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Endemic threshold analysis for the Kermack—McKendrick
reinfection model

Hisashi INABA

Abstract. In a seminal series of papers published during the 1930s,
Kermack and McKendrick developed an infection—age structured endemic
model, which takes into account the demography of the host population, and
the waning immunity (variable susceptibility) and reinfection of recovered in-
dividuals. The host population is structured by a duration variable for each
status, as the susceptibility of the recovered individuals depends on the dura-
tion since the last recovery. The idea of reinfection has become increasingly
important in understanding emerging and reemerging infectious diseases, since
it makes the control of infectious diseases difficult, and waning immunity is
widely observed if there is no (natural or artificial) boosting. For the rein-
fection model, we can introduce the reinfection threshold of Ry at which a
qualitative change in the epidemiological implication occurs for the prevalence
and controllability. If any enhancement of epidemiological reproductivity by
reinfection exists, we also expect that endemic steady states backwardly bi-
furcate when the basic reproduction number crosses unity, which implies that
attaining a subcritical level of R is not necessarily a complete policy for dis-
ease prevention. The main aim of this survey is to demonstrate the possible
usefulness of the Kermack—McKendrick reinfection model and its extensions
to understand reinfection phenomena in the spread of infectious diseases.

1. Introduction

In a seminal series of papers published during the 1930s, Kermack and McK-
endrick proposed an infection—age structured endemic model that takes into ac-
count the demography of the host population, the waning immunity (variable sus-
ceptibility) and reinfection of recovered individuals ([14], [15]). Their model has
less attention than the well-known outbreak model proposed in 1927 ([13]). In their
model, the total population is decomposed into three compartments, the never in-
fected (full susceptible), infectious and recovered populations. The host population
is structured by a duration variable for each status, while the chronological age is
neglected. The susceptibility of recovered individuals depends on the time that has
passed since the last recovery, and the model thus has much flexibility to capture
many facets of reinfection phenomena.

The concept of reinfection is becoming increasingly important in understanding
emerging and reemerging infectious diseases, since it makes the control of infectious
diseases difficult, and a waning immunity is widely observed if there is no (natural
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or artificial) boosting. In fact, the recovered individuals or vaccinated individuals
could be reinfected as time passes owing to the natural decay of host immunity, or
a genetic change in the virus. Reinfection often leads to non—clinical infection. It is
thus likely that its occurrence is overlooked, and that we will fail in calculating the
basic reproduction number and the critical coverage of immunization by neglecting
the effect of reinfection.

As was pointed out by Gomes, et al. ([7]), we can introduce the reinfection
threshold of Ry at which a qualitative change in the epidemiological implication
occurs for the prevalence and controllability in the reinfection model. Moreover,
owing to enhancement of susceptibility or infectivity by reinfection, we expect that
there is a backward bifurcation of endemic steady states. In such a case, we have
bistable endemic steady states, and attaining a subcritical level of Ry is not a
complete policy for disease prevention.

In this survey, we first reformulate the forgotten Kermack-McKendrick rein-
fection model as an age—structured population model and examine basic endemic
threshold phenomena, where we present a condition that backward bifurcation oc-
curs. We then extend the basic model into a chronological-age dependent model,
and calculate basic epidemiological indices. Consideration of the chronological age
structure is crucial to real world applications, because prevention policy or vaccina-
tion usually targets age classes. Finally, we again extend the basic model to recog-
nize subclinical infection observed in malaria and measles epidemics, and examine
conditions under which subcritical endemic steady states exist, because failure to
do so is likely to produce incorrect estimates and interpretations of epidemiological
indices.

2. Kermack—McKendrick reinfection model

2.1. Basic model: partial differential equations

We first formulate the Kermack—McKendrick reinfection model as an age—
structured population model. Let s(t,7) be the density of the susceptible pop-
ulation who have never been infected (virgin population in the terminology of
Kermack and McKendrick) at time ¢ and duration 7 (the time elapsed since entry
into the s—state) , which can be interpreted as the chronological age when a person
enters the s—state at birth. Let i(¢,7) be the density of the infected and infectious
population at time ¢ and infection-age (the time elapsed since infection) 7 and let
r(t,7) be the density of the recovered population at time ¢ and duration 7 (the
time elapsed since the last recovery). Let m and u respectively denote the birth
(or immigration) rate and the death rate, and «v(7) denotes the recovery rate at
infection—age 7.

We assume that the force of infection applied to the fully susceptible population
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(virgin population) is given by

A(t) = /0 ~ 8(0)ilt, o)do, (1)

where B(7) denotes the infectivity for the virgin population at infection—age 7.
The force of (re)infection applied to the recovered population at duration 7 is
assumed to be given by 6(7)A(t), where 6(7) is the relative susceptibility schedule
of recovered individuals at time since recovery 7. The relative susceptibility would
be inversely correlated with the wanning of immunity.

Assumption 2.1. It is assumed that 3,v,0 € LY (R,), and that the state space
of the age distribution functions s, i and r is L} (Ry).

The Kermack—McKendrick reinfection model is then formulated as

Os(t,7) 4 Os(t, ) = —ps(t,7) — A(t)s(t, 1),

'at ' or
HET) 4 2T -t 4r)sits ),
D) O (e, m) — 0N D1, 7),

oo
s(t,0) = m/ (s(t,7) +i(t,7) + r(t,7))dr,
0
i(t,0) = )\(t)/ (s(t,7) +0(1)r(t, 7)) dr,
0
60 = [ (it
0
with initial data
s(0,7) = so(7), i(0,7)="1i0(T), r(0,7)="1ro(T). (3)
Let N(t) be the total size of the host population given by
N(t) := / (s(t,7) +i(t,7) +r(t,7))dr. (4)
0
It is then easily seen that the total size of the host population is constant if m = u.
In the following we consider the case of a constant total population size, denoted
by N, and the boundary condition of s(¢,a) is thus replaced by s(t,0) = uN.
The basic system (2) has a trivial, disease—free (completely susceptible) steady

state (s*,4*,r*) = (ulNe™#7,0,0). The linearized equation for the infected popula-
tion in the disease-free steady state is then given by
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8C(t T) 6C(t T)

C(t,0) N/ﬁ

and it is easily seen that the basic reproduction number for the basic model (2) is
given by

= —(u+7(7)C(E7),
(5)

Ry = N /O " e B (7 dr, (6)

where I'(7) := exp(— fo x)dzx) is the survival probability. By the principle of
linearized stability, the stablhty of zero solution of (5) determines the local stability
of the disease—free steady state of system (2), and the disease—free steady state is
thus locally asymptotically stable if Ry < 1, while it is unstable if Ry > 1. The
reader may refer to [5], [6] and [11] for the role of the basic reproduction number
in population dynamics.

