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Predictive model selection criteria for relevance vector

regression models

Kazuki MATSUDA

Abstract. We focus on a selection of kernel parameters in the frame-
work of the relevance vector machine (RVM) for regression, called the relevance
vector regression (RVR). The RVR can achieve a sparse model and utilize a
kernel function similar to the support vector regression (SVR). A crucial is-
sue in the model building process of the RVR is the selection of the optimal
values for kernel parameters. In this paper, we derive a model selection cri-
terion for evaluating the Bayesian predictive distribution of the RVR maodel
from information-theoretic viewpoint. Monte Carlo experiments and real data
analysis have been presented to demonstrate that the proposed modeling pro-
cedure performs well.

1. Introduction

In recent years, nonlinear regression modeling based on basis expansions pro-
vides an efficient tool for analyzing the data with complex structure and has been
widely used in various fields of natural and social sciences (see, e.g., Bishop, 2006;
Konishi and Kitagawa, 2008; Hastie et al., 2009). The essential idea behind basis
expansions Is to express an unknown regression function through the linear com-
bination of known nonlinear functions, called basis functions. According to the
structure of data, various basis functions have been proposed; e.g., natural cubic
splines (Green and Silverman, 1994), B-splines (Eilers and Marx, 1996; de Boor,
2001; Imoto and Konishi, 2003), radial basis functions (Bishop, 1995; Ripley, 1996;
Kawano and Konishi, 2007; Ando et ol., 2008; Hastie et al., 2009) and thin plate
splines (Girosi et al.. 1995). These regression models are characterized by a large
number of parameters to be estimated. However, maximum likelihood and least
squares methods often yield unstable estimated models. In order to overcome this
drawback, regularization methods and Bayesian approach have been widely used
for the model estimation (see, e.g., Denison et al., 2002; Figueiredo, 2003; Bishop,
2006).

The relevance vector regression {RVR: Tipping, 2000; Tipping, 2001) connects
the strength of Bayesian approach and kernel-based methods to construct the re-
gression model based on the relevance vector machine (RVM), whose form is similar
to the support vector regression (SVR; Vapnik, 1995; Vapnik, 1998). The RVR can
achieve a sparse model with good generalization capability, avoid over-fitting for the
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observed data and utilize a wide variety of kernel functions comparable to the SVR.
In the RVR, the specific Bayesian approach with antomatic relevance determina-
tion (ARD; Neal, 1996) leads to estimate the coefficient parameters automatically
and sparsely. Moreover, the RVR has no need to determinate the trade-off param-
eter in the SVR. There are many successful examples by the RVR in various fields
(see. e.g., Liu et al, 2006; Cheng et al., 2013; Bai et al, 2014).

A crucial issue in the model building process basced on the RVR is the selec-
tion of the optimal values for kernel parameters. Tripathi and Govindaraju (2007)
noted the significance of this determination by using the bias-variance method.
In order to overcome this problem, Tipping (2001) presented the method which
maximizes the marginal likelihood of the model respect to the kernel parameters.
It is. however, known that this method has the difficulty of the implementation,
so the cross-validation (CV; Stone, 1974) method is suggested (Tipping, 2001;
Quinonero-Candela and Hansen, 2002). The CV criterion was presented to evalu-
ate the goodness of statistical models from a predictive point of view by separating
the data into the training data and the test data. However, this method is known
as a computationally expensive model selection procedure because of data separa-
tion. In order to establish a more effertive criterion for the CV, Craven and Wahba,
(1979) introduced the generalized cross-validation (GCV) using the hat matrix of
the estimated model. For this determination problem, Tripathi and Govindaraju
(2007) suggested the Bayesian information eriterion (BIC; Schwarz, 1978) as a
stable model selection criterion. The BIC is a popular evaluation criterion for sta-
tistical models based on a Bayesian posterior probability. The Akaike information
criterion (AIC; Akaike, 1973; Akaike, 1974) is also popular as a model selection
criterion which is asymptotically consistent estimator of the Kullback-Leibler di-
vergence (Kullback and Leibler, 1951) between a statistical model and an unknown
true model. Hasite and Tibshirani (1990) presented the modified Akaike informa-
tion criterion (mAIC) by replacing the number of the parameters with the trace of
the hat matrix. However, the BIC and mAIC are derived as the model evaluation
criteria for the statistical models estimated by the maximum likelihood methods
(MLE) and thought of as the imperfect criteria for the RVR model theoretically.

