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Predictive model selection criteria for relevance vector 

regression models 

Enzuki MATSUDA 

Abstract. \Ne focus on a selection of kernel parameters in the frame-
work of the relevance vector machine (RVM) for regression, called the relevance 
vc'ctor regression (RVR). The RVR can achicn• a sparse model and utilize a 
kernel function similar tu the support vector regression (SVR). ,\ crucial is­
sue in model building process of the RVR is the selection of lile optimal 
values for kernel parameters. ln this paper, we derive a model selection cri­
terion for evaluating the Bayesian predictive distribution of the RVR model 
from information-theoretic viewpoint. 1\Ionte Carlo experiments and real data 
analysis have been presented to demonstrate that the proposed modeling pro­
cedure performs well. 

1. Introduction 

In recent years, nonlinear regression modeling based on basis expansions pro­
vides an efficicnl cool for the data with complex structure and has hccu 
widely use cl i11 V<1.rious fields of nar.ural and social ~ciences e.g., Bishop, 200fi: 
Konishi and Kitagawa, 200"\: Hastie et al., 2009). The essential idea behind bm;is 
expansions is to express an unknown regression function through the linear com­
bination of known nonlinear functions, called basis functions. According to the 
structure of data, various basis functions have been proposed; e.g., natural cubic 
splines and Silverman, 1994), B-splines (Eilers and ::\Iarx, 1996; de Door, 
2001: Imoto and Konishi, 200:3), radial basis fnnctions (Bishop, Ripley, 
Kawano and Konishi, 2007; Ando et aL 2008; Hastie et al., 2000) and thin plate 
splines (Girosi et 1995). These regression models are characterized by a large 
number of parameters to be estimated. However, maximum likelihood and least 
squares methods often yield unstable estimated models. In order to overcome this 
drawback. reguh1rization methods and I3aycsian approach have been widely used 
for the model estimation e.g., Denison et 2002; Figueircdo, 2003; Bishop. 

2006). 
The relevance vector regression (RVR: Tipping, 2000; Tipping, 20()1) connects 

the strength of Bayesian approach and kernel-based methods to construct the re­
gression model based on the relevance vector machine (RVM), vvhose form is similar 
to the support vector regression (SVR; Vapnik, 1995; Vapnik. The RVR. can 
achieve a sparse model with generalization cap<\bility, avoid ovt'r-fitting for rhe 
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observed data and utilize a wide variety of kernel functions comparable to the SVR 
In the RVR, the specific I3ayesian approach with automatic relevance determina­
tion (ARD; ~cal. l!/96) leads In csti1uate the coefficient parameters ,mtomatically 
and sparsely. )Jorcovcr, the RVR has no need to determinate the trade-off param­
eter in the SVH. There are many succ·cssful examples by the RVR in vm-ious fields 
(see, e.g., Liu et al., 2006: Cheng et al., 20B: Bai et al., 2014). 

A crucial issue in the model building process based on the RVR is the selec­
tion of the optimal values for kernel parameters. Tripathi and Govindaraju (2007) 
noted the of this determination by the bias-variance method. 
ln order to overcome this problem. Tipping (20()1) presented the method which 
maximizes the marginal likelihood of the model rec;pcct to the kernel parameters. 
It is, however, known that this method has the difficulty of the implementa,tion, 
so the cross-validation (CV: Stone, 1974) method is suggested (Tipping. 2001: 
Quinonero-Candeh1 and Hansen. 2002). The CV criterion was presented to evalu­
ate the goodness of statistical models from a predictive point of view by separating 
the data into tlw training data and the test data. Hmvcver, this method is known 
as a computationally expensive model selection procedure because of data separa­
tion. Tn order to establish a more effective criterion for the CV, Craven and vVahba 
(1979) introduced the generalized cross-validation (GCV) using the hat matrix of 
the estimated moclel. For this determination problem, Tripathi and Govindaraju 
(2007) suggr;sted the Bayesian information criterion (BIC; Schwarz, 1 as a 
stable model selection criterion. Tlw BIC is a popular evaluation criteriou for sta­
tistical models based on a I3ayesian posterior probability. The Akaike information 
criterion (AIC; Akaike. 1973: Akaike, 197 4) is also popular as a model selection 
criterion vvhich is asymptotically consistent estimator of the Kullback-Leibler di­
Ycrgence (Knl1lmck and Leibler, Hl5L) between a statistical model and an unknown 
True model. Hasite and Tibshirani (1990) presented the modified Akaikc informa­
tion criterion (mAIC) by replacing the number of the parameters with the trace of 
the hat matrix. However, the BIC and mAIC are derived as the model evaluation 
criteria for the statistical models estimated by the maximum likelihood methods 
(:VILE) and thought of as the imperfect criteria for the RVR model theoretically. 

