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Numerical simulation of the behavior of three rising bubbles
by an energy-stable finite element scheme

Masahisa TABATA

Abstract. We simulate numerically the behavior of three rising bubbles
in a container. Each fluid is governed by the Navier-Stokes equations and the
surface tension is considered on the interfaces. The simulation is carried out
by an energy-stable finite element scheme developed by ourself. Merging of
bubbles is also treated.

1. Introduction

Our purpose is to simulate numerically the behavior of three rising bubbles
in a container. The mathematical formulation of this problem is as follows. We
consider multi-fluid flow problems, where each fluid is governed by the Navier-
Stokes equations and the surface tension proportional to the curvature acts on
the interface. The domain which each fluid occupies is unknown, and the interface
moves with the same velocity as the particle on it. While numerical solution of one-
fluid flow problems governed by the Navier-Stokes equations has been successfully
established from the point of stability and convergence, it is still not an easy task
to devise numerical schemes solving the multi-fluid flow problems. To the best
of our knowledge there are no numerical schemes whose solutions are proved to
converge to the exact one and there is very little discussion even on the stability
of schemes [1]. As for the study from the engineering point of view we refer to
[3, 7] and the bibliography therein. For the multi-fluid flow problems we have
developed a class of energy-stable finite element schemes in [4, 5], where they are
proved to be stable in the sense of energy if a quantity corresponding to L?-norm
of the curvature remains bounded in the computation. Here we perform numerical
simulation of the behavior of three rising bubbles by an energy-stable finite element
scheme.

The contents of this paper are as follows. In Section 2 we present an energy-
stable finite element scheme. In Section 3, after three-rising-bubble problem is
stated, numerical simulation is performed. In Section 4 concluding remarks are
given.

2. An energy-stable finite element scheme

Let © be a bounded domain in R? with piecewise smooth boundary I', and
(0,T) a time interval. The domain 2 is occupied by m+1 immiscible incompressible
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viscous fluids. Each fluid %k, whose density and viscosity are pi and puy, occupies
an unknown domain Q(t) at time ¢. Fluid k(= 1,--- ,m) is surrounded by fluid
0, and the surface tension acts on the interface T'y(¢). Let the coefficient of the
surface tension be o. T'x(t) is expressed as a closed curve,

Fk(t) = {Xk(svt); ERS [Ov 1)}a
where
Xk [0,1) x (0,T) = R?, x(1,t) = x(0,t) (t€(0,T))

is a function to be determined. Qi (t), &k = 1,--- ,m, is the interior of T'x(¢), and
fluid 0 occupies

Qo(t) = Q\ (J{0(t); k=1,--- ,m}.
Unknown functions (u, p), velocity and pressure,
u:Qx(0,T) =R? p:Qx(0,T) =R

and yj satisfy the system of equations,
ou
pid Gr + (- VIuf = V[2uD()| +Vp=puf. ze(t), te O.T) (1)
V-u=0, z€Qt), te(0,T) (1b)
[u] =0, [—pn+2uD(u)n] = orsn, =z €T(t), t€ (0,7) (lc)

% =u(xr,t), s€][0,1), te(0,T)
(1d)

u-n=0, Dun|n, €, te(0,T)
(le)
u=u’, z€Q, t=0 (1f)
Xk =Xp, s€0,1), t=0, (1g)

where £k =0,--- ,m in (1la) and (1b), k=1, --- ;m in (1c), (1d) and (1g), and
f:Ox0,T) =R u:Q=R% x?:[0,1) - R?

are given functions; f is an acceleration, u°

is an initial velocity, x¥ is a function
expressing the initial interface position. [-] means the difference of the values ap-
proached from both sides to the interface, x is the curvature of the interface, and
n is the unit normal. On the boundary of 2 the slip boundary condition (1le) is

imposed.
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Let X, V, @Q and ® be function spaces defined by

X ={xe @000 =xO], @=L9)
V={ve H'Q)*v-n=0(z¢ N}, Q= L3(Q).