Kitagawa (1997) introduced a predictive information criterion (PIC) for eval-
uating the goodness of Bayesian predictive distributions for Gaussian regression
models, which was derived as an estimator of Kullback-Leibler information. The
PIC has been applied to evaluate various statistical models; e.g., Bayesian regres-
sion models with unknown variance (Kim et al., 2012) and Bayesian lasso by Park
and Casella (2008) (Kawano et al., 2014). However, there have been no researches
on the selection of kernel parameters of the RVR models by the PIC. In this paper,
we derive an information criterion to evaluate the Bayesian predictive distribution
of the RVR. We select the optimal values of the kernel parameters that minimize
our model selection criterion. Monte Carlo simulations and real data analysis are
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conducted to examine the performances of our model evaluation method in various
situations.

The remainder of this paper is organized as follows. Section 2 describes a frame-
work of the RVR models. In Section 3, we derive a model selection criterion for
Bayesian predictive distributions of the RVR. Section 4 investigates the perfor-
mances of the proposed criterion through Monte Carlo simulations and real data
analysis. Some concluding remarks are given in Section 5.

2. Relevance vector regression models

Suppose that we have n observations {(y;, #;);¢ = 1,--- ,n}, where x; € R” are
p-dimensional vectors of explanatory variables and y; € R are response variables.
Here, we assume that the observed y; are independently sampled from the regression
model with noise g; as follows:

yi =ulzy) +e =1 0,

where u(-) is an unknown regression function and ; are assumed to be the Gaussian
noise with mean zero and variance o. According to the basis expansion method, it
is assurned that the regression function u(-) can be expressed as a linear combination
of kernel functions as follows: ‘

u(z;w) = Z’u,'jK(m,ccj). (1)

j=1

where K(-,-) is a basis function defined for each observation and w = (w1, -+ ,w,)?
is an unknown coefficient vector. In the RVR, various kernel functions have been
used as a basis function K(-,-); e.g., Gaussian kernel (K(z,2') = exp{~||lx —
x'[12/2h%}), polynomial kernel (K(z,z') = (272’ + ¢)?) and sigmoid kernel
(K(x,2') = tanh(bxzT2’ + ¢)). These kernel functions are characterized by some
adjusted parameters to be optimized. The optimization of the adjusted parameters
can be viewed as a model selection problem. For the detail of kernel functions, we
refer to Scholkopf and Smola (2001) and Bishop (2006).

Since the model (1) and the assumption of Gaussian noise ¢;, we have
the Gaussian density over y; with mean w(x;;w) and variance o2
N(ys; u(xs; w),0?). For convenience, a hyperparameter 3 is defined as 3 = 1/02.
Thus, the likelihood function can be expressed as

, namely

)

w5 = (£) o] - 2y oww - ww), @)

where y = (y1,- - .yn)” and ® = (¢(x1).--- , d(zn))T is the design matrix with

/

o(x;) = (K(@j,21). - Kz 2,)T (=1 n).
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Next, we suppose the Gaussian prior distribution over each coefficient w; with
zero-mean and variance a]."l. Therefore the prior distribution over w is given by

7

p(wla) = H N{w;;0, a.j"l).. (3)
=

where a = (a1,--+ ,0,)7 is an n-dimensional hyperparameter vector and oy is

an individual parameter associated independently with each coefficient w;. Since

the likelihood function in (2) and the prior distribution over w in (3) are both

Gaussian distributions, the posterior distribution over w can also be obtained by
Bayes’ theorem as Gaussian distribution

p(/w‘yvaaﬁ) = “Nn,(w; 122 Z),

where the n-dimensional posterior mean vector g and nxn covariance matrix X
are respectively given by ‘

p=prely, ¥ =(A+p070)7L

with A = diag(aq, -+, o). The estimated value of the coefficient vector w is given
by the posterior mean g which is the maximum a posterior (MAP) estimator of
w. We see that p and ¥ depend on the value of hyperparameters av and 3. Thus,
the hyperparameters are needed to be optimized.