Model (2) can be rewritten as the Gurtin-MacCamy model for an age-
dependent population. Its mathematical well-posedness has been established ([9]),
and we can use the integrated semigroup formulation to give the solution semiflow
([17]). We therefore skip the mathematical well-posedness problem here. How-
ever, we remark that an alternative integral equation formulation is possible and
informative. This formulation is discussed in the next subsection.

2.2. Integral equation
For simplicity, instead of considering the initial value problem, we assume that
the epidemic starts at ¢ = —oo. Integrating the partial differential equations in (2)
along the characteristic line, we have a set of equations:

S(t7 ,7_) — ,U,NB_HT_IUT A(t—‘r-‘,—o’)da7
i(t,7) =b1(t — 1)e " T (1), (7)
T(t, 7.) = by (t _ T)e—uT—foT )\(t—7+0)9(a)d0’

where b (t) := i(t,0) and ba(t) := r(¢,0). Inserting equations (7) into the boundary
conditions of (2), we obtain a set of integral equations:

o0
bi(t) = A(t) [ / pNeHT=I5 Ne=T+0)do g
0
+/ Q(T)bz(t—T)@*/wffof At=T+0)0(0)do g 7 ()
0

by(t) = /000 by (t — m)e *~(7)D(7)dT,
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where
At) = /0Oo e FTB(TT(T)by (t — T)drT. (9)

Inserting the expression for be into the equation for b; in (8) and changing the
order of integrals, we obtain

b (t) = A(t) /000 S(t,T)dr, (10)

S(t,r):=s(t,7)+0(T)r(t, 1)
_ ‘u]\fef;rrffoT A(t—7+0)do

+b(t—T1)e M7 / O(o)e™ I3 Q(C)’\(t_‘”'odcv(T —o)I'(r — o)do,
0
(11)

where fooo S(t,T)dr is the effective size of susceptibles. The expression (10) implies
a simple fact that the new incidence at time ¢ is given by the force of infection
times the size of effective susceptibles ([2]).

From (10) and (11), we obtain a linear renewal equation for by if we see the
force of infection A\ as a given function, and thus, by solving the linear renewal
equation formally, we have an expression of b; with unknown A. Inserting this
solution into (9), we arrive at a nonlinear “scalar” renewal equation for . Al-
ternatively, eliminating A from (9), (10) and (11), we again obtain a nonlinear
scalar integral equation for b;. We can then establish the well-posedness of the
Kermack-McKendrick reinfection model (2) based on the well-known method of
the nonlinear integral equation.

If # = 0, (2) becomes the suceptible-infected-recovered (SIR) model with per-
manent immunity, and it has a unique endemic steady state if and only if Ry > 1
and it is globally stable ([17]). If 6 = 1, the recovered population can be identified
with the virgin population, and (2) is thus reduced to the infection—age dependent
SIS epidemic model, and it is formulated by a nonlinear renewal equation, its en-
demic steady state is unique but can lose stability and Hopf bifurcations can occur
when Rg > 1 ([3], [4], [18]). Under the assumption that 6 is monotone increasing
and less than unity, it is concluded that if Ry > 1, there exists a unique endemic
steady state that is locally asymptotically stable as long as |Ry — 1] is small enough
(19)).

If supf > 1, we conjecture that the subcritical condition Ry < 1 does not
necessarily guarantee the eradication of diseases. In fact, from (10), we formally
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define a time-dependent (period) reproduction number as
R(t) = 5(t) [ B0 (12)
0

where S(t) := JoT S(t,7)dr is the effective size of susceptibility. Since S(t) can be
larger than the total population size N, R(t) can be larger than Ry, and Ry < 1
would thus not be a sufficient condition for eradication of the disease.

Let a := max{1,sup,~,0(7)}. Then S < aN and it follows from (10) that

bi(t) < aN /OOO B(T)T(T)e ™ # by (t — T)dr. (13)

Using the comparison argument, we know that lim;_, . b1(t) = 0 if Ry < 1. We
then have a simple criterion for the global stability of the disease—free steady state.

PROPOSITION 2.2.  If Ry < 1/, the disease—free steady state of (2) is globally
asymptotically stable.

Here we remark that another extreme scenario of recovering susceptibility is
that recovered individuals are completely immune, and at recovery—age 7 they
return to the susceptible class again with the force of reversion §(7). In this case,
instead of (2), we obtain

or(t, ) . or(t,7)
ot or

s(t,0) = uN + /000 d(r)r(t, 7)dr,

= —ur(t, ) —o()r(t,7),

i(£,0) = A1) / s(t,7)dr,
0
60 = [ @it rar,
0
where we omit the McKendrick equations for s and ¢, because they are the same as
the equations in (2). In other words, we obtain a SIRS model with infection—age,

which was studied by Nakata, et al. ([19]) in the case that § is constant. In this
model, the density of the susceptible population is given by

s(t, 7)1 = e M Jg Alt=THo)do [MN —|—/ bi(t — T)e " P(T)dr|, (15)
0
where

P(r) = /0 ’ §(z)e™ Jo 0z (7 — p\D(7 — z)da, (16)
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denotes the probability density that an infected individual returns to the susceptible
status at time 7 that has elapsed since the last infection.