Let Xp, ®5, Vi, and @} be finite-dimensional approximation spaces of X, ®, V
and Q. Let At be a time increment and Ny = |T/At]. At t = nAt we seek an
approximate solution (x}, oy, r, upy, py) in Xp X ®p X &y X Vi, x Q. More precisely,
these approximate function spaces are constructed as follows. Dividing the domain
Q) into a union of triangles, we use P1, P2 and P1 finite element spaces for ®;, Vj,
and @y, respectively. They are fixed for all time steps n. On the other hand, X}
is composed of functions obtained by the parameterization of polygons. We denote

by {sF™ € [0,1];4 = 0,--- , N¥"} the set of parameter values such that s = 0
and s];vgﬂ = 1 and that {7, (s¥™);i = 0,--- , N5 —1} is the set of vertices of the

k-th polygon for k = 1,--- ,m. The number N¥" may change depending on k and
n. We denote {NFn"}m by NP Our scheme is to find

{(X27p27u27u27p2) € Xh X (I)h X cbh X Vh X Qh;n = ]-7 aNT}

satisfying
~n n—1
Xhk — Xnk_ _
At
n— n— k,n—1
uy I(th 1), Vs; ,n=1 (2)
§un—1( n—l) _ lun—Q( n—1 _ Atun_l( n—l)) v k,n—1 >9
Uy \Xhi Uy Xk n Xne ) S; , N2 4,
X = Xn(Xn)s P =Rn(Xn)s #h = Mn(Xh), (2b)
n—1 n 1 7 N n 7 n— n n n
(ph 1DAtuh + §uhDAtph»'Uh) + al(phvuh lvuhvvh) + G‘O(:U’hauhvvh)
+ b(vn, py) + At di(up, vp; Cy) = (pRIInf™, vn) — da(XG, vrs Cr),
Yy, € Vh, (2(3)
b(U;Z,Qh) = 07 th € Qh (2d)
subject to the initial conditions
xn=1x", ph =Ru(xp), wp=Mu(xn), up=TIu’, (3)

where II, is the Lagrange interpolation operator to the corresponding finite-
dimensional space. Equations (2a)-(2d) are composed of the four stages.

Stage 1. Let (x} ' up~ ' ul™?) € Xp(N27Y) x Vi, x Vi, be given for n > 2.
When n =1, (x%,u)) € X,(N?) x V}, is given by (3). By (2a) we get a temporary
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function x7,

O ™) = X e X (N2, nz2
(xh,up) = X € Xa(N7),  n=1
(2a) is the Adams-Bashforth approximation of (1d) for n > 2, and the forward

Euler approximation for n = 1.
Stage 2. By (2b) we fix a function x7,

Xp = Xh € Xn(N)-

Here we modify X}, to have a quasi-uniform distribution of vertices of the polygon
(f,’;k associated with X7, and to keep the area of the surrounded domain to be equal
to the initial area. Those all procedures are denoted by X3 (x}) in (2b).

Stage 3. By (2b) we obtain

Xh = Ph € Pp

as follows. Once xj, is known, we can define Q. for all k. If the node P; belongs
to ., we set

pn(Pi) = pg.

This procedure is denoted by Rp(x7). Similarly, My, (x}) is defined.
Stage 4. By solving a system of linear equations, (2¢) and (2d), we get u} and

Dhs
(X Py o i up ™) = (ugt, pi) € Vi X Q.

In (2c) the symbol (-, -) shows the inner product in L?(Q)? and D, is the backward
difference with respect to At. The linear forms a1, ag, b, and dj, are defined by

a1 (p, w,u,v) = /Q %p{[(w -Vu] - v —[(w-V)v] - u}d:v, (4)
ag(p, u,v) = /QQ,uD(u) :D(v) dz, b(v,q) = — /Q(V -v)q dz,
no O
dh(u7vach) = ;Uk Z:ZI DAsui : DAsUi |th(3§) — th(8§71)|’

where Cj, is the set of k polygons associated with yp,, Das is the backward difference
with respect to the parameter s. For more details of this scheme refer to [5], where
the following advantages are also shown.

e It is stable in the sense of energy if a summation of the square of approximate
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Figure 1. Domain 2 and mesh 7.

curvature of the interface remains bounded.

e Since we use the interface-tracking method, we can distribute much more

nodes on the interface than the level-set method.

it is applied to incompressible viscous one-fluid flow problems, the

e When

stability and convergence is assured.

lar to that of the Stokes problem, the

18 simi

e Since the main computation part

small.