In the RVR model building process, the optimal values of hyvperparameters «
and 8 are determined by using Bayesian evidence procedure which is maximization
of marginal likelihood or type-II maximum likelihood method (Tipping, 2001). By
integrating out the coefficients w, the marginal likelihood is computed as

pyla ) = / p(ylw, B)p(wla)dw = Ny (y;0,C), (4)

where C = 371, +®A~ 10T and I, is an nxn identity matrix. Here, we define the
estimated parameters &¢ and S8 as & and . Setting the derivatives of the marginal
likelihood (4) with respect to e and 3 to zero, we obtain the following estimated

formulae
Y v (y—ou)T(y—dp -
b=l (ot ), pri @O Bw) .
Hj n=> Yk

where 15 is the j-th clement of the posterior mean g2, and v; = 1 — «;¥;;. Here
¥;; is the j-th diagonal element of the posterior covariance matrix . With the
mutuality of formulae (5), we need to re-estimate and set the initialization of hy-
perparameters.

For this optimization, Tipping and Faul (2003) proposed a more fast algorithm,
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called the Sequential Sparse Bayesian Learning Algorithm, as follows.

Algorithm 1: A Sequential Sparse Bayesian Learning Algorithm

. Initialize a 3.
. Initialize a single «; with basis ¢(2;) by (5) and others arc set to infinity.
. Compute p and ¥, along with the following parameters s; and ¢; given by

W DO

@ 5; 4 = ;&
O@‘Sj’ ’ ij—Sj:

where S; = ¢(z;)"C ' ¢(x;) and Q; = ¢(z;)" C'y.

4. Select an index k from the set of {1,2,--- ,n}.
. Compute 0y = g — Sk-

5-1. If 6, > 0 and ar < oo (i.e., ¢(z) is in the model), re-estimate cvy.

5-2. If 6 > 0 and ax = oo, add ¢(xx) to the model and compute ay.

5-3. If 6, < 0 and oy < oo, remove @{xy) from the model and «y set to infinity.
. Update the 3.

. Recompute %, p, all s; and g;.
. Repeat steps 4.-7. until convergence.

S5 =

(@11

-1

o]

Through this optimization, if the hyperparameter «y is estimated to be infinity,
the corresponding regression coefficient wy can be considered to be exactly zero
because of the form of the prior distribution (3). Most of the regression coefficients
are typically estimated to be zero and corresponding basis functions are removed
from the model. Consequently, the sparse model is built based on a few basis
functions, called relevance vectors (RVs).

3. Model selection criterion

In the model building process based on the RVR, a crucial issue is the selection
of the optimal values for kernel parameters. The selection can be viewed as a
model sclection and evaluation problem. In this section, in order to overcome
this problem more effectively, we derive a model selection criterion to evaluate the
Bayesian predictive distribution of the RVR.

3.1. Bayesian predictive distribution
With estimated values & and 8 by the maximization of the marginal likelihood,
the Bayesian predictive distribution in the framework of the RVR models is given
by

hizly, &, B) = /p(z[w,ﬁ)p(wm,d,é)dw = N, (z; p*, 5%,

where z = (21,--- . 2,)7 is a vector of future data generated independently of the
observed y, and the mean p* and covariance matrix £* of the Bayesian predictive
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distribution are respectively given by
= 3030 Ty, ©* =B, + ond’,

where 3 = (A + B(ET(I))”’ and A = diag(éy, - - , &), Hereafter, for simplicity, we
denote h(z|y, &, 8) as h(z|y).