Kitagawn introduuxl a predictive information criterion for eval-
uating the of Bayesian prcclictive distributions for Gaussian regression 
models. which was derived as an estimator of Kullback-Leibler information. The 
PlC has been applied to evaluate various statistical models; e.g., Bayesian regres­
sion models with unknown variance (Kim et al., 2012) and I3ayesian lasso by Park 
and Casella (Kawano et al.. 2014). However, there have been no researches 
on the selection of h;rnel parameter~ of the RVR model:-; by the PlC. In this paper, 
\Ve derive an information criterion to evaluate the I3ayesian predictive dic;tribution 
of the RVR. We select the optimal values of the kernel parameters that minimize 
our model selection criterion. Monte Carlo simulations and real data analysis are 
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conducted to examine the performance~ of our model evaluation method in various 
situations. 

The remainder of this paper is organized as follows. Section 2 describes a frame­
work of the RVR models. In Section 3. ;ye derive a model selection criterion for 
Bayesian predict.in~ distributions of the RVR. Section 1 investigates the perfor­
mances of the proposed criterion through Monte Carlo simulations and real data 
analysis. Some concluding remarks are given in Section 5. 

2. Relevance vector regression n1odels 

Suppose that we haven observations {(yi, x.i); i = 1, · · · , n}, where Xi E JRP are 
p-dimensional vectors of explanatory variables and Yi E lR are response variables. 
Here, we assume that the observed Yi are independently sampled from the regression 
model with noise Ei as follows: 

'!h = u(xi) +c:;. i = 1,· · ·, n. 

where u(-) is an nnknown rcgre~sion function ancl Ei are assumed to be the Gaussian 
noise with mean zero and variance J 2 • According to the basis expansion method, it 
is assumed that the regression function u( ·) can be expressed as a linear combination 
of kernel functiom; as followei: 

n 

u(x:w) = Lw1K(x,xj), 
j=l 

(1) 

where K(·, ·)is a basis function defined for each observation and w = (w1, · · · , wn)T 

is an unknown coefficient vecLur. In the R\'R .. various kernel functions have been 
used nt> a basic; function !1. ·); e.g. Gauss1an kernel (K(x,x') = cxp{-llx 
x'll 2 /2h2} ), polynomial kernel (K(x, x') = (xT x' + c)d) and sigmoid kernel 
(K(x, x') = tanh(bxT x' +c)). These kernel functions are characterized by some 

parameters to be optimized. The optimization of the adjusted parameters 
can be viewed a::; a model c;elt:ction problem. For the detail of kernel functions, we 
refer to Scholkopf and Smola (2001) and Bishop (2006). 

Since the model (1) and the assumption of Gaussian noise E;. we have 
the Gaussian over Vi with mean u(a;.;; w) and variance , namch· 
N(yi;u(x(w),J~). For eom:enience, a hyperparameter /3 is defined as /3 = 1/J2 . 

Thus, the likelihood function can be expressed as 

I ) "§' f '~ B) = ( - eX1) - c'_ 
. \ 27l / i l 2 

- <T?wf(y- <f?w) }· 

where y = (y1 , · · · , Vn)T and <f? = (4>(x1 ), · · · , (,i>(xn))T is the design matrix with 

(,i>(xj) = (K(xJ.xt),···, .xn)f (.j = L -- ,n). 
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Next, we :mppose the Gcm~sian prior distribu1 ion over each cocHicient Wj with 
zero-mean and n1riance l Therefore the distribution over w is given 

p(wia) = IT 2V(wj; 0, o:j 1 ), 

j=l 

(3) 

where a"'- (o 1 ,··· ,on)T is an n-dimensiunal hyperparameter vector and nJ is 
an individual parameter associated independently with each coefficient Wj. Since 

the likelihood function in and the prior distribution over w in (3) are both 
Gaussian distributions, the posterior distribution over w can also be obtained by 
Bayes' theorem as Gaussian distribution 

J.L, 2:)' 

where the n-(limensional 

are respectively given by 
mean vector J.L and nxn coYariance matrix 2.: 

with A= 1 , · · · , on). The estimated value of the coefficicut Yector w is 
by the mean J.L which is the maximum a posterior estimator of 
w. \Ve see that J.L and 2: depend on the value of hypcrparamcters a and 3. Thus, 
the hyperparameters are needed to be optimized. 

