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Omn calculations of exact distributions of waiting times of

discrete patterns based on generating functions

Sigeo Aki*

Abstract. The rational generating functions of the probabilities and
cumulative probabilities of the geometric distribution of order k& are investi-
gated. All the roots of each denominator are rigorously proved to be simple
if p#k/(k+1). It is also shown that the distribution of the waiting time for
(k1, k2)-events has the similar property. The results are applied to numeri-
cal calculations of probability and cumulative probability of the distributions.
Further, explicit expressions for the probability functions of the geometric dis-
tributions of order 2,3, and 4 are given by using partial fraction expansion of
the generating functions. Moreover, as an example that the denominator of a
rational generating function has multiple roots, the negative binomial distri-
bution of order 2 with parameter (r,p) are studied. Explicit expressions of the
probability function and the cumulative distribution function are provided.
They are also useful for numerical calculations.

1. Introduction

The discrete distribution theory on runs and patterns in random sequences
with various dependency, such as Markov, higher-order Markov, exchangeable, or
partially exchangeable models (for example, sce Balakrishnan and Koutras [3],
Inoue, Aki, Hirano[9], Aki[l], Aki and Hirano[2]). In the present paper, we focus
on calculations of exact probabilities of the distributions based on the probability
and cumulative probability generating functions.

For example, the next recurrence formula is useful for the calculation of the
geometric distribution of order k, which is the distribution of the waiting time Wy,
for the first 1-run of length % in independent sequence of {0, 1}-valued random
variables X1, Xa. ... with P(X; =1)=p=1—g4.

0 fo<z<k,
. .
Y if z =k,
Grpsz) = kg fk+1<z<9%k,

where Gi(p;z) = P(W}, = 2). Usually, we can obtain the probabilities or cumula-
tive probabilities of the distribution by using the above formula very fast. However,
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when the probability p of the occurrence of 1 is small and/or k is large, it takes
much time for the calculation of large 2z, such as the calculation of 90-percentile
point of such a distribution. If we are interested in numerical calculations even in
such cases, we can select another method, the partial fraction expansion for rational
generating functions. Feller[6] examined asymptotic evaluation of the probability
distribution of the waiting time for the first 1-run of length % in independent bi-
nary trials. As the partial fraction expansion of rational generating functions in
the complex plane leads exact evaluation of the coeflicients as well as their asymp-
totic evaluation, we can perform sufficiently exact numerical evaluation. By using
the method, Shmuelli and Cohen[12] calculated probability functions of the geo-
metric distributions of order k and the negative binomial distributions of order k
numerically.

First, in the present paper, we shall calculate the probability functions of the
geometric distribution of order k after examining Feller’s result on the roots of
the denominator of the probability generating function. Further, we evaluate the
cumulative probabilities of the distribution for some large values by applying the
partial fraction expansion. When we use the partial fraction expansion for a ratio-
nal generating function, we need multiplicity of each root of the denominator. In
Section 4 we give other examples of rational generating functions. In the examples,
the multiplicity of each root of the denominators can be examined theoretically.
The distributions are waiting times of so called (k1, ko2)-events. We shall prove that
all the roots of the denominator of the probability generating function are simple.
The partial fraction expansion is very useful in numerical calculations. However,
if all the roots of the denominator of a rational generating function are obtained
explicitly, we may be able to give an explicit expression of the probability function
of the distribution. The denominators of the probability generating functions of
the geometric distributions of order 2,3 and 4 have degree less than 5, and hence
all the roots can be written explicitly. We give explicit expressions of these distri-
butions in Section 5. In Section 6, we examine the negative binomial distribution
of order 2 with parameter (r,p), where r is an arbitrarily given positive integer,
as an example that all the roots of the denominator of the probability generating
function are given explicitly and the multiplicity of the roots are exactly r.

2. Partial fraction expansion

Let ®(z) be the generating function of the sequence of numbers {a,}, ie.,
®(z) = 3, anz®. Feller[6] proved the following useful proposition.

PROPOSITION 1. Suppose that the generating function is of the form ®(z) =
Uz) where U(z) and V(z) are polynomials without common roots. Assume that
the degree of U(z) is lower than that of V(z), say m. Further, assume that V{(z) =0

Vi(z)’
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has distinct roots =y, z2,...,2m. Then, a, can be written as
P1 P2 . Pm
= S m T T T v
L] »02 “~Mm

where py = ;(’]((zz:)) L fork=1,2....m.

After proving the above proposition, Feller discussed approximation of a, by
using the only one root of V(z), which has the minimum absolute value among the
Toots.

However, the partial fraction expansion provides useful exact calculation of a,,
by using all the roots of V'(z) even in the case that V(z) has multiple roots. Here, we
introduce the gencral result of the partial fraction expansion of rational generating
functions.

PROPOSITION 2. Suppose that the generating function is of the form ®(z) =
‘D/.—(z%. where U(z) and V(z) are polynomials without common roots. Assume that
the degree of U(z) 4s lower than that of V(z). Assume that V(z) can be written as

Viz)=(z—2)"(z — z)F2 - (2 — zy) .