2.3. Bifurcation of endemic steady states
We now check the bifurcation of endemic steady states. Let s*(7), ¢*(7) and
r*(7) be the steady state solution. It then holds that

§*(1) = pNe~ AT,
i*(1) =4"(0)e *"I'(7), (17)
T*(O)efpfrf)\* Jg 0(0)do

<
*
—~
3
~—
I

where

5o (18)
0= [ @it
0
and \* is the force of infection in the steady state given by
A* :/ B(r)i*(1)dr = b*(B,T). (19)
0

In expression (19), b* := i*(0) is the density of the newly infecteds in the steady
state and we have used the notation as

(B,T) := /000 B(T)L(r)e " dr. (20)
Inserting (19) into the first equation of (18), we obtain
b* =b*(B,T) /0 Oo(uNe—(W*)T +75(0)0(r)e A o 0(@)day g (1)
which shows a renewal relation in a steady state with the force of infection A*.

Since (8,T') = Ro/N and r*(0) = b*(v,I'), we arrive at an equation for unknown
AT

/LR() < T=X* [T 0(c)do
= NH(1- H dr ) =1
T (v.T) < /O pe 0 T ;

(22)

where we used the notation as

(,T) := /000 ~(T)T(7)e " dr. (23)
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Equation (22) implies that the effective reproduction number, given by R(A*), must
be unity in a steady state.

It follows from (22) that there exists at least one endemic steady state if Ry > 1,
because R(0) = Ry > 1 and limy_,oc R(A\) = (7,T) < 1. Given that R(\*) is not
monotone decreasing, there is a possibility that multiple endemic steady states
exist.

PRrROPOSITION 2.3.  If the inequality
(7, 1)6" > 1, (24)

holds, where

0" ::/ O(T)ue H"dr, (25)
0

then endemic steady states backwardly bifurcate from the disease—free steady state
when Ry crosses unity, i.e., multiple endemic steady states exist if Ry < 1 and
|Ro — 1| is small enough.

PRrROOF. Define a function f(A, Ry) := R(\) — 1, where Ry is seen as a bifurcation
parameter and f(0,1) = 0. Observe that

of L. of

(A\Ro)=(0.1)  H 0 1(\,Ro)=(0,1)

Therefore if condition (24) holds, then f = 0 is solved as A = A(Rp) with A(1) =0
at the neighborhood of (A, Ry) = (0,1). Since dA(1)/dRy < 0, we have A(Rp) > 0
for Ry € (1 —n,1) for sufficiently small n > 0. For each Ry € (1 —n,1), we have
f(0,Rg) < 1, f(MRo),Ro) = 0 and limy_o, f(A, Ro) = (7,T) — 1 < 0, and there
are then at least two endemic steady states. O

Condition (24) was first given in [21] by using the ordinary differential equation
version of (2). It is easily seen that condition (24) does not hold if there is no
enhancement of susceptibility, i,e., if §(7) <1 for all 7 > 0.

3. Vaccination model and reinfection threshold

3.1. Reinfection threshold
We now introduce a mass vaccination (host immunization) in the basic model
(2). In fact, it is intuitively clear that reinfection phenomena would make disease
control more difficult and complex, and we thus need an index to capture the
difficulty. An important effect of vaccination policy is the reduction of the effective
size of the susceptible population. In the reinfection model, there is a possibility
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that a disease can invade a fully vaccinated population, and we are naturally led
to the idea of the reinfection threshold.

Suppose that newborns or immigrants in the virgin population are mass vac-
cinated with coverage e € [0,1] and, for simplicity, the immunological status of
newly vaccinated individuals is identical to that of the newly recovered individu-
als. This assumption will be relaxed in section 5. The boundary condition in the
basic system (2) is then replaced:

5(t,0) = (1 — N,
i(t,0) = A1) /0 " (st 7) + 6(r)r(t, 7)) dr 26)
r(t,0) = euN + /OOO ~(T)i(t, T)dT.

The disease-free steady state is then given by
(s*,i*,r") = (1 — e)uNe™#7,0,epNe H7),

and the linearized renewal equation in the initial invasion phase is thus given by

E(t)=((1—¢e)N +eNO*) / e T B(MT(T)E(t — T)dT, (27)
0
where £(t) := ((¢,0) denotes a small perturbation in the infected population den-
sity.

Therefore, the effective reproduction number, denoted by R(¢), in the partially
immunized disease—free steady state is given by

R(e) = (1 — €)Ro + eRy = (1 — e(1 — 6")) Ry, (28)

where Ry := 0*Ry. Then if R(e) < 1, the disease—free steady state is locally
asymptotically stable, while it is unstable if R(e) > 1. However, it is unclear
whether the disease—free steady state becomes globally asymptotically stable when
R(e) < 1.

Here we note that R; is the effective reproduction number for the fully vacci-
nated system. In fact, if € = 1, the virgin population is eradicated, and we obtain
the limiting recovered—infected-recovered system as
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8i(t,7’) + 8i(t,7) — _(u + 7(7))2'(@7'),

ot or
a’"g; T T ) — oA ),

i(t,0) = A(¢)

o (29)
; O(r)r(t,7)dr,

r(t,0) = uN + /O(XJ ~(7)i(t, T)dr.

This new system (29) can be seen as a duration—dependent SIS model with
vaccination if we view the recovered class as a new susceptible class. Then (29) has
a disease—free steady state (i*,r*) = (0, uNe #7), and the linearized system in the
disease free steady state is given as

X L BT (st ),

¢(t,0) = Q*N/OOO B(T)¢(t, T)dT.

(30)

Therefore the effective reproduction number for the limiting system (29) is given
by Rl = 9*R0
Suppose that Ry > 1. From (28), the critical coverage of immunization €* such

that R(e*) =1 is given by
1 1
oo — ) — 1
‘ ( Ro>19*’ By

but it is meaningful only when #* < 1. The disease is uncontrollable by the
vaccination if 6* > 1. Moreover, if Ry = 0*Ry > 1, we have R(e) > 1 for all
e € [0,1], and the disease is thus again uncontrollable by the vaccination, because
the fully vaccinated population can be invaded by the disease.