In the RVR model building process, the optimal values of hyperparameters a 
and fJ are determined by U:-iing Dayesian evidence procedure vvhich is maximization 
of marginal likelihood or ma.'Ximum likelihood method (Tipping, 2001). 

integrating out the coefficients w, the marginal likelihood is computed as 

p(yia, = J p(yiw. o)p(wia)dw = Nn(y; 0, C), (4) 

where C = +<PA-l <J)T and In is an n x n identity matrix. Here. we define the 

estimated pamrncters a and 3 as a and /3. the derivatiYefi of the marginal 
likelihood ( ±i \Vith respect to a and fJ to zero, we obtain the following estimated 

formulae 

A rJ ( . 1 ) 
Oj = 2 ,.J = , · · · , n , 

J.Lj 

(y- <PJ.L)T (y- <PJ..L) 

n- I:k (k 
(5) 

where J.Lj i::; the j-th element of the posterior mean J..L, and ~u = l - Oj 2:jj. Here 

'i'.J.i is the Jiagonal element of the posteriur covariance mettrix E. ·with Lhe 
mutuality of formulae ( 5), we need to re-estimate and set the initialization of hy­

perparameters. 
For this optimization, Tipping and Faul (2003) proposed a more fast algorithm. 
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called the Sequential Sparse Ba.yesia.n Learning Algorithm, as follows. 

Algorithm 1: A Sequential Sparse Dayesian Learning Algorithm 

1. Initialize a (3. 
2. Initialize a single Cij with basis (P(Xj) by (5) and others arc set to infinity. 
3. Compute J-L and L:, along with the following parameters 0j and qj given by 

etjS1 

aj- SJ, 

OjQJ 

qJ = etj- SJ' 

where = cj:>(xjyrc-1cj:>(xJ) and QJ = cj:>(xJ)TC-1y. 
4. Sdect an ind(;x k from the set of { L 2, · · · , n}. 
a. Compute fh = q~- Sk. 

5-l. If (}k > U and Cik <ex.; cj:>(xk) is in the model). re-estimate Cik. 

5-2. If e, > 0 and Ltk = oo, add cj:>(xk) to the model and compute a,. 
5-3. If Ok ~ 0 and Ctk < oo, remove <f>(xk) from the model and Cik set to infinity. 

6. Cpdate the 3. 
'· Rccompute {L, all s1 and qJ. 

8. Repeat steps 4.-7. until convergence. 

Through thic: optimization. if the hypcrparametcr Cl'k is estimaJ.cd to be infinity, 
the corresponding regression coefficient IL";, can be considered to be exactly zero 
hecause of the form of Lhe prior distribution ( 3). Most of the regression coefficients 
are typically estimated to be zero and corresponding basis functions are removed 
from the model. Consequently, the spar;-;e model is built ba"ccl on a fe1Y lJasis 

functions, called relevance vectors (RV s). 

3. Model selection criterion 

In the model building process based on the RVR, a crucial issue is the selection 
of optimal Yalues for kernel parameters. ThP selection can be vie\vPcl as a 
model :selection and evahwtion problem. In this section, in order to oYercome 
this problem more effectively, we derive a mock! selection criterion to evaluate the 

Bayesian predictive distribution of the RVR 

3.1. Bayesian predictive distribution 
With estimated values & and /3 by the maximization of the marginal likelihood, 

the Bayesian predictive distribution in the framework of the RVR models is given 

by 

h(zly, &, 

where z = (z1 . · · · . Zn)T is a vector of future data generated independentlv of the 
obseryed y, and the mean and covariance matrix 2::"' of the Bayesian predictive 
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distribution are respecti1·ely given 

* - (3A ;r..{~;r..T J.L - '±' ~'~' y' 

where t = ;§q,T <I>) -l and A =- . ···,an)· Hereafter. for simplicit!·, we 
denote h(zjy, 0:, )) as h(zjy). 