Then, every z; is the pole of ®(z) of order k; and the singular part of ®(z) at z = z;
18

(@) (#)

(l‘kz_’ I ) a_
(2 — z)ke zZ— 2z

filz) =

Consequently, the partial fraction expansion of ®(z) is written as

N
2(z) =3 fil2).
i=1

For a proof of the proposition, see, for example, Conwayl[4], Flajolet and
Sedgewick[7] (Theorem IV.9), or Pemantle and Wilson[10]. The coefficient a(_zg

in the above expansion can be obtained by

@ _ L g, & U
43T Tk — )l =2 d2Ri7 V(

3) / k,
z— 2z
Z) ( L)
Here, we obtain the coefficient of z™ in the partial fraction expansion given in
Proposition 2. By expanding every term of f;(z), we have
() 0]
a, a’) z. .,
— = (=1 —==(1-=)"".
e (-1) p ( zl-)
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Here, we can further expand it as

(-2) -2 () (e

Noting that (—1)7 (‘7’“) = (T+§“1>, we obtain

(2) oG . ;
a . s [Tty -1\
Ee B DI LT (R Pt

J z;

).

|

Therefore, the coefficient of =™ in the expansion of ®(z) can be written as

-‘27 \l> (1+n~ 1\ 1
2 / n ) '('—i—n "
i=1 r=1 Zi
Since the partial fraction expansion for a rational generating function is an
exact formula, we can obtain the sequence exactly by using the expansion if all the
roots of the denominator are available. Generally, roots of algebraic equations of
degree more than 4 do not have an algebraic expression with a finite number of
operations involving just the coefficients of the algebraic equations. Hence, we need
repeated methods for getting all the roots until they satisfy sufficient precision.

3. Probability and cumulative probability functions of the geomet-
ric distribution of order &

The generating functions of the probability and the cumulative probability of
the geometric distribution of order k is written as

(1 = pt)(pt)*
1 —1t+ phgtht!

P(t) =
and

(1 - pt)(pt)*
(1—8)(1 —t+ phgthtt)’

W(t) =

These functions are written in Balakrishnan and Koutras[3]. Let us study the
roots of the polynomial 1 —t + p*qt*+1 which is a factor of the both denominators
above. For simplicity, dividing the polynomial by the constant so that its leading
coefficient becomes 1, we shall study the roots of the polynomial f(t) = tFT! —ct+e.

_ 1
where ¢ = .
LEMMA 1. [fO<p<1andp# 7. then f(t) = thHl ¢t + e =0 does not

have a multiple root.
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PROOF. Assume that the equation f(¢) = 0 has a multiple root o. Then, f(a) =
J'(e) = 0 holds. Since f/(t) = (k+1)t*—cand ¢ > 0, it holds that o = - Thus,
FET

7

S22l

e E

ko

there exists a nonnegative integer £ € {0,1,2,...,k—1} such that o =

holds, where #/

\/ A*L

k+1
. c ety e
< -——m) e C\/k+18 +e=0.

Therefore, by dividing the both sides by ¢ (> 0), we obtain

. c %( 1 i2r€_1>+1:0.

is the positive k-th root of f({a@) =0 implies that

k+l

k + 1° k+1
Here, €™ = 1 implies
ko] e Gt
kr1V k1
Further, since F’f-—l k k;+1 > 0, 2% must be a positive real number. Therefore,
£=0, % =1 and Z’Ijﬁ /%55 = 1 hold. Consequently, we obtain
1 k¥

=D (1—P):m-

Let us examine whether such a p exists between 0 and 1. We set g(p) = p*(1 — p).

Since ¢'(p) = kp" ' (1 — p) — p*, we see that g(p) takes its maximum ‘](k+1) =
# at p = /Tlﬂ Therefore, the value of p is only p = m which satisfies

L=p"1-p) = —kjt%m—f Thus, if p # F@ﬁ f(#) ="t — ¢t + ¢ = 0 does not have
a multiple root. This completes the proof. O

REMARK 1. In Feller[6] (p.236) it is proved that f(t) = thtl — et + ¢ = 0 does
not have a multiple root if p < £—. Lemma 1 prmeb the statement not only for

e
p € (0, k+1> but also for p € (£=,1). When p = , we see that the multiple

1 _ k+1
I‘OOtlS;- =

k-l—l ’ k+1

ProroSITION 3. For 0 < p < 1, let ¢ =1—p. We denote by F(x) the
cumulative probability at x of the geometric distribution of order k. where k is a
positive integer. Then, all the toots z1, 29, ...,z of the polynomial h(t) = 1 — qt —
pgt? — -« — p* gtk are simple. Further, for i =0,1,2,...,k, there exist complex




30 S AKI

numbers pg, p1, P2, - - -, P& Such that
TSR - Pi
F (93) - Z Zarak+1’
=0 i
where zy =1, V(t) = (L - t)h(t) ond for i =0,1,2.... )k, p; = ‘_(,-,(p:_).

