1/(9*p~2*A)-1/3/p 

b<-sqrt(3)*A/2+sqrt(3)/(9*p~2*A) 

z2<-a+b*1i 
z3<-a-b*li 
r1<-p/q/(3*z1~2+2*z1/p+1/p~2) 

r2<-p/q/(3*z2~2+2*z2/p+1/p~2) 

r3<-p/q/(3*z3-2+2*z3/p+1/p~2) 

prob<-r1/z1~(x-2)+r2/z2-(x-2)+r3/z3-(x-2) 

Re(prob)} 

To compare the values of probabilities of the geometric distrilllltion of order 3 

based on dgeom3(x,p) with the values calculated by dgeo(x,k,p) based on the 
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recurrence relation gin'n in Section L we have verified R·~ replies to the command~ 

round(dgeom3(1:20,0.7),digits=5) 
round(dgeo(1:20,3,0.7),digits=5) 

arc the sam.e the following sequence 

[1] 0.00000 0.00000 0.34300 0.10290 0.10290 0.10290 
[7] 0.06761 0.05702 0.04643 0.03584 0.02888 0.02302 

[13] 0.01824 0.01455 0.01158 0.00921 0.00733 0.00584 
[19] 0.00464 0.00370 

Hovvever, the values of time for the commands 

dgeom3(10000,0.1) 

and 

dgeo(10000,3,0.1) 

were 0 and 0.08 in seconds, respectively, whereas the values of the calculation were 
the same as 1. 085257e-07. 

5.3. Geometric distribution of order 4 
Let us expand the probability genarating function of the geometric distribution 

of order 4. \Ve modify the probabilitY generating function of the shifted geometric 
distribution of order Ll as 

A= 

and 

B= 

+ 

-15p::>qA + 36p'1qA2 - 8q­

qA 

q 

+ 20q 

'J4pfi!] 

we can write the four roots of the denominator of the probability generating func­
tion as follows. 

B 1 
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V 1.5 A + 12p+2q 5 2iill ~ gp:rq::;r ~ 6iJ2 
Z2 = ~ 2 

B 1 

12p2 4p' 

and 

I _1_2_ A ~ 12p+2q 5 
V 2pB + 9p4 qA + 6iJ2 . B 1 

Z4 = ~ z + -~ ~ - where i = 0. 
2 12p2 4p' 

Here. for j = 1, 2, ~1, 4, defining 

we obtain 

Therefore, if X follows the usual geometric distribution of order 4, the probability 
function can be written as 

Here, z1 is the unique positive root which has the minimum absolute value among 
the roots. The root z2 is the unique negative root and z3 and Z4 are imaginary 
root which are conjugate to each other. 

EXA:'viPLE 5. In order to check the above result numerically, we have made 
the following R function dgeom4(x,p) based on the above result. 

dgeom4<-function(x,p){ 
q<-1-p 
A<-sqrt((256*p-3+203*p-2*q+88*p*q-2+16*q-3)/q)/(6*sqrt(3)*p-6*q) 
A<-A + (45*p+20*q)/(54*p-6*q) 
A<-A- (1/3) 
B<-sqrt((-15*p-2*q*A+36*p-4*q*A-2-8*q-48*p)/(q*A)) 
C<--A+(12*p+2*q)/(9*p-4*q*A)-5/(6*p-2) 
z1<-sqrt(15/(2*p*B)+C)/2-B/(12*p-2)-1/(4*p) 
z2<--sqrt(15/(2*p*B)+C)/2-B/(12*p-2)-1/(4*p) 
z3<--sqrt(-(-15/(2*p*B)+C))*1i/2+B/(12*p-2)-1/(4*p) 
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z4<-sq~t(-(-15/(2*p*B)+C))*1i/2+B/(12*p~2)-1/(4*p) 

r1<-p/q/(4*z1~3+3*z1~2/p+2*z1/p-2+1/p-3) 

r2<-p/q/(4*z2-3+3*z2-2/p+2*z2/p-2+1/p-3) 
r3<-p/q/(4*z3-3+3*z3-2/p+2*z3/p-2+1/p-3) 
r4<-p/q/(4*z4-3+3*z4-2/p+2*z4/p-2+1/p-3) 
prob<-r1/z1-(x-3)+r2/z2-(x-3)+r3/z3-(x-3)+r4/z4~(x-3) 