Let o := Ry1/Ry, i.e., o is the ratio of the effective reproduction number of
the fully vaccinated system to the basic reproduction number. Given that the
qualitative change in the epidemiological implication occurs for the prevalence and
controllability at Ry = 1/0, Gomes et al. ([7], [8]) referred to 1/0 as the reinfection
threshold of Ry. As seen above, the reinfection threshold of Ry corresponds to the
fact that cRy = Ry = 1, i.e., Ry = 1/0 does not imply a bifurcation point of the
basic system (2), but the threshold condition Ry = 1 of the fully vaccinated system
(29). In the above setting, we have o = 6*, but its value depends on the basic
model assumptions.
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3.2. Bifurcation of endemic steady states
Let (s*,i*,r*) be the steady state of the basic system (2) with the boundary
condition (26). We then have

$*(7) = (1 — yuNe b7,
(1) =" (0)e " T(7), (32)

T*(T) — 7"*(0)6_”7—_)\* fOT B(x)dac7
where

A" =i*(0)(B,T),

i*(0) = A" /Ooo(s*(T) + 0(m)r*(1))dr,

(33)
r*(0) = epuN 4" (0) (v, ).
From the above equations, we can calculate i*(0) as
1*(0) = )\*/ (s*(7) + 0(r)r*(1))dr
0
1— N o0 * [T Ndr
_ )\*( G)M + )\*’I“*(O)/ 9(7’)6_“7—_)\ Js 0(1)deT
A 0
1 —e)uN > -
= )\*(ﬂ + A (epuN + i*(O)(’y,F})/ O(r)e HT A" o 0@)de g
A" 0
(34)
We then have the expression:
gy 2 MR N e Sy (35)
i = -
=X (D) fo (e TN I g
From (35) and the relation
R
N =70,
we know that a positive root A* > 0 must satisfy the equation:
v(\¥)
1=R 36
0 ’LL()\*) ) ( )

where
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1— - )
’U(A) = ( 6)/1 + GM/ 9(7_)6—;“'—)\ Is G(m)drdT,
0

ptA (37)
u(A) :==1=(7,T)(A).
Here we have used the notation (23) and
6(0) == A / O(r)e 1= I7 0@z g (38)
0
Observe that
)\/ 9(7’)67“T7)\f07 O@)degr — 1 — / pe HTA Jo 0@)de g (39)
0 0

¢ is then an increasing function, and u()) is thus a decreasing function. We can
now conclude the following.

PROPOSITION 3.1.  If R(€) > 1, there exists at least one endemic steady state.
Suppose that the condition

1—e(l—6%")

0" (v, I) > T—c(i—0")"

(40)
holds, where

0** = p? /000 e HTO(T) /OT 0(x)dzdr. (41)

Endemic steady states then backwardly bifurcate from the disease—free steady state
when R(€) crosses unity, i.e., multiple endemic steady states exist if R(e) < 1 and
|R(e) — 1] is small enough.

PROOF. Relation (36) implies that the effective reproduction number in the en-
demic steady state with the force of infection \* is given by

(V) _ R() v(N)
u() ~ 0(0) u(X)’

R(\*) = Ry

Then R(0) = R(e) and R(oc0) = 0, and thus R(A*) = 1 has at least one positive root
if R(e) > 1, which implies that there exists one endemic steady state. If R(0) =
R(e) = Rov(0) = 1 and condition (40) holds, R'(0) = v(0)~1v/'(0) — «/(0) > 0.
R(A*) = 1 then has at least one positive root. Moreover, it has at least two positive
roots if R(0) = R(e) < 1 and |R(e) — 1] is small enough. To see this precisely, let
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us again define a function f(\, Rg) := R(A\) — 1. Then f(0,v(0)~!) = 0 and

0 0
8—f =1, 8—§ =v(0)"1'(0) — /(0),
Ro |(x, Ro)=(0,0(0)1) (A, Ro)=(0,0(0)~1)
where
! 1 kk ! 1 *
v'(0) = —;(1 —e(1-0")), «'(0)= —;<%F>9 :

If condition (40) holds, f = 0 is solved as A = A(Ry) satisfying A(v(0)~1) = 0 and
d\(v(0)71)/dRy < 0 in the neighborhood of (\, Rg) = (0,v(0)71). If Rov(0) < 1
and |Rov(0)—1| is small enough, for each Ry, there exist multiple positive roots such
that f(X, Rg) = 0, because f(0, Ry) < 1, f(A(Rp), Ro) = 0and f(oo, Rg) = -1 < 0.
U

Proposition 3.1 tells us that the subcritical condition R(e) < 1 is not sufficient
to eradicate the disease if condition (40) holds. Note that if e = 1 in (40), we know
that a backward bifurcation occurs even in the recovered-infected-recovered model
if (6*)? > 6**, though this condition does not hold when @ is constant.

4. Chronological-age dependent reinfection model

4.1. Basic model

We now extend the Kermack-McKendrick reinfection model to take into ac-
count the chronological age structure of host individuals. Let S(t, a) be the density
of the susceptible population who have never been infected at time ¢ and chrono-
logical age a. Let i(t,7,a) be the density of the infected and infectious population
at time ¢, age a and infection—age 7 and let r(¢, 7, a) be the density of the recovered
population at time ¢, age a and recovery—age 7 (the time elapsed since the last
recovery). Let m(a) and p(a) denote the age-dependent fertility rate and the force
of mortality at age a and (7) denotes the recovery rate at infection—age 7.