ProOOF. From Remark 1 we see that the only one root f = 1—12 of f(t) may possibly
be a multiple root which is also a root of the numerator of ¢(#) and (¢). Dividing
by (1 - pt) the numerator and the denominator of ¢(¢) and v(t), we have
o) = 2 (pt)*
h{t) (1 —1)A(t)
Then, Lemma 1 implies that h{t) does not have a multiple root. Noting that
h(1) = p* # 0, we see that (1 —#)h(t) also does not have a multiple root. Here, we
shall use Proposition 1. The generating function of the cumulative probabilities of
the geometric distribution of order k, which is shifted so that the support begins
with 0. is written as

and ¥(t) = , where h(t) = 1 —qt —pqt? — - - - — pF~1gtk.

ke
p
B(t) = ——r—.
(1 (1—t)h(t)
Let z1.29,..., 2, be the roots of the polynomial h(t). Setting zo = 1, for i =
0,1,...,k, we define
o
p'l - Ly;(zi)r

where V(¢) = (1—t)h(t). Then, since the generating function meets the assumption
of Proposition 1, we obtain the following partial fraction expansion

The coefficient of 2™ of the generating function ®(z) is the cumulative probability
at n of the shifted geometric distribution of order k. Therefore, the cumulative
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probability at x of the usual geometric distribution of order & is written as

k

R Pi
Flo) =)~

i=0 71
which completes the proof. O

ExampLE 1. By using the algorithm given in Proposition 3, we shall cal-
culate some cumulative probabilities of the geometric distribution of order k
using R, which is an open-source software environment for statistical comput-
ing and graphics [11]. In Appendix, we provide R source programs includ-
ing functions pgeometric{(x, k, p), dgeometric(x, k, p), pgeo(x, k, p),
dgeo(x, k, p). Here, pgeometric() and dgeometric() are based on Propo-
sition 3, and pgeo() and dgeo() are based on the recurrence relation given
in Section 1. We have calculated the cumulative probabilities of ¢1p(0.3) for
x = 100, 1000, 10000. 160000, 1000000, 10000000.

As R’s reply to each command

pgeometric(c(100,1000,10000,100000,1000000,10000000),10,0.3)
and

pgeo(c(100,1000,10000,100000,1000000,10000000),10,0.3) ,
the following same sequence

[1] 0.0003778577 0.0040897915 0.0404594110 0.3385530590
[5] 0.9839744984 1.0000000000

is returned. However, the elapsed time of the calculation only for = = 10000000
by the function pgeo () was over 30 seconds whereas the elapsed time was zero in
seconds by the function pgecmetric() in my personal computer. In fact, R’s reply
to the commands

system.time (pgeo(10000000,10,0.3)) [3]
and
system.time (pgeometric(10000000,10,0.3)) [3]

are 36.92 and 0, respectively.

4. Waiting time for the (k;. kp)-event

In this section we shall give an example of distributions whose generating func-
tions of the probability and the cumulative probability are rational functions. More-
over, the numerators and the denominators of the functions do not have multiple
T001S.
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Let k1 and k> be integers greater than one. Let T be the waiting time in inde-
pendent {0, 1}-valued sequence for 1-run of length ko just after O-run of length &y
or more. The distribution of T is the waiting time for the (k1, k2 )-event (see Huang
and Tsai[8], Dafnis, Antzoulakos, and Philippou[5], and Stefanov and Manca[13]).

Let us derive the probability generating function ¢(¢) of T by using the method
of conditional probability generating functions. Let ¢g(t) be the conditional prob-
ability generating function of the waiting time for the (ki. ka)-event from starting
with a time at which a 0, to be precise a 0-run of length 1, is observed. Similarly,
we define the conditional probability generating function ¢4 (2) of the waiting time
for the (k, kg)-event from starting with a time at which a 1 is observed just after
0-run of length &y or more. Then, the following relations hold.

<t> = 221 —lqt ¢i‘ > ] . .
Po(t) = Zk;; TIptig(t) + sy, ¢t (t)
10 = S gt do(r) + g,

We shall solve the above equations for obtaining ¢(¢). We can rewrite each equation
as

o(t) = 125 60(t)

g = PUSEON D gy ptgt T g ()
qt D

$i(t) = &11@)—00@)1%9’)"2 L

By deleting ¢1(f) from the last two equations, and substituting the first equation,
we obtain an equation which includes only ¢¢(¢). Solving the equation we have

(pt)™(qt)* =1 (1 — pt)

Holt) = - :
) = T R
By multiplying pf’ we obtain
o, pt k2 qt ks
sty — 2@

L—t+ (pt)k2(gt)kr

The roots of the denominator of ¢(¢) is the same as the roots of the polynomial

3 +Ey . e — 1
f(t) =82 — ¢t + ¢, where ¢ =

PROPOSITION 4. Let ki and ko be integers greater than one. Then, all the
roots of f(t) are simple.