3.2. Proposed criterion
Kitagawa (1997) proposed an information criterion to evaluate the goodness
of the Bayesian predictive distribution based on the Kullback-Leibler divergence,
called predictive information criterion (PIC). In this paper, according to Kitagawa
(1997), we derive the PIC for the RVR models. The PIC for Bayesian models is,
in general, given by

PIC = —2log h(y|y) + 2Bias,

where Bias is a bias term between the log-likelihood and the expected log-likelihood
as follows:

: . [
Bias = £, {k)g h(yly) — Eqz) i-}og h(z!y}H , (6)
where ¢(+) is an unknown true distribution and we assume that

q(z) = p(z|w, ) = No(z; 8w, 6711,) = Nu(z; i, 1),

where the true mean f and covariance matrix ¥ are given by L= ®wand ¥ =
B, respectively. Under this assumption, the bias term (6) can be written as

Bias = E,,14.4) [logh( [Y) = Eyz15.5) {logh(zly)”

! * 1 * T xyx—1 *«1
= 3 Phwing [@ EOTET W= 0 = By {<z —p)'E Tz p )”
— 1 + 2*71}7 T E L (s *)/ _ *)TW‘
B ptwin, ) |~ 1@ = B7) = Epp g (2—p))(z —p |
1 *= -~ * ~
= “Tj‘t‘f{z "Bptuias { p (B )y - u)T} } (7)

Here, the first term of (7) is
Eyyas | @—m@—pn)"t
p(yla,5) /

= Lyl g [(y M-y +ly-py-H y)ﬂ
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= _[}—1[71 + BAlIn(In, - H)T
= 37'H,

where H = 33387 is the hat matrix. Similarly, the second term is given by
Eotyipf) W - )y - ﬂ)T} ~ —37'H.
Therefore, the bias term (6) is evaluated as

~ s ~ ~N\

. L - x :
Bw.s=~§trjlﬂ 1Ep(ym,g>{(y—u>(u—u*) + (A= p" )y — R

s
1
N e’

= _%tr{z*“l(—ﬁ“lH — 3—11{)}
= Bl {=* T HY. (8)
Consequently, by replacing the bias term in (8), we obtain
PIC = nlog(2r) + log || + (y — p*) S Ny — pu*) + 25 e {Z 7 HY.

After estimating the unknown true variance /3’_1 by the maximum marginal
likelihood estimator 31\’,111\&13 = 371, we have the PIC in the framework of the RVR
models as follows:

PIC = nlog(27) 4 log |X*| 4 (y — p*) T8y — ") + 285 ptr{Z T HY.

We select the optimal values of the adjusted parameters of kernel functions that
minimize the PIC.

3.3. Other selection methods
3.3.1 Maximization of marginal likelihood

For determining the optimal values for the kernel parameters, Tipping (2001,
p-235) introduced the method by maximizing the marginal likelihood

plyle, 8) = / p(y|w, B)p(w|a)dw = N, (y;0,C),

with respect to kernel parameter. It is, however, pointed out that this technique has
the difficulty of the implementation, so the cross-validation (CV) is suggested as a
better method for this selection (Tipping, 2001; Quinonero-Candela and Hansen,
2002). Instead, we consider that the minimization of the negative value of log
marginal likelthood as follows:

ML = nlog(2x) + log |37, + A~ 07| + yT (7L, + BATI®T) 1y,
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3.3.2 Generalized cross-validation

From a predictive viewpoint, the goodness of a fitted regression model is or-
dinary measured by the predictive squared error (PSE) = 37 {2 — a(z;)}?/n,
where z; are futurc observations and 4(x) is the estimated regression function.
However, it is difficult to consider situations in which future observations z; are
observed.