3.2. Proposed criterion 
Kitagawa (1997) proposed an iHformation criterion to evaluate the goodness 

of the Bayesian predicti\'e distribution based on the Eullback-Leibler divergence, 
called predictive information criterion (PIC). In this paper. according to Kitagawa 
(1997), we derive the PIC for the RVR models. The PIC for Bayesian models is, 
in general, by 

PIC = -2log h(yjy) + 2Bias, 

where Bias i:-' bias term betiween the log-likelihood and the expected log-likelihood 
as follows: 

Bias= (6) 

where q( ·) is an unknown true distribution and we assume that 

In)= Nn(z: ji, ~), 

\Yhcrc the true mean fL awl covariancc matrix ~ arc giYen by fi = <I>w and f: = 

~-l In. respectin1ly. Under this assumption, the bias term (6) ccm be written as 

Bias = EP(Yifi..J) [log h(yjy) - Ep(zlfi.,J) [log h(zly)]] 

lE [( *)TI:*-'( *) E ll *)T~·-1( *'lJJ = -2 p(yljj.,;l) Y- J.l Y- J..L - p(ziil-,J) (z- J.L Z- J.L ) 

1 {\''-lE J, '\( , T [( '\! *\rl]} =-2tr '·" p(y!fi.. l\Y-J.L J\Y-J.L) - Z-J.L ;,Z-J..L J J 

= -~tr{ 2::*- 1 EP(Yiii.J) [(y- jj,)(jj,- J.L*f + (jj,- J.L*)(y- [if]}· (7) 

Here, the iirsl term of is 
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where H = ,B<Di=<I)T is the hat matrix. Similarly, the second term is given by 

Therefore, the bias term (6) is evaluated as 

B. - 1 .f"*-1£-' [(y- (- "-\1' (-laS - -- tr l L., _, - J.L - J.L") + J.L -

= -~tr{ '£*- 1 (-~- 1H- ZJ- 1H)} 

1tr{I:*- 1 H}. 

Consequently, by replacing the bias term in (8), we obtain 

PlC= n 

- p,fl} 
J. 

(8) 

After estimating the unknown true variance ~- 1 by the maximum marginal 
likelihood estimator 3;:-r~rLE = ~- 1 . we have the PlC in the framework of the RVR 

models as follmv:-o: 

\Ye select the vptimal \Ulucs of the adjusted parameters of kernel functions that 
minimize the PlC. 

3.3. Other selection methods 
3.3.1 Maxirnization of marginal likelihood 

For determining the optimal values for the kernel parameters, Tipping (2001, 
p.~?3-5) introduced the method by m&\:imizing the mmginallikclihood 

p(y!a, B)= lp(yJwJ3)p(w[a)dw = Nn(y: 0, C), 

with respect to kernel parameter. It is. however, pointccl out that this technique has 
the difficulty of rhc implementation, so the cross-validation (CV) is suggE'~tnl as a 
better method for this selection (Tipping, 2001; Quinonero-Candela and Hansen. 
2002). Instead, we consider that the minimization of the negative value of log 
marginal likelihood as follmvs: 



104 K. MATSUDA 

3.3.2 Generalized cross-validation 

From a predictive viewpoint, the goodness of a fitted regression model is or­

dinary measured the predictive squared error (PSE) = ~;~ 1 { z; - u(x;) F jn, 
·where Zi arc future observations and u(x) is the estimated regression function. 
However, it i0 difficult Lo consider :oituatiou0 in which future observations Zi are 
observed. 