PROOF. By setting k = k; + ko, we can write f/(t) = kt*~' — ¢. Suppose that
the equation f(¢) = 0 has a multiple root . Then, from f'(a) = 0, we see that
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h—1 c

o7 = £ and hence there exists an integer £ € {0.1.2,...,k — 2} such that

[c ;axe

o = kfl/ %5’1\:71
holds. Since « is also a root of f(t), it holds that

co, L /C ;2f ./ € 2z
Yok 1—612ﬂ€6’l”*‘ T ok 2T =0,
k k k

Dividing by ¢ the both sides of the equation, we obtain

o[ iz (Eeme _ 1) f1=0.
k

Noting that ™ = 1, we sce that

and hence we have £ = 0. Therefore, we obtain ¢ = (i:%ﬁ Here, we examine

whether some p € (0,1) exists satisfying
1 ks kg (k — l)k_l (1121 + ko — 1)k’]+h2_1

=pUqg- = Lk = (ky + kg )R+ F2

C

We set g(p) = p*2(1 ~ p)* for p € (0,1). Then, g(p) attains its maximum value at
p= —klkﬁ; and the maximum value is

ko >* gk
g ki—+ ko “(k‘l%-k’g)kf’k?'

But, since k1 > 1 and ks > 1 hold, the next inequality holds

fey kS _ (bt ke — 1)tk
(1 + kg)katha (ky + ko)krthka 7

and we see that such a p € (0, 1) satisfying the above equation does not exist. This
is a contradiction with the assumption that f(¢) has a multiple root. Finally, we
shall prove the above inequality. Let a > 1 be a constant and let h(z) = (z +a —
1)ra=t —z%q% Since b'(z) = (1+log(z+a—1))(z+a—1)"T*"t —(1+log z)x* > 0
and h(1) = 0, h(xz) > 0 holds for all z > 1. Thus, by setting = = k1 and a = ks,
we obtain the above inequality. This completes the proof. O

ExXAMPLE 2. DBy using the algorithm given in Proposition 4, we shall calculate
some cumulative probabilities of the waiting time for (ki, k2)-event using R. In
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Table 1. Values of cumulative probabilities of the waiting time for
(ki1,k2)-event with k1 = k2 = 6. These values are calculated based on
the partial [raction expansion of the generating function of cumulative
probabilities of the distribution given in Proposition 4.

p || =100 | z =1000 | 2 = 10000 | = = 160000
0.1 1 0.00005 | 0.00053 0.00529 0.05175
0.2 || 0.00149 | 0.01646 0.15432 0.81323
0.3 || 0.00761 | 0.08140 0.57581 0.99981
0.4 || 0.01690 | 0.17256 0.85238 1.00000
0.5 || 0.02155 | 0.21505 0.91333 1.60000
0.6 || 0.01690 | 0.17256 0.85238 1.00000
0.7 | 0.00761 | 0.08110 0.57581 0.99981
0.8 || 0.00149 | 0.01646 0.15432 0.81323
0.9 || 0.00005 | 0.00053 0.00529 0.05175

Appendix, we provide R functions pkik2(x, k1, k2, p) and dki1k2(x, ki, k2,
p). Here, we have tabulated the cumulative probabilities of (6,6)-event for z =
100, 1000, 10000 and 100000 with p = 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9. Since
k1 = ko = 6, the cumulative probabilities are symmetric with respect to p about
p= % Every row of the table has been calculated by the following R’s command

round (pk1k2(c(100,1000,10000,100000),6,6, p),digits=5)

5. Some explicit expressions of waiting times

In the previous sections, we have seen that the approach from the partial frac-
tion expansion is very useful for numerical calculations of probabilities and cumu-
lative probabilities of waiting time distributions. However, when the roots of the
denominator of a rational generating function are written explicitly, we can obtain
explicit expressions of the probabilities or cumulative probabilities. As examples
of such cases, we shall discuss explicit expressions of the geometric distributions of
order 2, 3 and 4. Though some combinatorial explicit expressions of probabilities of
the distributions are known, explicit expressions without multinomial or binomial
coefficients may be of interest.

5.1. Geometric distribution of order 2
Let us provide an explicit expression of the probability function of the geometric
distribution of order 2. The probability generating function of the shifted geometric
distribution of order 2 so that its support begins with zero is written as

D

2
D q

Cl—gt—pgt? (21— 2)(22 — 2)

¢(2)

b
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where z; and z; are the roots of pgz? + gz — 1 = 0, that is,

., _l /4p+q_ 1 and o 1 /dp+q 1
oV Ty 2p ) =Ty g 2p
e a b p | p
The constants ¢ and b satisfying ¢(z) = + are a = = and
1 —zZ  Zg—Z g\ 4p+yg
b = —a. Then, we see that
a b

o(z) = Z_—; + .

o0 n o mn
a z a Z z
Z1 (Zl > z2 zZ9 ’
n=0

“ n=0

By cxtracting the coefficient of 2™ in the probability generating function, we see
that the value of the probability function at n is

— nFl T _mlc
<1 )

a 1 a1l a a
zy 2 29 2%
Therefore, since the probability at n of the usual geometric distribution of order

2 is the coefficient of z"~2 in the above expansion. if X follows the geometric
distribution of order 2, the probability function of X can be written as

"2
P | Pq 1 1
P(XZSC):— “’111' JR— z—1 r—1
gy 4p+gq 1 /4p+q 1 (_1 4pt+q L)
2V pig 2p 2 p2q 2p

- x—1 xr—1

P VApg+ % + g o [ VArg+4® —q

= + (=) |
VApg +¢? 2 2

r—1 — \ T—1
’ <q + V@ + ipq) _ <2;v ¢+ 42?(1)
2

_ p
\/fP + 4pg 2

Therefore, we have obtained the next proposition.