We assume that the force of infection applied to the full susceptible population
(virgin population) is given by

A(t) = ﬁ /OOO /Oa B(1)i(t, T,a)drda, (42)

where N(t) is the total host population size. The Kermack—McKendrick reinfection
model can then be extended to a demographic age-structured model:
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0S(t,a) n 0S(t,a)

ot da —u@S(t,a) = AB)S(t,a),
82(%2, a) n 32(2: a) N 82(2; a) _ (@) + ()it ),
87’(7587;, a) | 8r(g:, a) | 87’(25, a) _ @)t a) — BNt 7. ),

o0 (43)
S(t,0) = /0 m(a)(S(t,a) + I(t,a) + R(t,a))da,

i(t,0,a) = [ta /e trad},

r(t,0,a) —/ ~(1)i(t, 7, a)dr,

0

with initial data
S(Ova) = SO(O’)7 i(O,T, a) = iO(Tv a)v T(O;T; a) = TO(Tv a)'

Here I and R respectively denote the age-density functions of infected and recovered
populations aggregated with respect to the duration variable:

I(t,a) = /Oa i(t,7,a)dr, R(t,a):= /Oa r(t, T, a)dr.

Let P(t,a) be the age—density function of the host population given by
P(t,a) := S(t,a) + I(t,a) + R(t,a), so = J;7 P(t,a)da. In the following
we assume that the host population is in a demographlc steady state, and thus the
condition

/000 m(a)l(a)da = 1, (44)

€(a) = exp ( / au(U)dU) ,

is the demographic survival probability. We thus assume that there exists a con-
stant B > 0 such that P(t,a) = P*(a) = Bf(a) for all ¢ > 0 and N(t) = N* =
IS P*(a)da = Beg, where eq = [;~ ¢(a)da is the average life expectancy of host
individuals.

Although we do not discuss the well-posedness of problem (43), it is again re-
marked that the basic system (43) can be reduced to a system of integral equations.

holds, where
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In fact, partial differential equations in (43) are integrated along characteristic lines:

S(t,a) = By(t — a)l(a)e Jo At-ato)ds
t(a)

—T

fa—r) ) (45)

g T
T(tv T, a) = BS(t —T,a— T)f(a(i)T) ¢ g k(t_T—i_U)e(U)dU?

where By (t) := S(¢,0), Ba(t,a) :=i(t,0,a) and Bs(t,a) :=r(¢,0,a). Note that the
force of infection and the density of newly recovered population are determined by

i(t,7,a) = Ba(t — 1,0 — T)

the age—specific incidence rate By as

/ / B(r ( ) )B2(t—7' ,a — 7)dTrda,

Bs(t,a) = /0 ’}/(T)F(T)K(a())BQ( T, — 7)dT.

Therefore, using the boundary conditions for S(¢,0) and i(¢,0,a) in (43), we
obtain a nonlinear system of renewal integral equations for B; and Bs, for which

(46)

we can adopt a classical fixed point method to show the existence and uniqueness
of a local solution. Meanwhile, for a semigroup approach to (43), the reader may
refer to Thieme ([22]).

4.2. Invasion problem and R
For the basic model (43), there exists a disease—free steady state (S,i,r) =
(P*,0,0), in which the linearized equation for the infected population is given by

ol ra) y Q) KT _(ya) 1 (r)((t.7.0),

¢(t,0,a) = w*(a / /B ¢(t,7,a)drda,

where ( is the density of the infecteds in the disease—free steady state and w*(a) =
£(a)/ep is the age profile of the host population in the demographic steady state.

The above linearized equation of the infective population is formulated as an
abstract boundary value problem:

¢(t,0,a) = w*(a / /5 ¢(t,7,a)drda,

(47)
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where A is a linear operator defined by

(A0)(a) =~ a)o(a),

¢ € D(A) ={¢ € L'(0,00) : Ap € L*, ¢(0) = 0}.

(49)

Let T(t) = e be the strongly continuous semigroup generated by A. We then
have the explicit expression as

awwx@{%@ (a0 (50)

e(a_t)gb(a —t), a—t>0.

Integrating (48) along the characteristic line, it follows that

(51)

C(t, T, Cl) = {F(T)(T(T)C(t - 7,0, ))(a)’ t—7>0,

Fols (TG (r —t,)(a), T—¢>0,

where (o(7,a) = (0,7, a) denotes the initial data.

Let E := L'((0,00) x (0,00)). We remark that the biologically meaningful state
space for the age-duration distributions is the subset of F such that Ey := {¢ € E :
Y(r,a) = 0,a.e. if 7 > a}. It is easily seen from (50) that i(¢,-,-) € Ey if ig € Ep.

Inserting expression (50) into definition yields

t,a) =w* ood h t,7,a)da, 52
=) [ dr [ pc.ra)da (52)
where £(t,a) := ((t,0,a). We then arrive at an abstract renewal equation in
LY(0,w):
t
) =G+ [ nng(e - s (53)
0

where £(t) = £(t,-) € L*(0,00), TI(7) is a positive linear operator on L!(0,00)
defined by

(Il(1)¢)(a) := w"(a) /OO B(r)L(T)(T()¢)(0)do, ¢ € L1(0,00),  (54)

and

G(t,a) := w*(a) /too dr /OO B(T)F(I;_(i)t (T'(t)Co(T —t,-))(0)do. (55)

)
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Therefore the next generation operator K on L1(0,00) ([11]) is given as
(ko) = [ o)
v [ [ BEROTEee

N (56)
:w*(a)/o dT/ ﬂ(T)F(T)E(f_(i)T)qu(O’—T)dU
—u'a) | " W(a)d(a)da,
where
= - (7 M T
va) = [ prre A ar, (57)

is the total infectivity of the infecteds who are infected at age a.
In this case, the next generation operator is a one-dimensional positive map,
the spectral radius of which is easily calculated as

r(K) = Ro = / ¥ (a)w* (a)da. (58)
0
Although we omit the proof, the following is easily obtained.

ProrosITION 4.1.  If Ry < 1, the disease—free steady state is locally asymptot-
ically stable, while it is unstable if Ry > 1. If0(7) <1 for all T > 0, the disease-free
steady state is globally asymptotically stable if Ry < 1.

4.3. Endemic steady states
Let S*(a), i*(1,a) and 7*(7,a) be the age-duration—density functions of sus-
ceptibles, infected and recovered individuals, respectively, in the endemic steady
state. It is then straightforward to obtain the expressions:

§*(a) = P*(a)e?,

o o {(a) %
i"(1,a) = WF(T)Z (0,a—7), (59)
r*(r,a) = E(j(i)r)e_x Jo 60040, — 7).