The cross-validation (Stone, 1971) is a method to evaluate a statistical model 

from a predictiYe point of view. The h·ave-onc-out CV or n-fold CV ( = ~~~1 
u(-il(x-i)}2 /n) was introduced as the estimator of the PSE by separating the data 
used for model estimation and model evaluation, where ( x) is the regression 

function constructed by the u-1 observations removed the i-th observation 
However, this method i:-; known as the evaluation method with computationally 

expensive because of the data separation. In ore! er to overcome this rli:fficulty, 
Craven and Wahba (1979) introduced the more generalized cross-validation (GCV) 
giYen by 

1 '\"'n {· A ( ). }2 
GCV = - L..i=l ili - 1I Xi 

n {1-tr(H)/nP ' 

where His the hat matrix. The GCV can alleviate the high computational co"t of 
the CVs. For the detail of the cross-validation methods, \ve refer to Stone (1974), 
Geisser (l!J75), Efron (1982) and Konishi and Kitagawa (2008). 

3.3.3 Information criteria 

Akaike information criterion Aka.ike, 1973: Akaike, 1974) was proposed 

for evaluating the goodness of statistical models from a predictive point of view 
through the Kullback-Leibler information (Kullback and Leibler, 1951) between 

the statistical models and a true modeL 
Hastic and Tibshirani (lD90) introduced the modified Akaikc information crite­

rion (mAIC) by replacing the nnmber of efficient parameters in AIC with the trace 
of the hat matrix H. The mAIC for the RVR model is given by 

~ o , T 
mAIC = n log(21T)- n. (3 + 3(y- (Pw) · (y-

+2tr{JiP(A + ~q,T iP)- 1 iPT}. 

The Baycc;ian information criterion (BIC) proposed by Sdnvarz (197,'\) is a 
model evaluation criterion of statistical models obtained from a Bayesian viewpoint. 

In a similar way to obtain the mAIC, we consider the BIC given by 

A A 1 
I3IC=rl.log(21r)-n 3+3(y-iPtv) (y-iP·w) 

+log(n)tr{tJ<I>(A + /:l<I>T<I>)- 1 <I>r}. 
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vVe select the optimal Yalue:o for kernel parameters that minimize these model 
selection and cnduation critcrin. 

4. Numerical examples 

4.1. l\1onte Carlo simulations 
For the ~imulated study. the repeated random samples { (Yi· .r i): i = 1, · · .. n} 

with n = :25. 50 or 100 wen; from a true regression model .ih = u( xi) + E i. 

Here, we considered the true regression models 

u1 (x) = sin(211x3 ), 

u 2 = 3 exp( -3.r) 

(9) 

(10) 

where the points x, are randomly distributed in [0, 1] and the error c; are 
independently, normally distributed with mean zero and variance o-2 = O.fl. 0.152 

or 0.22 . Figure 1 shmv-s the true regression curves. 
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Figure 1: The true regrec.sion curves for Monte Carlo simulation:; (left, u1 (:r); 
right, u2(x)). 

For the analyses of the simulated data, we considered the RVR models with the 
Gaussian kernel fmctions 

j = L··· ,n, 

where h 2 is the adjusted parameter of dispersion. vVe set the candidate values of 
the width h2 to . 0.11 2 , · · · . 0.:302 } and chose the optimal value of 
this parameter that minimizes the evaluation criteria; i.e., ML. GCV, mAIC, BIC 

and our proposed PlC. 



106 K. MATSUDA 

\Ye repeated I 000 times in each sirnation and then computed the number of 
relevance vectoro; (RVs) a::> the measure of the sparsity, the mean o;quared error 
(MSE) defincd by MSE = 2::::~~ 1 {Yi - u(xi) p /n as the goodness of fitting for the 
observed data and the PSE = 2:::;~ 1 {.z; fi(x;)} 2 jn as the goodness of predicth'c 
capability, when• Zi are the future observations genei'ated from tntc regi"essicm 
models (9) and (10 ). Tables 1 to 6 shovv the simulation results with the mean values 
(MEAN) and standard deviations (SD) for RVs, ~ISE and PSE, respectively. 

From simulation results, mu proposed PIC criterion has the bf'st fitting anrl 
prediction accuracies (lmv :"JSE and PSE) especially in the cases such ns small n.. 

and tends to choose the model with the low sparsity (i.e., large value of the number 
of RVs) than other criteria. The GCV and mAIC are the second best criteria on 
the :\1SE and PSE. Howen~r, the l\IL and BIC criteria often fail to select a good 
model with unstable SD and tend to obtain models with high sparsity. 

Table 1: Comparison of simulation results for the true function u 1 (;r) with CY = 0.1. 