PROPOSITION 5. If X follows the geometric distribution of order 2 with pa-
rameter p, the probability function can be written as

r—1 z—1
[ D q+/a* +4pg q—+/q? +4pg
(X=z)= - (L ME T
V& +4pg 2 2
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forz =23 ...

ExampLE 3. In order to check the above result numerically, we have made
the following R function dgeom2(x,p) based on Proposition 5.

dgeom2<-function(x,p){
q<-1-p
a<-sqrt (4xp*xq+q~2)
z1<-(a+q)/2
z2<-(q-a)/2
p2/ax(z1” (x~1)-2z2"(x-1))}
To compare the values of probabilities of the geometric distribution of order 2
based on dgeom2(x,p) with the values calculated by dgeo(x,k,p) based on the
recurrence relation given in Section 1, we have verified R’s replies to the commands
round (dgeom2(1:20,0.7) ,digits=5)
round(dgeo(1:20,2,0.7),digits=5)

are the same as the following sequence

[1] 0.00000 0.49000 0.14700 0.14700 0.07497 0.05336
[7] 0.03175 0.02073 0.01289 0.00822 0.00517 0.00328
[13] 0.00207 0.00131 0.00083 0.00052 0.00033 0.00021
[19] 0.00013 0.00008 .

However, the values of elapsed time for the commands
dgeom?2 (100000,0.01)
and
dgeo(100000,2,0.01)
were 0 and 0.45 in seconds, respectively, whereas the values of the calculation were

the same as 4.957091e-09.

5.2. Geometric distribution of order 3
We can obtain an explicit expression of the probability function of the geometric
distribution of order 3. The probability generating function of the shifted geometric
distribution of order 3 can be represented as

p3 _Pr
. q
gD Z) = 5 5 - =

( L—qz—pgz* = p?qz®

21— 2){z0 — 2)(z3 — )’

where z1, z2 and z3 are the roots of p?qz3 + pgz® + gz — 1 = 0. Setting

o/ V2Tp2 + 1pq + 34> | 2Tp+Tqg

A=
6v/3p3q T Bdp3g
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the roots are represented as

2
1 1 1) 3 3
;33(——A+————,—)—(\/)A+ V3 )L where § = v/—1.

For 1 =1,2,3, we set

pj = 5

J T 9.2 2., o 1°
242,

357+ 34+ g2

Then, the probability generating function can be written as

(Z) P1 + P2 + P3

21—z 29—z 23—2

Therefore, if X follows the usual geometric distribution of order 3, it holds that

. R P1 P2 P3
I)(X =)= =2 + z—2 | _z—2-°
Zq 2’2 Z3

ExaMPLE 4. In order to check the above result numerically, we have made
the following R function dgeom3(x,p) based on the above result.

dgeom3<-function(x,p){

q<-i-p

A<-sqrt (27*p~2+14+p*q+3%q~2)/6/sqrt(3) /p~3/q
A<-(A+(27*p+T*q) / (54*p~3%q) ) ~(1/3)
21<-A-2/ (9*p~2%A)~1/3/p
a<—-A/2+1/(9%p~2%A)~1/3/p

b<-gqrt (3) *A/2+sqrt (3) / (9*p~2%A)
z2<-a+b*1i

z3<-a-bx*x1i

r1<-p/q/ (3*xz172+2%z1/p+1/p~2)

r2<-p/q/ (3*z272+2%22/p+1/p"2)

13<-p/q/ (3*z3~2+2%23/p+1/p~2)
prob<-rl/zi" (x-2)+r2/z2" (x-2)+r3/23" (x-2)
Re(prob)}

To compare the values of probabilities of the geometric distribution of order 3
based on dgeom3(x,p) with the values calculated by dgeo(x,k,p) based on the
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recurrence relation given in Section 1, we have verified R’s replies to the commands

round(dgeom3{1:20,0.7) ,digits=5)
round(dgeo(1:20,3,0.7) ,digits=5)

are the same as the following sequence

[1] ©.00000 0.00000 0.34300 0.10290 0.10290 0.10290
[7] 0.06761 0.05702 0.04643 0.03584 0.02888 0.02302
[13] 0.01824 0.01455 0.01158 0.00921 0.00733 0.00584
[19] 0.00464 0.00370 .

However, the values of elapsed time for the commands
dgeom3(10000,0.1)

and
dgeo(10000,3,0.1)

were 0 and 0.08 in seconds, respectively, whereas the values of the calculation were
the same as 1.085257e-07.