The cross-validation (Stone, 1971) is a method to evaluate a statistical model
from a predictive point of view. The leave-one-out CV or n-fold CV (= 31 {y: —
a9 (x,;)}?/n) was introduced as the estimator of the PSE by separating the data
used for model estimation and model evaluation, where 4( ¥ (x) is the regression
function constructed by the n—1 observations removed the i-th observation (y;, x;).
However, this method is known as the evaluation method with computationally
expensive because of the data separation. In order to overcome this difficulty,
Craven and Wahba (1979) introduced the more generalized cross-validation (GCV)
given by

1Yy aw)?
OV = T amynp

where H is the hat matrix. The GCV can alleviate the high computational cost of
the CVs. For the detail of the cross-validation methods, we refer to Stone (1974),
Geisser (1975), Efron (1982) and Konishi and Kitagawa (2008).

3.3.3 Information criteria

Akaike information criterion (AIC; Akaike, 1973; Akaike, 1974) was proposed
for evaluating the goodness of statistical models from a predictive point of view
through the Kullback-Leibler information (Kullback and Leibler, 1951) between
the statistical models and a true model.

Hastie and Tibshirani (1990) introduced the modified Akaike information crite-
rion (mAIC) by replacing the number of efficient parameters in AIC with the trace
of the hat matrix H. The mAIC for the RVR model is given by

mAIC = nlog(27) — nlog B + Ay — dw)7 (y — )
+2tr{ 3B (A + ppT®) a7}
The Bayesian information criterion (BIC) proposed by Schwarz (1978) is a

model evaluation criterion of statistical models obtained from a Bayesian viewpoint.
In a similar way to obtain the mAIC, we consider the BIC given by

BIC = nlog(2r) — nlog 3+ By — ®w)" (y — )
+ log(n)tr{ﬁ@(fl + ,j(pTcp) "1®T}_
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We select the optimal values for kernel parameters that minimize these model
selection and evaluation criteria.

4. Numerical examples

4.1. Monte Carlo simulations
For the simulated study, the repeated random samples {(y;.z;);i = 1,--- ,n}
with n = 25,50 or 100 were generated from a true regression model y; = u(x;) +¢;.
Here, we considered the true regression models

up(z) = sin(272?), (9)
us(x) = 3exp(—3z) sin(3nz), (10)

where the design points x; are randomly distributed in [0,1] and the error ¢; are
independently, normally distributed with mean zero and variance o2 = 0.12,0.152
or 0.2%. Figure 1 shows the true regression curves.
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Figure 1: The true regression curves for Monte Carlo simulations (left, uq(z);
right, ua(x)).

For the analyses of the simulated data, we considered the RVR models with the
Gaussian kernel functions

lp — .12
k(m,x,-):exP{A‘i_m?H }T j=1.---,n,

/ 2h2

where h? is the adjusted parameter of dispersion. We set the candidate values of
the width parameter h? to {0.10%,0.11%,--- ,0.30%} and chose the optimal value of
this parameter that minimizes the evaluation criteria; i.e., ML, GCV, mAIC, BIC
and our proposed PIC.
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We repeated 1000 times in each situation and then computed the number of
relevance vectors (RVs) as the measure of the sparsity, the mean squared error
(MSE) defined by MSE == Z?:l{yl - ’zl(a:z)}2 /n as the goodness of fitting for the
observed data and the PSE = 37" {z; ~ (
capability, where z; are the future obbenatmns generated from true regression
models (9) and (10). Tables 1 to 6 show the simulation results with the mean values
(MEAN) and standard deviations (SD) for RVs, MSE and PSE, respectively.

From simulation results, our proposed PIC criterion has the best fitting and

z;)}?/n as the goodness of predictive

prediction accuracies (low MSE and PSE) especially in the cases such as small n,
and tends to choose the model with the low sparsity (i.e., large value of the number
of RVs) than other criteria. The GCV and mAIC are the second best criteria on
the MSE and PSE. However, the ML and BIC criteria often fail to select a good
model with unstable SD and tend to obtain models with high sparsity.