Re(prob)} 

To comp8re the values of probabilities of the geometric distribution of order 4 

based on dgeom4(x,p) with the values calculated by dgeo(x,k,p) based on the 
recurrence relation given in Section 1, we have verified R's replies to the commands 

round(dgeom4(1:20,0.7) ,digits=5) 
round(dgeo(1:20,4,0.7),digits=5) 

are the same m; the following sequence 

[1] 0.00000 0.00000 0.00000 0.24010 0.07203 0.07203 
[7] 0.07203 0.07203 0.05474 0.04955 0.04436 0.03917 

[13] 0.03398 0.03004 0.02647 0.02328 0.02045 0.01801 
[19] 0.01584 0.01394 

However, the values of elapsed time for the commands 

dgeom4(10000,0.1) 

and 

dgeo(10000,4,0.1) 

>vere 0 and 0.08 in seconds. respectively, whereas the values of the calculation were 
the same as 3. 660392e-05. 

6. expressions of the probability and the cumulative prob­
ability functions of the negative binomial distribution of order 
2 

Though we can treat general order of the negative binomial distribution of order 

k as Shmuelli and Cohen[l2], we shall provide an explicit expression of the prob­
ability function and the cumulative probability function of the binomial 
distribution of order 2. 

The generating distribution of the shifted negative binomial distri-

bution of order 2, to be denoted by Nih(r,p), can be written as 
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the shifted negatiYc binomial distribution of order k is the distribution of X­

kr, where X follows the usu<1l negatin.: binomial distribution of order k. Similarly 

as in the case of tlw geometric distribution of order 2, we obtain two distinct roots 
RS 

+q 1 
-----

p2q 2p' 

and 

These roots are multiple roots of the denominator of the generating function with 
multiplicity r. Therefore. the probabilit~· function can br" written as follows. If tr 
follows NB2 (r,p), then it holds that 

P(W= 

where 

2 r 
_ '\''\'(_I - L...- L._.,\ -

i=l j=l 

1 i) (j +X - 1\ _1 _ 
. - ) j+x' 

J Z.; 

for j = L 2, ... , r. Further calculation implies the next expression, 

P(W x' = P3r t (2r- j- 1)\ (;+X- 1) (/ V7f+1PJ)j 
) ( 4p + qy . r - j \ j - 1 pq 

J=l 

{ ( Jrp + 4pq + IJ)J+r r )x ( vrP + 4pq -q)j+x} 
X ------- + \-1 . 

2 . 2 

The generating function of the cumulative probabilities of NB2 (r,p) is given by 
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( )

T { b(CJ) 2 T b(i) } 
= ( -1r+l E --=Jc_ + 2.: I: -j . , 

q z 1 . . (z- zi)J 
z=l J=l 

where z1 and z2 are the same as the probability generating function. 

aud 

Fori = 1. 2. b(i) can be derived by the next formula ' . -J 

b(i) = 1 l" ar-j { (z- Zir } 
_ 1 --,----:--c1 un --. ( ) ( ) ( ) . . z-+z., dzT-J Z - 1 Z - Z1 r Z - Z2 r 

Thus. we can write b~j for i = 1, 2 the next formulns. 

and 

r-j 
b(2) (-1)r-j"' (2r- j- k- 1) 1 
-J ~ r -1 (zz- 1)H1 (z2 - -z: 1)2r-J-k. 

we obtain the next expression of the cumulative distribution 
function. 

:S x) = 1 + (-1)"+1 
q 

,. r 2 

I::I::(-1)1 
j=l i=l 

I X + j -- 1) _1_ 
I · _ 1 _j+r · 
\ J ""i 

EXAMPLE 6. As a numerical application of the result in this section, we shall 
calculate exact cumulative probabilities of the negative binomial distribution of 
order 2 for large x. \Ve have provided in Appendex R functions dnb (x, r, p) and 
pnb (x, r, p) besed on the above result. They are R functions for calculating the 

r.uass function and the cumulative probability function, respectively. 