5.3. Geometric distribution of order 4
Let us expand the probability genarating function of the geometric distribution
of order 4. We modify the probability generating function of the shifted geometric
distribution of order 4 as

y B
q‘)(»/) — pl = d 5
1—gqz—pgz? —p?q2® —pigzt (21— 2)(22 — 2)(23 — 2)(2a — 2)

where 2y, 23, 23 and z4 are the root of p3qz* + p?¢23 + pgz? + gz — 1 = 0. Setting

’ 256p3+203p2 q+88pg2+1643 _
3 45p + 20¢g

A= 2
w 6v/3pSq 54pbq

and

/ _15p2gA + 36ptqA2 — 8g — 48p

B =
V A

we can write the four roots of the denominator of the probability generating func-
tion as follows.

13 12p+2q _ 5 )

» \/QpB A+ 9pigA 6p2 B 1
1= ¢ T To.2 4
2 1292 4dp’
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15 12p+2q 5
. :_\/2;)—?9_‘/44_ QpIqA_W_ B _i
- 2 1202 4p’
15 12p4-2 5
wtA-Gater B 1
23 = 1+ - —,
2 12p2  4p

and

15 _ 12p+2g 5
+A 9pigA + 6p2 . B
1

2 - 12p

Z4 = —

1
5 — -, Where i =+ ~1.
4p

Here, for j = 1,2, 3,4, defining

we obtain

P1 4 P2 + P3 n P4 )
zZ1 — Z Z9 — Z zZ3 — Z zZ4 —Z

¢(z) =

Therefore, if X follows the usual geometric distribution of order 4, the probability
function can be written as

pP1 P2 P3 P4
P(X = I) R + z—3 + z—3 + z—3"

21 23 Z3 2y

Here, 2; is the unique positive root which has the minimum absolute value among
the roots. The root z; is the unique negative root and z3 and z; are imaginary
root which are conjugate to each other.

ExXAMPLE 5. In order to check the above result numerically, we have made
the following R function dgeom4 (x,p) based on the above result.

dgeom4<-function(x,p){

q<-1-p

A<-sqrt ((256%p~3+203+p~2xq+88%p*q~2+16xq~3) /q) / (6*sqrt (3) *p~6*q)
A<-A + (45%p+20%q)/(54%p~6xq)

A<-A"(1/3)

B<-sqrt ((-15*p~2%q*A+36*p~4*q*A~2-8*q-48*p) / (q*A))
C<=-A+(12%p+2%q) / (9*p~4*q*A) -5/ (6*p~2)

z1<-sqrt (15/(2%p*B)+C) /2-B/ (12xp~2) -1/ (4xp)

z2<--sqrt (15/ (2+p*B)+C) /2-B/ (12+p~2) -1/ (4*p)

z3<--sqrt (-(-15/(2*p*B)+C) ) *11/2+B/ (12*p~2) -1/ (4*p)
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z4<-sqrt (- (-15/(2%p*B) +C) ) *1i/2+B/ (12%p~2) -1/ (4%*p)
r1<-p/q/ (4%z173+3%2172/p+2%z1/p~2+1/p~3)

r2<-p/q/ (4*22"3+3%22°2/p+2%22/p~2+1/p~3)

13<-p/q/ (4%2373+3%2372/p+2%z3/p"2+1/p"3)

r4<-p/q/ (4%24"3+3%2472/p+2x24/p~2+1/p"3)
prob<-r1/z1"(x-3)+r2/z2" (x-3)+r3/23" (x-3)+rd/z4" (x-3)
Re(prob)}

To compare the values of probabilities of the geometric distribution of order 4
based on dgeom4 (x,p) with the values calculated by dgeo(x,k,p) bhased on the
recurrence relation given in Section 1, we have verified R’s replies to the commands

round (dgeom4(1:20,0.7) ,digits=5)
round (dgeo(1:20,4,0.7) ,digits=5)

are the same as the following sequence

[1] 0.00000 0.00000 0.00000 0.24010 0.07203 0.07203
[71 0.07203 0.07203 0.05474 0.04955 0.04436 0.03917
[13] 0.03398 0.03004 0.02647 0.02328 0.02045 0.01801
[19] 0.01584 0.01394 .

However, the values of elapsed time for the commands
dgeom4 (10000,0.1)
and
dgeo (10000,4,0.1)
were 0 and 0.08 in seconds, respectively, whereas the values of the calculation were

the same as 3.660392e-05.

6. Explicit expressions of the probability and the cumulative prob-
ability functions of the negative binomial distribution of order
2

Though we can treat general order of the negative binomial distribution of order
k as Shmuelli and Cohen[12], we shall provide an explicit expression of the prob-
ability function and the cumulative probability function of the negative binomial
distribution of order 2.