RVs l\1SE PSE 
Criterion MEAN(SD) MEAN(SD)xl0- 3 MEAN(SD) 10- 2 

(n = 25) 
:ML 4.043 (1.193) 8.149 (3.392) 1.444 (0.463) 

GCV 4.~164 (1.060) 7.fi43 (2.945) 1.398 (0.442) 
mAIC 4.382 (1 7.5:34 1.397 (0.-.!42) 
BIC 4.209 (1.089) 7.li.)5 (2.9~18) 1.408 (0.448) 
PIC 4.412 (1.052) 7.511 (2.929) 1.395 (0.442) 

(n = 50) 
ML 4.972 (1.132) 8. 786 (2.059) 1.256 (0.260) 

GCV 5.092 (1.092) 8.551 (1.964) 1.226 (0.254) 
mAIC 5.108 (1.091) 8.547 (1.964) 1.226 (0.234) 
BIC 4.821 ( 8 666 (1.998) 1.233 (Q.2;:J8) 
PIC 5.151 (1.112) 8.536 ( 1.962) 1.225 (0.254) 

(n = 100) 
ML 5.567 (1.185) 9.307 (1.375) 1.134 (0.173) 

GCV 6.356 D.J88 ( 1.118 (0.1 
mAIC 6.388 9.18;5 (Li43) 1.118 (O.lfi6) 
BIC 5.441 (1.286) 9.302 (1.367) 1.121 (0.169) 
PlC 6.621 (3.652) 9.174 (1.344) 1.118 (0.166) 

4.2. Real data analyses 
vVe analyzed the fossil data (Bralower et al.. 1997). using nonlinear modeling 

procedures. The fossil data from SemiPar package (Ruppert et al .. 2003) in I\ 
hac; 106 obsen:ations on fossil shells. The data consist of the age in millions of 
years as x and the ratios of strontium isotopes as y. At first, we demonstrated 
the performances of our proposed PIC and other model selection criteria by using 
a sub::;et of the data for and the remaiuders for training. \Ve fitted our 
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Table 2: Comparison of simulation results for the true function u 1 (x) with a= O.LS. 

RVs MSE PSE 
Criterion MEAN(SD) MEAN(SD)xlO 2 MEAN(SD) x 10-2 

(n = 2ii) 
J'viL 3.55:.2 ( 1.144) 1824 (0.69!)) 3 191 (0.964) 

GCV 3 903 (1.05:3) 1.703 (0.638) 3.109 (0.923) 
mAIC 3.950 (1.042) 1.697 (0.633) 3.107 (0.921) 
BIC' 3.736 (1.075) 1.727 (0.648) U21 (0.927) 
PIC 3.975 ( UJ29) 1.694 (0.63:3) 3.104 (0.920) 

(n =50) 
l\IL 4.426 (1.149) 1.967 (0.446) 2.802 (0.601) 

GCV 4.607 (1.053) 1923 (0.426) 2.746 (0.587) 
mAIC 4.622 (1.050) 1.922 (0.4:.25) 2.746 (0.586) 
BIC 4.:353 (1.078) 1.944 (0.431) 2.705 (0.591) 
PIC 4.631 (1.054) 1.920 (0.425) 2.744 (0.584) 

(n = 100) 
ML 5.219 (Ul6) 2.084 (0.329) 2.;)47 (0.371) 
GC\~ 5.410 ( 1.624) 2.062 2.0 w (0.3o9) 
mAIC 5.422 (1.622) 2.062 (0.324) 2.510 (0.369) 
BIC 5.074 (1.212) 2.079 (0.326) 2.518 (0.:371) 
PIC 5.507 (1.713) 2.060 (0.324) 2.509 (0.3CiD) 

Table 3: Comparison of simulation results for the true function 111(x) with a= 0.2. 