\Vhen p i.s c:mall and/or r is large. the r-th 1-run of length 2 does not occur soon. 

For let us evaluate numerically the cumulative of the negative 
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binomial distribution with r = 30 and p = 0.0:1 for x = 50000, 70000, 90000, lOllOOO. 
If::J reply to the command 

round(pnb2(c(50000,70000,90000,100000),30,0.02),digits=5) 

vva~ (0.01751. 0.:.>:3958, 0.94517). Each cumulatiw probability agrees ·with 
the replies to the next commands, 

round(sum(dnb2(1:50000,30,0.02)),digits=5) 
round(sum(dnb2(1:70000,30,0.02)),digits=5) 
round(sum(dnb2(1:90000,30,0.02)),digits=5) 

round(sum(dnb2(1:100000,30,0.02)),digits=5), 

which are appropriate sum of probabilitie.s calculated by dnb2(x,r ,p). 

Appendix: R source programs 

\Ve provide hc~re the R source programs including functions used in examples 

of the manuscript. The functions h () and h1 0 are R functions for polynomi­
als f(t) and .f'(t), respectively, in Section 3. The functions pgeometric() and 
dgeometric () are the cumulative function and the prolmbility mass 
function, rec;pc;ctively, based on the partial fraction E;xpansion of the generating 

functions of the gemnetric distribution of order kin Section 3. The function geom() 
is the R function for the recurrence relation in Section 1. The R functions pgeo () 
and dgeo () are the cumulative probability function and the probability mass func­

tion. respectively, based on the recurrence relation. 
The R functions pk1k2 (x, k1, k2, p) and dk1k2 (x, k1, k2, p) are the cu­

mulative probability function and the pwbability mass function of the waiting time 

for ( k1 , k2 )-events. 
The R functions dnb2(x,r,p) and pnb2(x,r,p) arc the probability mass func­

tion and the cnmulative probability function, respectively, which arc based on the 

results giYen in Section 6. 

h<-function(t,k,p){ 
q<-1-p 
s<-1 
for (i in 1 :k){ 
s<-s-q*p-(i-l)*t-i} 

s} 

h1<-function(t,k,p){ 
q<-1-p 
s<--q 
for (i in 1:(k-1)){ 
s<-s-q*(H1)*p-ht~i} 
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s} 

# Cumulative distribution function 
# of the geometric distribution of order k 
pgeometric<-function(x,k,p){ 

q<-1-p 
poly<-1 
for (i in 1:k){poly<-c(poly,-p~(i-1)*q)} 
z<-polyroot(poly) 
z<-c(i,z) 
r<-c() 
for (i in 1: (k+1)){ 
a<--p-k/(-h(z[i] ,k,p)+(1-z[i])*h1(z[i] ,k,p)) 
r<-c(r,a)} 

prob<-0 
for (i in 1: (k+1)){ 
prob<-prob+r[i]/z[i]-(x-k+i)} 

Re(prob)} 

# PMF of the geometric distribution of order k 
dgeometric<-function(x,k,p){ 

q<-1-p 
poly<-1 
for (i in 1:k){poly<-c(poly,-p-(i-1)*q)} 
z<-polyroot(poly) 
r<-c () 
for (i in 1 :k){ 
a<--p~k/(h1(z[i] ,k,p)) 
r<-c(r,a)} 

prob<-0 
for (i in 1:k){ 
prob<-prob+r[i]/z[i]~(x-k+1)} 

Re (pro b)} 

# The recurrence relation of the pmf 
# of the geometric distribution of order k 
geom <- function(k,p,n1=50){ 

b<-rep(O,n1+1) 
a1<-p-k; a2<-a1*(1-p) 
b[k+1]<-a1 
for (i in (k+2): (2*k+1)){ 
b[i] <- p~k*(1-p) } 

for (i in (2*k+2):(n1+1)){ 
b[i] <- b[i-1]-a2*b[i-k-1] } 

return(b) } 

dgeo<-function(x,k,p){ 
len<-length(x) 

m<-max(x) 
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a<-geom(k,p) 
if (m>50){ 
a<-geom(k,p,m+l)} 
return(a[x+1])} 

pgeo<-function(x,k,p){ 
a<-geom(k,p) 
m<-max(x) 
if (:n>50){ 
a<-geom(k,p,m+l)} 
cp<-cumsum(a) 
return(cp[x+l])} 