Table 1: Comparison of simulation results for the true function ui(z) with o = 0.1.

RVs MSE PSE
Criterion MEAN(SD) MEAN(SD)x10~> MEAN(SD)x10~2
(n = 25)

ML 4.043 (1.193) 8.149 (3.392) 1.444 (0.463)
GCV 4.364 (1.060) 7.543 (2.945) 1.398 (0.442)
mAIC  4.382 (1.058) 7.534 (2.938) 1.397 (0.442)

BIC 4.209 (1.089) 7.655 (2.998) 1.408 (0.448)

PIC 4.412 (1.052) 7.511 (2.929) 1.395 (0.442)

(n = 50)

ML 4.972 (1.132) 8.786 (2.059) 1.256 (0.260)
GCV 5.002 (1.092) 8.551 (1.964) 1.226 (0.254)
mAIC 5108 (1.091) 8.547 (1.964) 1.226 (0.254)

BIC 4.821 (1.076) 8.666 (1.998) 1.233 (0.258)

PIC 5.151 (1.112) 8.536 (1.962) 1.225 (0.254)

(n = 100)

ML 5.567 (1.185) 9.307 (1.375) 1.134 (0.173)
GOV 6.356 (3.017) 9.188 (1.345) 1.118 (0.166)
mAIC  6.388 (3.067) 9.185 (1.343) 1.118 (0.166)

BIC 5.441 (1.286) 9.302 (1.367) 1.121 (0.169)

PIC 6.621 (3.652) 9.174 (1.344) 1.118 (0.166)

4.2. Real data analyses

We analyzed the fossil data (Bralower et al, 1997), using nonlinear modeling
procedurcs. The fossil data from SemiPar package (Ruppert ef al, 2003) in R
has 106 observations on fossil shells. The data consist of the age in millions of
years as x and the ratios of strontium isotopes as y. At first, we demonstrated
the performances of our proposed PIC and other model selection criteria by using
a subset of the data for testing and the remainders for training. We fitted our
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Table 2: Comparison of simulation results for the true function u;(z) with o = 0.15.

Criterion

RVs

MEAN(SD)

MSE

MEAN(SD)x107*?

PSE

MEAN(SD)x10~?

(n =23)
ML
GCV
mAIC
BIC
PIC

3.552 (1.144)
3.903 (1.053)
3.950 (1.042)
3.736 (1.075)
3.975 (1.029)

1.824 (0.699)
1.703 (0.638)
1.697 (0.633)
1.727 (0.648)
1.694 (0.633)

3.191 (0.964)
3.109 (0.923)
3.107 (0.921)
3.121 (0.927)
3.104 (0.920)

{n = 50)
ML
GCV
mAIC
BIC
PIC

4,426 (1.149)
4.607 (1.053)
4.622 (1.050)
4.353 (1.078)
4.631 (1.054)

1.967 (0.446)
1.923 (0.426)
1.922 (0.425)
1.944 (0.431)
1.920 (0.425)

2.802 (0.601)
2.746 (0.587)
2.746 (0.536)

2.765 (0.591)
2.744 (0.584)

{n = 100)
ML
GCV
mAIC
BIC
PIC

5.219 (1.116)
5.419 (1.624)
5.422 (1.622)
5.074 (1.212)
5.507 (1.713)

2.084 (0.329)
2.062 (0.324)

2 (0.324)
2.079 (0.326)
2.060 (0.324)

2.547 (0.374
2.510 (0.369
2.510 (0.369
2.518 (0.371
2.509 (0.369)

NN

Table 3: Comparison of simulation results for the true function ui(z) with o = 0.2.