RVs MSE PSE 
Criterion MEAN(SD) MEAN(SD)xl0- 2 MEAN(SD)xl0- 2 

(n = 25) 
ML :3.20G ( UJS6) :3.238 (1.281) 5.4:32 (1.685) 

GCV 3.57-! (UllO) 3 039 (1. 5.:H4 (1.647) 
mAlC ~t599 (1.010) 3.034 (1.186) 5.339 (1.645) 
me 3.379 (1.021) 3.087 (1.209) 5.364 (1.663) 
pi(' 3.635 (1.005) 3.026 (1182) 5.334 (1.642) 

(n =50) 
ML :3.993 (1.135) 3.575 (0.840) -!.960 (1.035) 

GCV 4.251 (1.026) 3.478 (0.809) 4.874 (1.007) 
mAIC 4.261 (1.027) 3.477 (0.808) 4.873 (1.007) 
BIC 3.97G (1.030) :3.:522 4912 (1.023) 
PlC 4.275 (1.018) 3.474 (0.806) 4.870 ( 1.008) 

(n = 100) 
::..rL 4.843 (1.258) 3.757 (0.576) 4.486 (0.645) 

GCV 5.020 (1.312) 3 716 (0.562) 4.432 (0.630) 
mAlC 5.029 (1.312) 3. 716 (0.562) 4.432 (0.630) 
BIC 4.660 (1.203) 3.746 (0.569) 4.458 (0.639) 
PIC 5.068 (1.339) 3.714 (0.561) 4.430 (0.628) 
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Table 4: Comparison of simulation results for the true function u 2 (x) with J = 0.1. 

RVs l\ISE PSE 
Criterion MEAN(SD) MEAN(SD)xlO 3 MEAN(SD)x10 

- ., 

(n = 25) 
:.\IL 4.211 (0.938) 7.940 (3.035) 1.445 (0.45~1) 

GCV 4.478 ( 1.0-I'J) i. 1()2 (2.646) Ll97 (lJ.422) 
mAIC 4.517 (1.071) 7.147 (2.642) 1.30G (0.421) 
BIC 4.326 (1.019) 7.264 (2.67 4) 1.404 (0.424) 
PIC 4.572 (1.084) 7.116 (2.622) 1.394 (0.421) 

(n = 50) 
.NIL 4.708 9.010 (2.143) 1.:27 4 (0.269) 

GCV 5.766 B.-109 (1.944) 1.228 (0.258) 
mAIC 5.802 (1.950) 8.402 (1.942) 1.228 (0.258) 
BIC 5.252 (1.691) 8.540 (UJ84) 1.235 (0.260) 
PIC 5.898 (2 Ofi2) 8.387 (1.940) 1.226 (0.257) 

(n = 100) 
ML 5.157 (1.143) 9.545 (1.460) 1.142 (0.166) 

GCV 7.490 (3.967) 9.169 (1.369) 1.111 (0.161) 
mAIC 7.504 (3.962) 9.166 (1.368) 1.111 (0.161) 
BIC 6.338 (2.862) 9.:302 (1.384) 1.11) (0.164) 
PIC 7.750 (:1.150) 9.150 (1.366) 1.110 (0.160) 

Table 5: Compmison of simulation re;;ults for the true function u2 (x) with 0' = 0.15. 

RVs MSE PSE 
Criterion MEAN(SD) MEAN(SD)xl0- 2 MEAN(SD) x 10- 2 

(n = 25) 
1\IL 3. 799 (0.955) 1. 732 (0.660) 3.126 (0.922) 

GCV 4.008 1.610 (0.595) 3.064 (0.895) 
mAIC 4.032 l.G06 (0.593) 3.06:3 (0.89:3) 
BTC 3.843 (0.986) 1.638 (0.610) 3.069 (0.889) 
PIC 4.062 (0.987) 1.601 (0.590) 3.057 (0.893) 

(n = 50) 
ML 4.289 (0.908) 2.025 (0.454) 2. T14 (0.568) 

GC\' 4.844 ( UJ:i:2 (0.424) 2.686 (0.540) 
mAIC 4.853 (1.582) 1.931 (0.424) 2.685 (0.540) 
BIC 4.:396 (1.194) 1.960 (0.434) 2. 704 (0.548) 
PIC 5.017 (1718) 1.927 (0.423) 2.684 (0.540) 

(n = lOO) 
ML 4.738 (1.098) :2.125 (0.315) 2.582 (0.374) 

GCV 6.228 (2.902) 2.057 (0.299) 2.522 (0.359) 
mAIC 6.253 (2.908) 2.057 (0.299) 2.521 (0.359) 
BIC 5.426 2.078 (0.304) 2.5:)() (0.361) 
PlC 6.438 (:3.010) 2.054 (0.298) 2.519 (0.359) 
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Table 6: Compi1Tison or simulation re~u!ts for the true function Uc with O" = 0.2. 