1S

t

computation cos

We apply this scheme to our problem.

bubble problem

Numerical simulation of three-rising-

3.

Statement of the problem
Let m = 3 and we consider the domain {2 and three bubbles shown in Fig. 1

3.1.
(left), where

Q=(0,1) x (0,2),

0
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5)% 4 (w2 — 0.2)* < 72}, r = 0.12,
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Q9 = {(z1,22); (21 —0.5)% 4 (22 — 0.8)% < 72},
We set

po = 100, po = 2.0, v’ = (0,0)T, f=(0,-1)T, T =10.
As for the densities of the bubbles we consider two cases:

(pla P25 PS) = (017 10.0, 199)7 (5&)
(p1, p2, p3) = (19.9,10.0,0.1), (5b)

and the other constants are
wi =10, 0, =10, (i=1,2,3).

In (5a) the densities of the lower bubbles are smaller, and in (5b) they are larger.
When the interface curves of two bubbles intersect, two bubbles merge to become
a big bubble with the average density. Then, m decreases by 1.

Fig. 1(right) shows the mesh 7; used in the computation. The total number
N, of elements, the representative element size h are

N. =4,564, h=1/32.
The time increment At and the total time step N are
At =1/32 N = 320.

3.2. The case (5a)

Fig. 2 shows the time history of interfaces and streamlines from ¢ = 0 until
8.75. Three bubbles, which are put at the equi-distance at ¢t = 0, begin to rise up
and streamlines appear. Since the densities have the relation p3 < p2 < ps, the
lower bubbles rise up faster than the upper bubbles. Fig. 3 shows the detail time
history of interfaces and streamlines from ¢t = 4.0625 until 6.5625. At first, bubbles
2 and 3 merge, and afterwards bubble 1 merges into a big bubble. Due to the
surface tension the shape of the interface becomes round. Finally, the bubble stops
at the ceiling and the streamlines disappear, that is, the stationary state arrives.

3.3. The case (5b)

Fig. 4 shows the time history of interfaces and streamlines from ¢ = 0 until
8.75. Three bubbles, which are put at the equi-distance at ¢ = 0, begin to rise up.
Since the densities have the relation p3 < pa < p1, the upper bubbles rise up faster
than the lower bubbles. The distances of each two bubbles increase for a while.
Finally, however, three bubbles merge into a big bubble since there is the ceiling.
Fig. 5 shows the detail time history of interfaces and streamlines from ¢ = 4.6875
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until 7.1875. At first, bubbles 2 and 3 merge in to a bubble, whose shape becomes
smooth gradually in the effect of the surface tension. At ¢ = 8.75 bubble 1 does
not yet merge into a big bubble, but later it merges.

4. Concluding remarks

We have performed numerical simulation of the behavior of three rising bubbles
in two cases (5a) and (5b). Merging of bubbles is carried out simply when two
interface curves intersect each other. The system of linear equations in (u}, pj) to
be solved in scheme (2) is asymmetric. This system can become symmetric if the
Lagrange-Galerkin approximation [2, 6] is applied.
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Figure 2. Interfaces and streamlines in the case (5a) from ¢ = 0 until
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Figure 3. Interfaces and streamlines in the case (5a) from t=4.0625
until 6.5625.
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Figure 4. Interfaces and streamlines in the case (5b) from ¢ = 0 until

8.75.

t=7.500000

-
i

t=1.250000

t=5.000000

?

t=8.750000

41



42

M. TABATA

i

t=4.687500

t=5.000000

‘ (\\“lllll’\

t=5.625000

t=5.937500

"'"@

;

t=6.562500

t=6.875000

t=5.312500

",......,,‘

t=6.250000

t=7.187500

Figure 5. Interfaces and streamlines in (5b) from t=4.6875 until 7.1875