The probability generating distribution of the shifted negative binomial distri-
bution of order 2, to be denoted by N By(r,p), can be written as

2 r
r
<1 —qz — pqu) .
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Here, the shifted negative binomial distribution of order k is the distribution of X —
kr, where X follows the usual negative binomial distribution of order k. Similarly
as in the case of the geometric distribution of order 2, we obtain two distinct roots
as

1 /dp+q 1
Z1 = — 4 —
oV g 2
and
1 /4p +q 1
2= —= —.
2V ¢ 2

These roots are multiple roots of the denominator of the generating function with
multiplicity r. Therefore, the probability function can be written as follows. If W
follows N Bs(r, p), then it holds that

+z—1\ 1
P(W=z)= ZZ ﬁ]<in1 );]T;,

=1 j=1

where

O (=1 (&) <ar"—ﬂ' 1 )

= \wm )
oD /27“]“1 1
= (1)) (21 = 22)2r=3°
SRR )<—>
@) 2r— r—Jy-1 .
) = (=1)F
a’j=(-1) (q < r=7J (’AZ o

for  =1,2,...,r. Further calculation implies the next expression,

) . . _ N
\ } @p+a)rm\ r—ij i-1 o
m +q e - 2 +dpg—g j+z
] Y

X p
i

The generating function of the cumulative probabilities of N Bs(r,p) is given by

, 1 P’ '
o(z) = 1—-z (1 —qz-pqzz)

T
= (-1 <9> , - .
1) G-DE-are-a)
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r 0 2 > ()
(1)t <B) b() Z“T‘ b_. )

q 4

=1 /71 N

where 21 and 2> are the same as the probability gencrating function,

~ 1 dp +q _ 1
FaV T 2y
and
_ 1 [4p+ 1
2 =

2V TR T

Fori=1,2, b(_‘i can be derived by the next formula

i 1 a7 (z—z)
b(_)« = — lim { & }
Toor = emzdem (2= 1)z —21)" (2 — z2)"

Thus, we can write b(_zg for 1 = 1,2 by the next formulas.

o )T =\ (2 k- 1) .
0 _ | L) )R
ST Z( YR e -

-7 < ( r—27- k— 1) 1
A N R ey P N R

and

=] e .
2) _ (_1yr—i 2r—j—-k-1 1
b—] ( 1) Z ( r—1 (32 _ 1)k+1(22 _ 21)2r~j—k‘

k=0

Consequently, we obtain the next explicit expression of the cumulative distribution

function.

POV <) =1+ (- 1r+1<_> ZZ Jb(z»<rfiz1>;gl_ﬂ_‘

j=11i=1

EXAMPLE 6. As a numerical application of the result in this section, we shall
calculate exact cumulative probabilities of the negative binomial distribution of
order 2 for large 2. We have provided in Appendex R functions dnb(x,r,p) and
pob(x,r,p) besed on the above result. They are R functions for calculating the
probability mass function and the cumulative probability function, respectively.
When p is small and/or r is large, the r-th 1-run of length 2 does not occur soon.
For example, let us evaluate numerically the cumulative probabilities of the negative
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binomial distribution with r = 30 and p = 0.02 for = = 50000, 70000, 90000, 100000.
R’s reply to the command

round (pnb2(c(50000,70000,90000,100000),30,0.02) ,digits=5)

was (0.01751, 0.33958, 0.83630,0.94517). Each cumulative probability agrees with
the replies to the next commands, ’

round (sum(dnb2(1:50000,30,0.02)) ,digits=5)
round (sum(dnb2(1:70000,30,0.02)) ,digits=5)
round (sum(dnb2(1:90000,30,0.02)) ,digits=5)
round (sum(dnb2(1:100000,30,0.02)) ,digits=5),

which are appropriate sum of probabilities calculated by dnb2(x,r,p).

Appendix: R source programs

We provide here the R source programs including functions used in examples
of the manuscript. The functions h() and h1() are R functions for polynomi-
als f(t) and f/(t), respectively, in Section 3. The functions pgeometric() and
dgeometric() are the cumulative probability function and the probability mass
function, respectively, based on the partial fraction expansion of the generating
functions of the geometric distribution of order k in Section 3. The function geom()
is the R function for the recurrence relation in Section 1. The R functions pgeo ()
and dgeo () are the cumulative probability function and the probability mass func-
tion, respectively, based on the recurrence relation.

The R functions pk1k2(x, k1, k2, p) and dk1k2(x, k1, k2, p) are the cu-
mulative probability function and the probability mass function of the waiting time
for (ki, ko)-events. ,

The R functions dnb2(x,r,p) and pnb2(x,r,p) are the probability mass func-
tion and the cumulative probability function, respectively, which are based on the
results given in Section 6.

h<-function(t,k,p){
q<-1-p

s<~1

for (i in 1:k){
s<-s-q*p”~ (i-1)*t"i}
s}

hi<-function(t,k,p){
q<-1-p
S<-—q
for (i in 1:(k-1)){
s<-g-q* (i+1)*p~i*t"i}
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s}