RVs MSE PSE
Criterion MEAN(SD) MEAN(SD)x10™> MEAN(SD)x10"2
(n=25)

ML 3.206 (1.056) 3.238 (1.281) 5.432 (1.685)
GCV 3.574 (1.010) 3.039 (1.188) 5.344 (1.647)
mAIC  3.599 (1.010) 3.034 (1.186) 5.339 (1.645)

BIC 3.379 (1.021) 3.087 (1.209) 5.364 (1.663)
PIC 3.635 (1.005) 3.026 (1.182) 5.334 (1.642)

(n =30)

ML 3.993 (1.135) 3.575 (0.849) 4.960 (1.035)
acv 1251 (1.026) 3.478 (0.809) 4.874 (1.007)
mAIC  4.261 (1.027) 3.477 (0.808) 4.873 (1.007)
BIC 3.976 (1.030) 3.522 (0.827) 1912 (1.023)
PIC 4.275 (1.018) 3.474 (0.806) 4.870 (1.008)

(n = 100)

ML 4.843 (1.258) 3.757 (0.576) 4.486 (0.645)
GOV 5.029 (1.312) 3.716 (0.562) 4.432 (0.630)
mAIC 5.029 (1.312) 3.716 (0.562) 4.432 (0.630)
BIC 4.660 (1.203) 3.746 (0.569) 4.458 (0.639)
PIC 5.068 (1.339) 3.714 (0.561) 4.430 (0.628)
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Table 4: Comparison of simulation results for the true function uz(z) with o = 0.1.

K. MATSUDA

RVs MSE PSE
Criterion MEAN(SD) MEAN(SD)x10® MEAN(SD)x1072
(n =25)

ML 4.211 (0.938) 7.940 (3.035) 1.445 (0.453)
elony 4.478 (1.049) 7.162 (2.646) 1.397 (0.422)
mAIC 4517 (1.071) 7.147 (2.642) 1.396 (0.421)
BIC 4.326 (1.019) 7.264 (2.674) 1.404 (0.424)
PIC 4.572 (1.084) 7.116 (2.622) 1.394 (0.421)

{n = 50)

ML 4.708 (0.962) 9.010 (2.143) 1.274 (0.269)
GCV 5.766 (1.949) 8.409 (1.944) 1.228 (0. 208)
mAIC 5.802 (1.950) 8.402 (1.942) 1.228 (0.258)
BIC 5.252 (1. 691\ 8.540 (1.984) 1.235 (0. 260)
PIC 5.898 (2.062 8.387 (1.940) 1.226 (0.257)

(n = 100)

ML 5.157 (1.143) 9.545 (1.460) 1.142 (0.166)
GCV 7.490 (3.967) 9.169 (1.369) 1.111 (0.161)
mAIC 7.504 (3.962) 9.166 (1.368) 1.111 (0.161)
BIC 6.338 (2.862) 9.302 (1.384) 1.115 (0.164)
PIC 7.750 (4.155) 9.150 (1.366) 1.110 (0.160)

Table 5: Comparison of simulation results for the true function us(z) with ¢ = 0.15.

RVs MSE PSE
Criterion MEAN(SD) MEAN(SD)x10~> MEAN(SD)x10~°
(n=25)

ML 3.799 (0.955) 1.732 (0.660) 3.126 (0.922)
GCV 4.008 (0.993) 1.610 (0.595) 3.064 (0.895)
mAIC 4032 (0.993) 1.606 (0.593) 3.063 (0.893)
BIC 3.843 (0.986) 1.638 (0.610) 3.069 (0.889)
PIC 4.062 (0.987) 1.601 (0.590) 3.057 (o 893)

(n = 50)

ML 4,289 (0.908) 2.025 (0.454) 2.754 (0.568)
GOV 4.844 (1.584) 1.932 (0.424) 2,686 (0.540)
mAIC  4.853 (1.582) 1.931 (0.424) 2.685 (0 540)
BIC 4396 (1.194) 1.960 (0.434) 2.704 (0.548)
PIC 5.017 (1.718) 1.927 (0.423) 2.684 (0. 040)

{(n = 100)

ML 4.738 (1.098) 2.125 (0.315) 2.582 (0.374)
GOV  6.228 (2.902) 2.057 (0.299) 2.522 (0.359)
mAIC  6.253 (2.908) 2.057 (0.299) 2.521 (0.359)

BIC 5.426 (2.008) 2.078 (0.304) 2.530 (0.361)

PIC 6.438 (3.010) 2.054 (0.298) 2.519 (0.359)
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Table 6: Comparison of simulation results for the true function uz(x) with o = 0.2.