Let bi(a) := i*(0,a) and b3(a) := r*(0,a). Inserting expression (59) into the
boundary conditions, we have
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bi(a) = A" (P*(a)e_”“ +/ 9(7)75(@ e o 0OApx (g — T)dT) 7
0

La—T) (60)

From (60), the age density b} of the newly infecteds in the endemic steady state
is given as a unique solution of the renewal equation:

bi(0) = (e x)+ [ " H(a,n, M)W (a — n)dn, (61)

where

g(a,/\*) — P*( ))\* —A* a7
(62)

Hlan 3 i= [ G ox ol 100 g Gy - i

We define the resolvent kernel R as the solution of the resolvent equation:
R(a,n,A*) = H(a,n, A / H(a,z, \*)R(a —z,n — z,\")dx. (63)

The renewal equation (61) is then solved as

b (a) = gla, A7) + /O R(a, 2, M )g(a — 2, \*)dz. (64)
From
V=g | v = s (K ), (65)

we can write (64) as

by = (@ + R+ w)(¥,b1) = (Kcbi)(a), (66)
where
w(a) == w*(a)e ™, (W, b)) = / U(a)bi(a)da, (67)
0
and * denotes the convolution operation defined by (f * g)( fo g(t—7)dr.

The integral operator K. is the effective next generation opemtor in the endemic
steady state ([10]) and @+ R @ is its positive eigenvector. Therefore, the spectral
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radius of K, should be unity:
(U, 0+ Rx*w) = 1. (68)

This implies that

F(A\*):= /0 h U (a)w*(a)e > da

o0 a (69)
—|—/ \I'(a)/ R(a,a — 2, \)w* (z)e > *dazda = 1.
0 0
Conversely, if A* is a positive root of (69),
by = N'N* (0 + R *w), (70)

satisfies (64) and (65). Therefore, to show the existence of endemic steady states,
it is sufficient to show that F(A*) = 1 has a positive root.

PROPOSITION 4.2.  Suppose that pi := inf,>0 p(a) > 0. If Ry > 1, there exists
at least one endemic steady state.

PRrROOF. Given that F(0) = Ry, it is sufficient to show that limsupy._, ., F(A*) <
1. In (69), by changing the order of integrals, we have

/OOO U(a) /Oa R(a,a — z, \*)w* (z)e™ Tdada
= /000 dx /000 R(z + 2, 2)dzw*(z)e ™ *.
From resolvent equation (63), it follows that
R(x+z,2)=H(x+zz2) —|—/OZH(:U+Z,C)R(JC—|—2—C,z—()d{. (72)

Meanwhile, we obtain an estimate as

H(a,n,A") < L(n) := e™#7(¢1 * ¢2)(n), (73)

where
$1(7) 1= N0(r)e ™ S 0O gy (7) 1= y(r)D (7). (74)

Let G(z) be a solution of a renewal equation:
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It then follows from (72) and (73) that R(x+ 2z, z) < G(z), and from (75), it follows
that

* Uiuz
G(2)dz < M2 76
(" e < 11 (70)
where u; = [;° e 27 ¢;(7)dr < 1. Therefore,
> Uitz
R dz < ————— 7
| R ez < (77)

and it follows from (71) that limy«_,oc F(A*) = 0. That is, F(A*) = 1 has at least
one positive root if Ry > 1. This completes our proof. O

It is still an open problem to determine under what conditions the chronological-
age—dependent reinfection model (43) has a unique endemic steady state, or mul-
tiple endemic steady states.

4.4. Prevalence and the total infection rate
Let p1(a) be the age-specific incidence rate and p2(a) be the age-specific recov-
ery rate in the endemic steady state. We then have

_ bila)
P+()’

pi(a) pa(a) = : (78)

From (60), we obtain a system of equations:

pi(a) = gla) + / " g ()pala — 7)dr,
(79)

pa(a) = /0 " ba(Pp1(a — 7)dr,

where ¢(a) :== \e *"® and ¢; are defined by (74). ¢ then gives the probability
density that the first infection occurs, ¢1(7) is the probability density that an infec-
tion occurs for recovered individuals at recovery—age 7 and ¢2(7) is the probability
density that a recovery occurs for the infecteds at infection—age 7. Then p; is the
solution of the renewal equation

p(@ =g(a) + [ (@1 62)mpi(a— )i (50)
0
Using the probability p;, we have i*(0,a) = P*(a)p1(a). The age-specific preva-
lence in the endemic steady state is then calculated as

fle) 1 0 7)i*(0,a — 7)dT = ’ a)pi(a — 7)dr
P*(a)_Bf(a)/o z(a—T)F() (0,a = 7)d /OF( )p1(a—7)dr.  (81)
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The ratio of recovered individuals at age a is given by

R*(a):7l OO?“*Ta T= ae_>‘*f0T0(<)dC a—T1)dr
o T, T prla = (82)

Let P; be the total number of infection (total infection rate) and P, be the total
number of recoveries (total recovery rate) in the endemic steady state. Integrating
(79), we obtain the relations

Pr=1+Q1P, Pr=QP, (83)

where
Q1= /O $1(r)dr =1 — = Jo Ola)de (84)

is the total probability of (re)infection for recovered individuals and

Qo = /0 ¢do(T)dT =1 —T'(00), (85)

is the total probability of recovery for the infecteds. Therefore, if @Q1Q2 < 1, we
have

1 Q2

=100, " 1-q0

(86)
4.5. Vaccination

Let v(a) be the force of vaccination at age a. If we can identify the vaccinated

status with the recovered status, the basic model with vaccination is formulated as

05(t.a) | 05(0) _ (0 4 p(a) + A(6))S(t, ),

ot da
di(t,7,a) = 0i(t,7,a)  0i(t,T,a) )
ot + or + da - —(/.L(CL) +’Y(T))7'(t’7—a Cl),
or(t,r,a)  Or(t,7,a)  Or(t,T,a) B
o1.0) O OIS a7, a) — (A, 7).

o0 (87)
S(t,0) = /0 m(a)(S(t,a) + I(t,a) + R(t, a))da,

i(t,0,a) = A(%) {S(t,a) + /Oa o(r)r(t, T, a)dT:| ,

r(t,0,a) = v(a)S(t,a) + /Oa ~v(1)i(t, 7, a)dr.
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There then exists a disease—free (immunized) steady state:
S*(a) = Bl(a)V(a), r*(r,a)=P*(a)W(a—T), (88)

where V(a) :== e~ I3 v(QdC i the proportion of susceptible individuals who are not
yet vaccinated at age a, and W (a) := v(a)V(a) gives the probability density for
vaccination at age a.