# Cumulative distribution function
# of the geometric distribution of order k
pgeometric<-function(x,k,p){

q<-1-p

poly<-1

for (i1 in 1:k){poly<-c(poly,-p~(i-1)*q)}

z<-polyroot (poly)

z<-c(1,z)

r<-c()

for (i in 1:(k+1)){

a<--p~k/(-h(z[il ,k,p)+(1-z[i])*h1(z[i] ,k,p))

r<-c(r,a)’}

prob<-0

for (i im 1:(k+1)){

prob<-prob+r[il/z[i] "~ (x-k+1)}

Re(prob)}

# PMF of the geometric distribution of order k
dgeometric<-function(x,k,p){
q<-1-p
poly<-1
for (i in 1:k){poly<-c(poly,-p~(i-1)*q)}
z<-polyroot (poly)
<-c()
for (i in 1:k){
a<--p°k/(h1(z[i] ,k,p))
r<-c(r,a)}
prob<-0
for (i in 1:k){
prob<-prob+r [i]l/z[i] "~ (x-k+1)}
Re(prob)}

# The recurrence relation of the pmf
# of the geometric distribution of order k
geom <- function(k,p,n1=50){
b<-rep(0,n1+1)

al<-p~k; a2<-al*(1-p)

blk+1]<-a1

for (i in (k+2):(2%k+1)){

bli] <~ p"kx(1-p) 2

for (i in (2%k+2):(n1+1)){

b[i] <- bli-1]-a2*b[i-k-1] }

return(b) }

dgeo<-function(x,k,p){
len<-length(x)
m<-max (x)
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a<-geon(k,p)

if (@>50){
a<-geom(k,p,m+1)}
return(alz+11)}

pgeo<~function(x,k,p){
a<-geom(k,p)
m<-max (x)
if (m>50){
a<-geom(k,p,m+1) }
cp<-cumsum(a)
return{cplx+11)7}

# Cumulative probability of the waiting time for (k1,k2)-event

pkik2<-function(x,kl1,k2,p){

g<-(1-p)

k<-k1+k2

a<-1/p"k2/q ki

Vi<-function(t,k1,k2,p){

g<-1-p

a<-1/p~k2/q k1

k<-k1+k2
v1<~(k+1) ¥t k-k*t"~ (k-1) -2*a*xt+2*a

vi}

if (k==2) { pol<-c(-a,2*a,-1,1)} else {
pol<-c(-a,2*a,-a,rep(0,k-3),-1,1)}

b<-polyroot (pol)

r<-c()

for (i in 1:(k+1)){
al<-1/(V1(b[i],k1,k2,p))
r<-c(r,al)’}

prob<-0

for (i in 1:(k+1)){prob<-prob+r[il/(b[i1)~(x+1-k)}

if (length(x)>1){
for (j in 1:length(x)){
if (x[ji<k ){ probl[jl<-0 }}}
if (length(x)==1 && x<k) { prob<-0 }
Re(prob)}

# PMF of the waiting time for (kl,k2)-event
dk1k2<-function(x,k1,k2,p){
q<-(1-p)
k<-k1+k2
a<-1/p~k2/q k1
Vi<-function(t,k1,k2,p){
q<-1-p
a<-1/p"k2/q7kl
k<-k1+k2
vi<-k*t" (k-1)-a

45
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vi}
if (k==2) { pol<-c(a,-a,1)} else {
pol<-c(a,-a,rep(0,k-2),1)}
b<-polyroot (pol)
r<-c()
for (i in 1:k){
al<- -1/(V1(b[i],k1,k2,p))
r<-c(r,al)’}
prob<-0
for (i in 1:k){prob<-prob+r[il/(b[i])~ (x+1-k)?}
if (length(x)>1){
for (j in 1:length(x)){
if (x[j1<k ){ prob[jl<-0 }}}
if (length(x)==1 && x<k) { prob<-0 }
Re(prob)}

# PMF of the negative binomial distribution of order 2
dnb2<-function(x,r,p){
q<-1-p
a<-sqrt (q 2+4*p*q)
prob<-0
for (j in 1:1){
b<-choose ((2*r-j-1), (r-j))*choose ((j+x-1), (j-1))*(a/p/q) ~j
b<-b*(((a+q) /2) "~ (j+x)+(-1) "x*((a-q) /2) " (j+x))
prob<-prob+b}
prob<-prob*p~ (3*xr)/(4*p+q) “r
prob}

# CDF of the negative binomial distribution of order 2
pnb2<-function(x,r,p){
q<-1-p
z<-sqrt ((4xp+q) /(p~2%q)) /2
z1<--1/2/p+z
z2<--1/2/p-z
cprob<- 0
for (j in 1:x){
aj1<-0
for (k in 0:(z-j)){
w<-(-1) " (r-j)*choose (2*r-j-k-1,r-1)/(z1-1) "~ (k+1) / (z1-22) " (2*r-j-k)
aji<-ajl + w }
aj2<-0
for (k in 0:(r-jN{
w<-(-1) " (r-j)*choose (2*r-j-k-1,r-1)/(z2-1) " (k+1) / (z2-21) " (2*r-j-k)
aj2<-aj2 + w }
cprob<-cprob+(-1) “j*ajl*choose(x+j-1,j-1)/z1" (j+x)
cprob<-cprob+(-1) ~j*aj2+choose(x+j-1,j-1) /22" (j+x)
}
cprob<-cprob*(-1) " (r+1)*(p/q) "r +1
cprob}
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