RVs MSE PSE
Criterion MEAN(SD) MEAN(SD)x10™? MEAN(SD)x107?
(n = 25)

ML 3.542 (0.975) 3.044 (1.102) 5.413 (1.613)
GCV 3.694 (0.954) 2.884 (1.055) 5.363 (1.591)
mAIC 3.713 (0.965) 2.880 (1.054) 5.365 (1.591)

BIC 3.565 (0.964) 2.919 (1.070) 5.385 {1.600)

PIC 3.748 (0.968) 2.870 (1.047) 5.356 (1.594)

(n = 50)

ML 1,029 (0.950
aev 4.307 (1.275

3.544 (0.785) 1.850 (1.027)
3.431 (o 759) 4.772 (1.010)
3.429 (0.758) 4.771 (1.010)

)
)
mAIC  4.348 (1.318)
)
)

BIC 3.937 (1.008 3.472 (0.767) 4.801 (1.014)

PIC 4.430 (1.433 3.423 (0.756) 4.768 (1.007)
(n = 100)

ML 4.434 (1.060) 3.788 (0.564) 4.540 (0.657)
cov 5.356 (2.215) 3.690 (0.544) 1.462 (0.643)
mAIC  5.363 (2.218) 3.690 (0.544) 4.462 (0.643)
BIC 4.643 (1.594) 3.729 (0.550) 4.487 (0.647)
PIC 5.624 (2.482) 3.685 (0.544) 4.456 (0.643)

modeling procedure for the complete data at the second.

We selected a random subset of size m (= 10 or 20) from the fossil data for
testing, and fitted our modeling procedure based ou the RVR with Gaussian ker-
nel functions to the remainders. Here, we set the candidate values of the kernel
parameter h® to {4.0%,4.1%,--- /8.0%} and chose the optimal value of h? that min-
imizes the model selection criteria. We repeated this procedure 1000 times in each
situation and then computed the mean predictive error for the test data. Table 7
shows the result with the mean values (MEAN) and standard deviations (SD) for
the mean predictive error. From this results, we pointed out that the PIC based
modeling gives a stable model estimate as compared with other techniques.

Secondly, we fitted our modeling procedure to the complete fossil data using
the same candidate values for the width parameter h? as described above. Then,
PIC, GCV and mAIC selected A% = 4.9%, ML sclected h? = 5.32, and BIC selected
h? = 6.0%, respectively. Figure 2 shows the fitted curves for the fossil data.

5. Concluding remarks

This paper considered the model selection and evaluation problem of the rele-
vance vector regression (RVR) models, which is the determination of the optimal
values for the kernel parameters. In order to evaluate the RVR models more effec-
tively, we derived the model selection criterion for evaluating a Bayesian predictive
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Figure 2: The fossil data (upper left) and fitted curves (upper right, PIC,
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Table 7: Comparison results for the fossil data with data separation.

Mean predictive error
Criterion = MEAN(SD)x10™%°

(m = 10)

ML 7.761 (3.444)
GOV 7.331 (3.215)
mAIC 7.400 (3.223)
BIC 7.439 (3.320)
PiC 7.302 (3.203)

(m = 20)

ML 7.939 (2.306)
GCV 7.363 (2.102)
mAIC 7.402 (2.114)
BIC 7.465 (2.185)
PIC 7.355 (2.098)

distribution in the framework of the RVR. Monte Carlo experiments and real data
analysis showed that our proposed modeling procedure performs well in various
situations. The simulation results suggested that our PIC has better fitting and
predictive accuracies compared with other model selection criteria.
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