RVs MSE PSE 
Criterion MEAN(SD) MEAN(SD)x10- 2 MEAN(SD)xl0- 2 

(n = :2"i) 
ML 3.54:2 (0.975) 3.044 (1.102) 5.41:3 ( 1.613) 

GCV :3.694 (0.9:34) 2.884 ( 1.0:35) 5.363 (1.591) 
mAIC :Cl. 713 (0.965) 2.880 (1.0.54) .5.365 (1.59 1) 
BTC 3.565 (0.964) 2.919 (1.070) 5.38.5 (1.600) 
PlC 3.748 (O.D68) 2.870 (1.047) 5.356 ( L594) 

(n ==50) 
.\IL 4.029 (0.950) 3.:344 (0. 785) 4.850 (1.027) 

GCV 4.307 (1.275) 3.431 (0. 759) 4.772 (1.010) 
mAIC 4.348 (1.:H8) :).429 ( 0. 758) 4.771 (1010) 
BIC 3.937 ( 1.008) 3.472 (0.767) 4.801 ( 1.014) 
PIC 4.4:)0 (1.4:l3) 3.423 (0. 756) 4. 768 (1.007) 

(n = 100) 
ML 4.43"1 (1.060) 3. 788 (0.564) 4.540 (0.657) 

GC\ 5.356 (2.215) 3 690 (0.544) 4.46:2 (O.ti43) 
mAIC 5.363 (2.218) 3.690 (0.544) 4.462 (0.643) 
BIC 4.643 (1.594) 3. 729 (0.550) 4.487 (0.647) 
PIC 5.624 (2.482) 3.685 (0.544) 4.456 (0.643) 

modeling procedure for the complete data at the second. 
We selected a random subset of size m ( = lO or 20) from the fos;.;il data for 

testing. and fitted our modeling procedure based on the RVR with Ganssian ker­
nel fnnctions to the rernair:clers. Here. we set the candidate v-alue::; of the kernel 
parameter h2 to { 4.02 , 4.1 ~, · · · , 8.02 } and chose the optimal v-alue of h2 that min­
imizes the model selection criteria. We repeated this procedure 1000 times in each 
situation and then computed the mean predictive error for the teRt data. Table 7 
shows the result with the mean v-ahtes (:YIEAN) and standard deviations for 
the mean predicLive error. From this results, we pointed out that the PlC based 
modeling gives a stable model estimate afi compared with other techniques. 

Secondly, \Vc fitted our modeling procedure to the complete fossil data using 
the same canc:iclate values fur the \vidth parameter as described abov-e. 
PIC, GCV and mAIC selected h2 = 4.92 , ).IL selected h2 = 5.32 , and BIC selected 
h2 = 6.02 , respectively. Figure 2 shows the fitted curves for the fossil data. 

5. Concluding remarks 

This paper considered the model selection and evaluation problen1 of the rele­
vance vector regression (RVR) models, which is the determination of the optimal 
values for the kernel pannueLers. In order to evaluate the RVR. models more effec­

tively, we derived the model selection criterion for evaluating a Bayesian predictive 
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Figure 2: The fossil data (upper left) and fitted curves (upper right, PlC, 
GCV and mAIC; lower left, ML: lower right, l3IC). 
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Table Comparison results for the fo~~il data with data separation, 

Criterion 
(m= 10) 

\lL 
GCV 
mAIC 
BIC 
PfC 

(m~ 20) 
ML 

GCV 
mAIC 
me 
PIC 

Mean predictive error 
MEAN(SD) x 10- 10 

/,761 (:3.444) 
7.:3:3 I (:3.215) 
7.400 (3.223) 

7.439 (3.320) 

7.302 (3.203) 

7.939 (2.306) 
7.363 (2.102) 

7.402 (2.114) 
1.,165 (2.185) 

7.355 (2.098) 

di::;tribution i11 the framework of the RVR l\Iontc Carlo experiment::; and real data 
analysis showed that our proposed modeling procedure performs well in various 
situations. The simulation results suggested that our PlC has better fitting and 
predictive accuracies compared with other Jnodcl selection criteria. 
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