#Cumulative probability of the waiting time for (k1,k2)-event 
pk1k2<-function(x,k1,k2,p){ 

q<-(1-p) 
k<-k1+k2 
a<-1/p-k2/q-k1 
V1<-function(t,k1,k2,p){ 
q<-1-p 
a<-1/p-k2/q-k1 
k<-k1+k2 
v1<-(k+1)*t-k-k*t-(k-1)-2*a*t+2*a 

vl} 

if (k==2) { pol<-c(-a,2*a,-1,1)} else { 
pol<-c(-a,2*a,-a,rep(O,k-3),-1,1)} 

b<-polyroot(pol) 
r<-c() 
for (i in 1:(k+1)){ 

a1<-1/(V1(b[i] ,k1,k2,p)) 
r<-c(r,a1)} 

prob<-0 
for (i. in 1:(k+1)){prob<-prob+r[i.]/(b[i])-(x+1-k)} 
if (length(x)>1){ 

for (j in 1:length(x)){ 
if (x[j]<k ){ prob[j]<-0 }}} 

if (length(x)==l && x<k) { prob<-0 } 
Re(prob)} 

# PMF of the waiting time for (k1,k2)-event 
dk1k2<-function(x,k1,k2,p){ 

q<-(1--p) 
k<-k1+k2 
a<-1/p-k2/q-k1 
V1<-function(t,k1,k2,p){ 
q<-1-p 
a<-1/p-k2/q-k1 
k<-k1+k2 
v1 <-k*t- (k-1) -a 

45 
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vi} 
if (k==2) { pol<-c(a,-a,1)} else { 

pol<-c(a,-a,rep(O,k-2),1)} 
b<-polyroot(pol) 
r<-c() 
for (i in 1 :k){ 

a1<- -1/(Vl(b[i] ,k1,k2,p)) 
r<-c(r,a1)} 

prob<-0 
for (i in 1:k){prob<-prob+r[i]/(b[i])-(x+1-k)} 
if (length(x)>1){ 
for (j in 1:length(x)){ 
if (x[j]<k ){ prob[j]<-0 }}} 

if (length(x)==1 && x<k) { prob<-0 } 
Re(prob)} 

# PMF of the negative binomial distribution of order 2 
dnb2<-function(x,r,p){ 

q<-1-p 
a<-sqrt(q-2+4*p*q) 
prob<-0 
for (j in 1 :r){ 
b<-choose((2*r-j-1),(r-j))*choose((j+x-1),(j-1))*(a/p/q)-j 
b<-b*(((a+q)/2)-(j+x)+(-1)-x*((a-q)/2)-(j+x)) 
prob<-prob+b} 

prob<-prob*p-(3*r)/(4*p+q)-r 
prob} 

# CDF of the negative binomial distribution of order 2 
pnb2<-function(x,r,p){ 

q<-1-p 
z<-sqrt((4*p+q)/(p-2*q))/2 
zi<--1/2/p+z 
z2<--1/2/p-z 
cprob<- 0 
for (j in 1 :r){ 
aj1<-0 
for (kin O:(r-j)){ 
w<-(-1)-(r-j)*choose(2*r-j-k-1,r-1)/(z1-1)-(k+1)/(z1-z2)-(2*r-j-k) 
aj1<-aj1 + w } 

aj2<-0 
for (kin O:(r-j)){ 
w<-(-1)-(r-j)*choose(2*r-j-k-1,r-1)/(z2-1)-(k+1)/(z2-z1)-(2*r-j-k) 
aj2<-aj2 + w } 

cprob<-cprob+(-1)-j*aj1*choose(x+j-1,j-1)/z1-(j+x) 
cprob<-cprob+(-1)-j*aj2*choose(x+j-1,j-1)/z2-(j+x) 

} 

cprob<-cprob*(-1)-(r+l)*(p/q)-r +1 
cprob} 
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