The effective susceptible population density is then given by

Se(a) = 5%(a) + /Oa O(r)r* (1, a)dr = P*(a)[V(a) + (6 x W)(a)], (89

and the effective reproduction number is calculated as

R(v) = /000 U(a) S;;f) da = /000 U(a)w*(a)[V(a) + (8 x W)(a)]da. (90)

Suppose that susceptible individuals are vaccinated at age ag and the coverage
proportion is € € [0,1]. Let W(a) = ed(a—ag) and V(a) = 1 —eH(a— ap), where §
is the Dirac function and H denotes the Heviside function. We can then calculate
the effective reproduction number as

R(e) = /ao U(a)w*(a)da
’ o - (91)
+(1—¢ / U(a)w*(a)da + e/ U(a)w*(a)f(a — ap)da,

0 ao
and the critical coverage of immunization €* such that R(e*) = 1 is calculated as

Ry—1

- JoZ w(a)w*(a)(1 - 0(a — ag))da’ (92)
In particular, if ag goes to zero, (i.e., newborns are vaccinated), we have
R(e) = (1 —€)Ro + €Ry, (93)
where
Ry = /0OO U(a)w”(a)f(a)da, (94)

is the effective reproduction number of individuals vaccinated at age zero. The
reinfection threshold is then given by Ry = 1/0 with

B _ Jo ‘I’(a)w*(a)Q(a)da.

Ry 157 ¥(a)w*(a)da
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Although detailed analysis of the chronological-age dependent reinfection model
is an open problem, the incorporation of the individual’s epidemiological history
with the host demography is crucial to developing epidemic models that are more
realistic. In fact, the functions g and € could be understood as a result of virus
(or parasite) dynamics in vivo, i.e., they express the continuous process of the
developments of individual infectivity and immunity. It is an interesting challenge
to understand the spread of infectious diseases according to within host dynamics.

5. Asymptomatic transmission models

As shown above, it is not easy to realize subcritical endemic steady states
without enhancement of susceptibility in the reinfection model. However, we can
consider more realistic reinfection mechanisms that allow backward bifurcations.
Here we consider two examples, malaria and measles.

5.1. Malaria dynamics

Although reinfected individuals are not distinguished from the infecteds result-
ing from completely susceptible individuals in the original Kermack-McKendrick
model, it will become a natural extension if we assume that epidemiological pa-
rameters for the reinfecteds are different from parameters of the infecteds produced
from completely susceptible individuals. In fact, Aguas, et al. ([1]) developed an
age-structured population model for the dynamics of malaria transmission, and
observed that stable endemic steady states coexist with stable disease-free steady
states. In their model, the infecteds resulting from completely susceptible individ-
uals are clinical malaria cases, and recovery from clinical cases confers protection
against the clinical manifestation of diseases, but not against infection per se. A
recovered individual can then be reinfected and develops a non—clinical form of
malaria, which can be called an asymptomatic infection.

According to the above consideration, we can extend the basic model (2) to
an asymptomatic transmission model. For simplicity, again we here neglect the
chronological age structure. Let i1 (¢,7) be the density of the infecteds resulting
from the infection of completely susceptible individuals, and let 8; be the transmis-
sion coefficient and ~; be the recovery rate. Let ia(¢,7) be the density of reinfected
individuals, (2 the transmission coefficient of the reinfecteds and o be the recov-
ered rate of the reinfecteds. We can then rewrite the basic model (2) as
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Os(t, ) N Os(t, )

o ST — (e, r) - A(®)s(t,7)

i1 (t Qi1 (t
ulb7) | Slhr) _ —(p+7(7)ia(t,7),
('92'2 (t, 7') 822 (t, T) o .
ot + or - 7(:u‘+72(7_))22(t77_)7
L) L OMET) e, ) — (A8 7),
ot or
where the boundary condition is given as
s(t,0) = uN,
i (£,0) = A1) / s(t,7)dr,
0
ia(t,0) =\®) [ 67 T o)
0

o

r(t,0) = /000 y1(7)i1 (¢, 7)dT +/0 Yo (T)ia(t, 7)dT,
At) = /000 B1(7)ir(t, 7)dT + /000 Ba(T)ia(t, T)dT.

Again we define

(s 1) = /0°° e My (MTi(r)dr, (85, 15) = /O°° e "B (T)L;(r)dr,  (98)

for j = 1,2. It is easily seen that the basic reproduction number Ry and the
effective reproduction number R; of the fully vaccinated system are given by

Ry = N{1,T1), Ry =0"N{5,T3). (99)

Let A* be the force of infection at an endemic steady state. We then have

_ NN, Tye(A)
A 1= (72, T2)p(A*)’

where ¢ is a function defined by (38).
Since

i5(0) (100)

NX*
N = (BT} (B T2)i3(0), (101)
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we have an equation satisfied by the force of infection:

o M R (i, T)e(A) | _
B) = pt A {RO i 97*1 1- 272,1F2>¢(A*) } - (102

where R(0) = Ry. Using the same kind of argument as used in section 3, we have
the following.

ProprosITION 5.1.  Endemic steady states backwardly bifurcate at Ry = 1 if
the condition

0" (B2,T2)
<ﬁ17]~—‘1>

(71,T1) > 1, (103)

holds.

If the net reproductivity of asymptomatic cases, given by (f2, I'2), is larger than
that of clinical cases given by (51,T1), it is possible to satisfy the condition (103),
even when 6* < 1. This situation could occur if the duration of infection of the
asymptomatic case is much longer, because it does not necessarily need clinical
treatment.

We now calculate the effective reproduction number of the extended model (96).
Suppose that € denotes the proportion of immunization in the disease—free steady
state. Let ¢;(t) := 4,(¢,0) be the density of the newly infecteds. We then obtain
a system of renewal equations describing the disease invasion in the disease—free
steady state:

Q) =1 =N (W1 xC)(t) + (1 — e)N(1h2 * (),
Cao(t) = eNO* (Y1 % (1) (t) + eNO* (Y2 * (2),

where 1;(7) := e "7 8;(7)T';(7).
Therefore the next generation matrix is given by

Ko <<1 —ON(B1,In) (1 - )N </32,F2>> , (105)

(104)

eNO*(B1,T1)  eNO*(B2,T2)

and the effective (vaccine) reproduction number is given by its spectral radius:

R(e) = (1 —€)N(B1,I'1) + eNO"(B2,I'3)
(1 — E)Ro +eRy (106)

(1—-(1-o0)¢)Ry,

where o := Ry/Rp, and 1/0 is the reinfection threshold of Ry. Therefore, the
disease is uncontrollable if Ry > 1/0 and condition (103) is written as o (y;,I'1) > 1.
If o > 1, which is necessary to satisfy condition (103), we have R(e¢) > Ry, and
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the vaccination thus increases the reproduction number, although it decreases the
reproduction number of clinical cases.

5.2. Measles dynamics in a vaccinated population
Finally, as an application of the reinfection model, let us consider an epidemic
In this
model, we again assume that there are two sorts of infectious states. The host
population is divided into five subpopulations: the completely susceptible popu-
lation (s), the vaccinated population (v), the recovered population with complete

model of measles with fluctuation of the immunity level for vaccinees.

immunity (r), the classical infectious population for measles (i1), and the subclin-
ical infectious population for measles (i3). Different from the assumption of the
Kermack—McKendrick reinfection model, the recovered individuals have complete
immunity and no susceptibility, and instead, the vaccinated individuals have partial
susceptibility (according to the waning of immunity) depending on the duration
since vaccination. By (re)infection, some of the vaccinated individuals develop sub-
clinical infection, and the immunity level of the remaining vaccinated individuals
is boosted to the level of newly vaccinated individuals. The vaccinated population
is structured by the duration since vaccination. We can then formulate vaccine-
induced subclinical infection model for measles as

BUT) T ste,7) — A, 7),
) OWT) (s (einte ),
OaT) | O] (g (it 7). (107)
67’251; 7) argT,T) e,
QD) L OT) (e, )~ A7),
where the boundary condition is given as

5(,0) = (1 =N

i (1,0) = A(t) /0 s(t, 7)dr,

in(£,0) = (1 — KA(D) /0 ()t 7)dr, (108)

r(t,0) = epuN + /OOO ~v1(1)i1 (¢, 7)dT + /000 Yo (T)ia(t, T)dT,

v(t,0) = euN(1 — p) + &A(t) /OOO O(T)v(t, )dr,
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and the force of infection is given by

At) = /000 B1(7)ir(t, 7)dT + /OOO Ba(T)ia(t, T)dT. (109)

Here € is the vaccination coverage of newborns, p is the probability that vaccinated
newborns develop complete immunity and & is the probability that the immunity
level of vaccinated individuals is boosted by infection, therefore, 1 — x gives the
probability that the infection of vaccinated individuals leads to subclinical infection.
The boosting effect is expressed by the “reset” of local time to zero. Kishida ([16])
investigated a special case of model (107)-(108) that ; and §; are constants, and
he found that multiple endemic steady states can exist.

Let A\* be the force of infection in an endemic steady state. Again it is easy to
derive the characteristic relation:

N(1-
RO =YD )
HEA (110)
(1 =&)L —pleuN(B1,'s) /Oo 9(7’)6_‘"—)‘* Jo 0Q0dC g — 1.
1 —kg(A*) 0
R(0) then gives the effective reproduction number:
R(O) =R, = (1 — S)Ro + eRy. (111)

Here Ry is the basic reproduction number and R; is the effective reproduction
number of the fully vaccinated system:

Ry = N{B1,T'1), Ri=(1-k)(1—p)NO*(B,T2), (112)

where 6* is defined by (25).

If p=1or x =1, we have Ry = 0 and the critical coverage of immunization
is given by ¢* = 1 — 1/Ry. Meanwhile, if R; > 0 and the reinfection threshold
o = R1 /Ry is less than unity, the critical coverage of immunization is given by

1 1 1
= l—— | >1—- — 113
¢ 1—0’< Ro) Ro’ ( )

which shows that if we take into account subclinical infection, the coverage of
immunization to eradicate the disease must be larger than the critical proportion
of immunization calculated from the standard SIR model neglecting the subclinical
cases.

Given that limy_, o R(A) = 0, there exists at least one endemic steady state if
R, > 1, while it is unclear whether endemic steady state uniquely exists or not.
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We observe that
1
R,(O) = *;(1 - E)RO +eDRy, (114)

where parameter D is defined by

1 o0 *

T 0
D=—— MG(T)e_’”/ 0(¢)d¢dr + k—. (115)
0 Jo 0 H
Given that D is independent from j; and it could become positive, it is possible
that R’(0) > 0 under the condition R(0) = R. = 1. In such a case, a backward
bifurcation occurs at R, = 1 and there exist subcritical endemic steady states.

PROPOSITION 5.2.  Endemic steady states backwardly bifurcate at R, = 1 if
the condition

1< (14 puDo)e, (116)
holds.

Note that if 6 is constant, D = (k—1)8/u < 0, and the bifurcation at R(0) = 1is
thus supercritical. An introduction of imperfect vaccination would make it difficult
to eradicate measles, although it can reduce the number of clinical cases.
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